1. Assume that \(Z \sim \text{N}(0, I_n) \). Let \(W = \Sigma_{i=1}^{n} Z_i \), \(X = \Sigma_{i=1}^{n} Z_i^2 \), and \(Y = \Sigma_{i=1}^{n} (Z_i - \overline{Z})^2 \).
 a. Are \(W \) and \(X \) statistically independent?
 b. Are \(W \) and \(Y \) statistically independent?
 c. Are \(X \) and \(Y \) statistically independent?

2. Assume that we have a random sample from a Poisson distribution. The Poisson density function is:
 \[
 f(X) = \frac{\alpha^X e^{-\alpha}}{X!} \quad \text{for } X = 0, 1, 2, \ldots, \infty
 \]
 The unconstrained ML estimator of \(\alpha \) is \(\overline{X} \). Under the restriction \(\alpha = \alpha_0 \), the constrained ML estimator of \(\alpha \) is just \(\alpha_0 \).
 a. Define the LR critical region (for the general case).
 b. Express the LR critical region for testing the hypothesis pair \(H_0: \alpha = \alpha_0 \) versus \(H_A: \alpha \neq \alpha_0 \) in terms of an inequality involving \(\overline{X} \).
 c. Is this a one-sided or two-sided critical region? Explain.

3. Consider the constrained least squares estimator,
 \[
 \hat{\beta} = \hat{\beta} - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(R\hat{\beta} - r)
 \]
 where the \(m \) linearly independent constraints, \(R\beta = r \), may or may not be valid.
 a. Given that OLS is unbiased, find \(E(\tilde{\beta}) \). When is \(\tilde{\beta} \) an unbiased estimator of \(\beta \)? When is \(\tilde{\beta} \) a biased estimator of \(\beta \)?
 b. Show that the covariance matrix of \(\tilde{\beta} \) is
 \[
 \sigma^2[(X'X)^{-1} - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}].
 \]
 c. Show that the difference between the covariance matrix of \(\hat{\beta} \) and the covariance matrix of \(\tilde{\beta} \) is a positive semi-definite matrix. What does this mean?
 d. Evaluate the following statement: “One should never use the constrained least squares estimator since imposition of the constrain might lead to biased estimates.”
4. Assume that we have a pair of samples \((Y_1, X_1)\) and \((Y_2, X_2)\) as per the discussion of the Chow test. If we wish to estimate separate models for each sample, we can stack them as

\[Y = X\beta + \epsilon \]

where

\[
Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}, \quad X = \begin{bmatrix} X_1 & 0 \\ 0 & X_2 \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}, \quad \epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \end{bmatrix}
\]

Note that if we expand the matrix products we get.

\[
\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} X_1\beta_1 + \epsilon_1 \\ X_2\beta_2 + \epsilon_2 \end{bmatrix}
\]

a. Show that the linear restrictions \(\beta_1 = \beta_2\) may be written in the form \(R\beta = r\).

b. Show that \(\hat{\beta} = (X'X)^{-1}X'Y\) reduces to

\[
\hat{\beta} = \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} (X_1'X_1)^{-1}X_1'Y_1 \\ (X_2'X_2)^{-1}X_2'Y_2 \end{bmatrix}
\]

c. Show that \(e'e = e_1'e_1 + e_2'e_2\).

5. Assume that we have a random sample from a Poisson distribution. The Poisson density function is:

\[f(X) = \frac{\alpha^Xe^{-\alpha}}{X!} \quad \text{for } X = 0, 1, 2, \ldots, \infty \]

a. Find the NP critical region for testing \(H_0: \alpha = \alpha_0\) versus \(H_A: \alpha > \alpha_0\).

b. Determine whether the NP critical region in part (a) is UMP for testing \(H_0: \alpha \leq \alpha_0\) versus \(H_A: \alpha > \alpha_0\).
Theorems

1. If A is a $q \times q$ non-singular symmetric matrix and B is a $q \times r$ matrix, then:
 a. $B'B$ is positive definite if B has rank r.
 b. A^{-1} is positive definite if A is positive definite.
 c. the rank of AB equals the rank of B.
 d. $B'AB$ is positive definite if B has rank r.
 e. $B'AB$ is positive semi-definite if B has rank q.