References

Change-in-Variable Method

We have a random variable \(X \) with known density function \(f(X) \) and sample space \(\Sigma_X = \{ X | f(X) > 0 \} \). A new variable \(Y \) is defined as a monotonic transformation of \(X \). That is, \(Y = g(X) \), where either \(g'(X) > 0 \) for all \(X \) or \(g'(X) < 0 \) for all \(X \). These conditions are sufficient to insure the existence of an inverse transformation, \(X = G(Y) \). (Note that the inverse transformation is often denoted \(X = g^{-1}(Y) \). In general, this will not be \(g(X) \) to the power minus one.) The sample space of \(Y \) is \(\Sigma_Y = \{ Y | Y = g(X) \text{ for } X \text{ in } \Sigma_X \} \). We wish to find the density function of the new random variable \(Y \).

Discrete Case

If \(x \) is an arbitrary element of \(\Sigma_X \), and \(y = g(x) \) the corresponding element of \(\Sigma_Y \), then

\[
f_Y(y) = P(Y = y) = P(X = G(y)) = f_X[G(y)]
\]

for \(y \) in \(\Sigma_Y \) and hence \(x = G(y) \) in \(\Sigma_X \).

Continuous Case

In the continuous case, probability is given by integrals of the density function. Hence, we will examine the corresponding distribution functions. Let \(x \) denote an arbitrary value for
the argument of the distribution function of X, and let $Y = g(X)$. Then,

(a) if $g'(X)>0$ for all X, we have

$$P(Y \leq y) = P(X \leq x)$$

or in terms of the required integrals

$$\int_{-\infty}^{y} f_Y(\eta) d\eta = \int_{-\infty}^{x} f_X(\lambda) d\lambda$$

since $X = G(Y)$, integration by substitution gives

$$\int_{-\infty}^{y} f_Y(\eta) d\eta = \int_{y}^{\infty} f_X[G(\eta)]G'(\eta) d\eta$$

differentiation with respect to Y gives

$$f_Y(y) = f_X[G(y)]G'(y) \quad \text{for } y \in \Sigma_Y$$

$$= f_X[G(y)] |G'(y)| \quad \text{for } y \in \Sigma_Y$$

(b) if $g'(X)<0$ for all X, we have

$$P(Y \leq y) = P(X \geq x)$$

or in terms of the required integrals

$$\int_{-\infty}^{y} f_Y(\eta) d\eta = \int_{x}^{\infty} f_X(\lambda) d\lambda$$

since $X = G(Y)$, integration by substitution gives

$$\int_{-\infty}^{y} f_Y(\eta) d\eta = \int_{-\infty}^{y} f_X[G(\eta)]G'(\eta) d\eta$$

differentiation with respect to Y gives

$$f_Y(y) = -f_X[G(y)]G'(y) \quad \text{for } y \in \Sigma_Y$$

$$= f_X[G(y)] |G'(y)| \quad \text{for } y \in \Sigma_Y$$

In summary, the density function for the monotonic transformation Y may be expressed in terms of the density for X as

$$f_Y(y) = f_X[G(y)] |G'(y)| \quad \text{for } y \in \Sigma_Y$$

Discrete example

Assume that X is Bernoulli with parameter P. The density function of X is

$$f(x) = P^x (1-P)^{1-x}$$
for $0 \leq P \leq 1$ and $X \in \{0,1\}$. Let $Y = X + 1$. The sample space of Y is $\{1,2\}$. The inverse transformation is $X = Y - 1$. The density function of Y is

$$f(Y) = P(Y-1)(1 - P)^{(Y+1)} = P(Y-1)(1 - P)^{(2 - Y)}$$

for $0 \leq P \leq 1$ and $Y \in \{1,2\}$.

Continuous example

Assume that $X \sim U(0,1)$. The density function of X is

$$f(X) = I(X)$$

where the variable $I(X) = 1$ if $X \in (0,1)$ and $I(X) = 0$ if $X \notin (0,1)$. Let $Y = \alpha X$ for $\alpha > 0$. The sample space of Y is the open interval $(0, \alpha)$. The inverse transformation is $X = Y/\alpha$. The Jacobian of the transformation is $1/\alpha$. The density function of Y is

$$f(Y) = \frac{1}{\alpha} I\left(\frac{Y}{\alpha}\right) = \frac{1}{\alpha} J(Y)$$

where $J(Y) = 1$ if $Y \in (0, \alpha)$ and $J(Y) = 0$ if $J \notin (0, \alpha)$.

Continuous example

Assume that X is exponential with parameter λ. The density function of X is

$$f(X) = \lambda \exp(-\lambda X)$$

for $\lambda > 0$ and $X \in \mathbb{R}^+$. Let $Y = X^2$. The sample space of Y is also \mathbb{R}^+. This transformation is monotone over \mathbb{R}^+. The inverse transformation is $X = \sqrt{Y}$ and the Jacobian of the transformation is $(2\sqrt{Y})^{-1}$. The density function of Y is

$$f(Y) = \frac{\lambda}{2\sqrt{Y}} \exp(-\lambda \sqrt{Y})$$

for $\lambda > 0$ and $Y \in \mathbb{R}^+$.
Multivariate Change-in-Variable Method

We have a random vector \(X \) with known joint density function \(f_X(X) \) and sample space \(\Sigma_X = \{ X \mid f_X(X) > 0 \} \). A new vector \(Y \) is defined as a set of monotonic transformations of \(X \). That is, \(Y = g(X) \), where we assume the existence of a set of inverse transformation, \(X = G(Y) \). In general, each element in \(Y \) will depend on the entire vector \(X \), and vice versa. The Jacobian of the inverse transformations is \(J = \frac{\partial X}{\partial Y} \), which is generally a function of \(Y \). The sample space of \(Y \) is \(\Sigma_Y = \{ Y \mid Y = g(X) \text{ for } X \in \Sigma_X \} \).

We wish to find the density function of the random vector \(Y \). If \(X \) denotes an arbitrary vector in \(\Sigma_X \), and \(Y = g(X) \) the corresponding vector in \(\Sigma_Y \), then in the discrete case, the joint density of \(Y \) is:

\[
f_Y(y) = f_X[G(y)] \text{ for } y \in \Sigma_Y \text{ and hence } X = G(y) \text{ in } \Sigma_X,
\]

and in the continuous case, the joint density of \(Y \) is:

\[
f_Y(y) = f_X[G(y)] \lvert J \rvert \text{ for } y \in \Sigma_Y \text{ and hence } X = G(y) \text{ in } \Sigma_X.
\]

Linear Transformations

Given a random n-vector \(X \) with mean vector \(\mu_X \) and covariance matrix \(\Sigma_X \), consider the set of \(n \) linear transformations \(Y = AX \). The random vector \(Y \) has mean vector \(\mu_Y = A \mu_X \) and covariance matrix \(\Sigma_Y = A \Sigma_X A' \). If \(A \) is non-singular, then there exist a set of inverse transformations \(X = A^{-1}Y \). The Jacobian matrix is just \(A^{-1} \), and given the joint density \(f_X(X) \), the joint density of \(Y \) is just \(f_Y(Y) = f_X(A^{-1}Y) \lvert A^{-1} \rvert \).