1	Supplementary Information
2	Salp blooms drive strong increases in passive carbon export in the Southern
3	Ocean
4	Moira Décima, Michael R. Stukel, Scott D. Nodder, Andrés Gutiérrez-Rodríguez, Karen E.
5	Selph, Adriana Lopes dos Santos, Karl Safi, Thomas B. Kelly, Fenella Deans, Sergio E. Morales,
6	Federico Baltar, Mikel Latasa, Maxim Y. Gorbunov, and Matt Pinkerton
7 8	Correspondence to: mdecima@ucsd.edu

9 Supplementary Figures

- 11 Supplementary Fig. 1. Temperature and salinity profiles (± std) for all five experimental
- 12 locations. a-c SA locations, d-e ST locations. Note difference in x-axes in SA compared to ST

¹³ waters.

15 Supplementary Fig. 2. Temperature- Salinity for SalpPOOP cycles. Black and grey areas

represent SA conditions, and red are ST areas.

Supplementary Figure 3. Abundances (salps m^{-2}), mean (± weighed standard deviation) OAL, and biomass *S. thompsoni*, oozooids in diamonds, blastozooids in open circles, total biomass in

and biomass *S. thompsoni*, oozooids in diamonds, blastozooids in open circles, total biomass in black squares (line through indicates average over the cycle). **a** Salp SA-Sc, divided into Period

A (first 5 days) and Period B (subsequent 2.5 days), **b** Salp SA, and **c** Salp ST. Grey bars

- 24 indicate night times, white bars indicate day times.
- 25

19

27

Supplementary Figure 4. Size-binned abundance and fecal pellet production estimates for 28

experimental cycle Salp Subantartctic Southland Current (SA-Sc) A. a Daytime abundance (ind 29 m⁻²), **b** daytime fecal pellet production using $\text{Fprod}_{\text{Gpig}}$ (mg C m⁻² 14 h⁻¹), **c** daytime fecal pellet 30

production using Fprod_{Inversen} (mg C m⁻² 14 h⁻¹), **d** nighttime abundance (ind m⁻²), **e** nighttime 31

fecal pellet production using Fprod_{Gpig} (mg C m⁻² 10 h⁻¹), **f** nighttime fecal pellet production 32

- using Fprod_{Inversen} (mg C m⁻² 10 h⁻¹). Brown indicates values for blastozooids and green indicates 33
- 34 values for oozooids.

Supplementary Figure 5. Size-binned abundance and fecal pellet production estimates for 36

experimental cycle Salp Subantartctic Southland Current (SA-Sc) B. a Daytime abundance (ind 37

- m⁻²), **b** daytime fecal pellet production using $\text{Fprod}_{\text{Gpig}}$ (mg C m⁻² 14 h⁻¹), **c** daytime fecal pellet 38 production using Fprod_{Inversen} (mg C m⁻² 14 h⁻¹), **d** nighttime abundance (ind m⁻²), **e** nighttime
- 39 fecal pellet production using $\text{Fprod}_{\text{Gpig}}$ (mg C m⁻² 10 h⁻¹), **f** nighttime fecal pellet production
- 40
- 41 using Fprod_{Inversen} (mg C m⁻² 10 h⁻¹). Brown indicates values for blastozooids and green indicates
- values for oozooids. 42

43

44 **Supplementary Figure 6.** Size-binned abundance and fecal pellet production estimates for

experimental cycle Salp Subantarctic (SA). **a** Daytime abundance (ind m⁻²), **b** daytime fecal pellet production using $\text{Fprod}_{\text{Gpig}}$ (mg C m⁻² 14 h⁻¹), **c** daytime fecal pellet production using

47 Fprod_{Inversen} (mg C m⁻² 14 h⁻¹), **d** nighttime abundance (ind m⁻²), **e** nighttime fecal pellet

- 48 production using $\text{Fprod}_{\text{Gpig}}$ (mg C m⁻² 10 h⁻¹), **f** nighttime fecal pellet production using
- 49 Fprod_{Inversen} (mg C m⁻² 10 h⁻¹). Brown indicates values for blastozooids and green indicates
- 50 values for oozooids.

52 **Supplementary Figure 7.** Size-binned abundance and fecal pellet production estimates for

- experimental cycle Salp Subtropical (ST). **a** Daytime abundance (ind m⁻²), **b** daytime fecal pellet production using $\text{Fprod}_{\text{Gpig}}$ (mg C m⁻² 14 h⁻¹), **c** daytime fecal pellet production using $\text{Fprod}_{\text{Inversen}}$
- production using $\text{Fprod}_{\text{Gpig}}$ (mg C m⁻² 14 h⁻¹), **c** daytime fecal pellet production using $\text{Fprod}_{\text{Inv}}$ (mg C m⁻² 14 h⁻¹), **d** nighttime abundance (ind m⁻²), **e** nighttime fecal pellet production using
- Fprod_{Gpig} (mg C m⁻² 10 h⁻¹), **f** nighttime fecal pellet production using Fprod_{Inversen} (mg C m⁻² 10
- h^{-1}). Brown indicates values for blastozooids and green indicates values for oozooids.

- 59 Supplemental Figure 8. Growth and grazing balances of salp cycles. Rates are ordered as:¹⁴C
- $PP(\mu)$, grazing by microzooplankton (microzoo), grazing by mesozooplankton (non-salp,
- mesozoo), grazing by salps (in black, salp), and the net rate of change (red, Net) which is the
- 62 sum of all the rates. Error bars are propagated SE.

63

65
 66 Suplemental Figure 9. ²³⁸U:²³⁴Th disequilibrium. Profiles from each cycle, two casts per

67 cycle. Error bars are propagated from uncertainty in dpm¹. Dotted line indicates the zero value,

and the depth at which the profile crosses this line is indicative of the remineralization depth.

Supplementary Fig. 10. 18s ASVs is water column and sediment traps (PIT). a Percent DNA
 meta-barcoding read contributions of the main 10 plankton groups in water column and PIT

samples. Water column includes six depths spanning the euphotic zone, while PIT sequences are

73 from formalin-fixed sediment trap samples at four depths (see text for details). **b** ASV

community composition (all, not restricted to phytoplankton) using class (left grouping) and

75 genus (right grouping) classification. First column of each grouping corresponds to the ASVs

⁷⁶ from the water column, middle column includes ASVs that are common to both water column

- and PIT samples, and left column are ASVs that are statistically more abundant in PIT compared
- to the water column.

80 Supplementary Tables

Pigment	Abbreviation	Taxonomic significance
19' Butanoyloxyfucoxanthin	19But	Pelagophytes, Prymnesiophytes
19' Hexanoyloxyfucoxanthin	19Hex	Prymnesiophytes
Alloxanthin	Allox	Cryptophytes
Chl b	Chl b	Chlorophytes, Prasinophytes
Divinyl chl a	DVChla	Prochlorophytes
Fucoxanthin	Fuco	Diatoms , Prymnesiophytes and Pelagophytess
Peridinin	Per	Dinoflagellates
Prasinoxanthin	Pra	Prasinophytes
Zeaxanthin	Zea	Cyanobacteria

82 **Supplementary Table 1.** HPLC pigments and main chemotaxonomic phytoplankton group affiliations².

Cruise/Location Sampling		Euphotic zone depth (m)	Flux at Ez (mg C m ⁻² d ⁻¹)	ΕZ	T ₁₀₀
SalpPOOP	Salp SA-Sc A	70	77	0.11	0.65
SalpPOOP	Salp SA-Sc B	70	82.4	0.21	0.71
SalpPOOP	Salp SA	70	132.3	0.415	0.66
SalpPOOP	Non-salp ST	70	33.7	0.045	0.7
SalpPOOP	Salp ST	70	209.6	0.46	0.57
SalpPOOP	Non-salp S&A	110	25.5	0.11	0.52
K2	D1	50	133	0.25	40
K2	D1	50	39	0.11	54
ALOHA	-	125	15	0.07	67
NABE	-	50	493	0.45	100
EQPAC	-	120	26	0.02	61
KIWI	7	30	284	0.29	32
KIWI	8	60	488	0.34	80
OSP	May	60	31	0.03	31
OSP	August	40	97	0.14	32

Supplementary Table 2. Values plotted in Fig. 5e. Note data from cruises that are not SalpPOOP are from Buesseler and Boyd (2009)³.

Fprod _{Gpig}	Oozooid	Blastozooid	All	Export @200m	Salp pellets @200	% Direct sinking	% Blastozooid contribution
Salp SA-Sc A	56.5 ± 21.2	24.5 ± 12.0	81.0 ± 24.3	50.9 ± 13.3	24.4 ± 16.1	30.1 ± 21.8	30.2 ± 17.3
Salp SA-Sc B	17.9 ± 8.6	77.7 ± 46.4	95.6 ± 47.2	59.1 ± 21.5	17.8 ± 7.8	18.6 ± 12.3	81.2 ± 63.0
Salp SA	14.3 ± 8.3	26.2 ± 15.3	40.5 ± 17.4	86.4 ± 38.1	26.8 ± 10.9	66.1 ± 39.2	64.8 ± 46.8
Salp ST	3.1 ± 1.9	36.1 ± 10.8	39.2 ± 11.0	101.8 ± 38.2	44.1 ± 12.9	112.6 ± 45.6	92.1 ± 37.7
				Export	Salp pellets	% Direct	% Blastozooid
Fprodiversen	Oozooid	Blastozooid	All	Export @200m	Salp pellets @200	% Direct sinking	% Blastozooid contribution
Fprod _{iversen} Salp SA-Sc A	Oozooid 43.2 ± 15.4	Blastozooid 66.0 ± 32.8	All 109.3 ± 36.3	Export @200m 50.9 ± 13.3	Salp pellets @200 24.4 ± 16.1	% Direct sinking 22.3 ± 16.5	% Blastozooid contribution 60.5 ± 36.1
Fprod _{iversen} Salp SA-Sc A Salp SA-Sc B	Oozooid 43.2 ± 15.4 12.9 ± 6.1	Blastozooid 66.0 ± 32.8 130.3 ± 51.5	All 109.3 ± 36.3 143.1 ± 51.8	Export @200m 50.9 ± 13.3 59.1 ± 21.5	Salp pellets @200 24.4 ± 16.1 17.8 ± 7.8	% Direct sinking 22.3 ± 16.5 12.4 ± 7.1	% Blastozooid contribution 60.5 ± 36.1 91.0 ± 48.8
Fprod _{Iversen} Salp SA-Sc A Salp SA-Sc B Salp SA	Oozooid 43.2 ± 15.4 12.9 ± 6.1 7.6 ± 4.4	Blastozooid 66.0 ± 32.8 130.3 ± 51.5 39.8 ± 20.8	All 109.3 ± 36.3 143.1 ± 51.8 47.4 ± 21.2	Export @200m 50.9 ± 13.3 59.1 ± 21.5 86.4 ± 38.1	Salp pellets @200 24.4 ± 16.1 17.8 ± 7.8 26.8 ± 10.9	% Direct sinking 22.3 ± 16.5 12.4 ± 7.1 56.5 ± 34.2	% Blastozooid contribution 60.5 ± 36.1 91.0 ± 48.8 83.9 ± 57.7

91 **Supplementary Table 3.** FP production calculated using grazing estimates from SalpPOOP

92 (Fprod_{Gpig}) and the Iversen et al. $(2017)^4$ relationship (Fprod_{Iversen}). Values are in mg C m⁻² d⁻¹. %

93 Direct sinking indicates the percent of FP production that is collected as Salp pellets @200m. %

94 Blastozooid contribution refers to the contribution to the total FP production. FP production

95 values are mean \pm SE.

97					. <u></u>						
	Plankton stocks and rates	Export	70m	Export	100m	Export	300m	Export	500m	Average	
		R	<i>p</i> -value	R	<i>p</i> -value	R	p-	R	<i>p</i> -value	R	<i>p</i> -value
Zooplankton	Zooplankton grazing	0.14	0.79	0.37	0.47	0.14	0.80	0.58	0.31	0.18	0.73
1	Log zooplankton biomass	-0.10	0.85	0.17	0.75	-0.05	0.92	0.18	0.78	-0.03	0.95
Salps	Salp grazing	0.26	0.62	0.51	0.30	0.22	0.67	0.76	0.13	0.31	0.54
	Log salp abundance	0.42	0.40	0.64	0.17	0.42	0.41	0.72	0.17	0.47	0.34
	Log salp biomass	0.66	0.15	0.63	0.06	0.65	0.16	0.77	0.13	0.69	0.13
Chl a	Log Surface chl a	0.11	0.84	0.16	0.76	0.21	0.69	-0.17	0.79	0.14	0.79
	Log Areal chl a	0.01	0.99	0.02	0.97	0.13	0.81	-0.31	0.61	0.04	0.95
Nutrients	Areal nitrate	-0.34	0.51	-0.36	0.49	-0.44	0.39	0.05	0.93	-0.37	0.47
	Areal silicate	-0.47	0.34	-0.40	0.43	-0.54	0.27	0.05	0.93	-0.49	0.33
Phytoplankton	Average Fv/Fm	0.17	0.79	0.07	0.92	0.30	0.62	-0.47	0.53	0.17	0.78
rates	Average PSII reaction center	-0.28	0.65	-0.25	0.68	-0.40	0.51	0.19	0.81	-0.30	0.63
and	Surface NPP	-0.24	0.64	-0.22	0.68	-0.16	0.77	-0.46	0.44	-0.23	0.67
physiology	Areal NPP	-0.28	0.60	-0.23	0.66	-0.18	0.73	-0.44	0.46	-0.26	0.62
	Biomass accumulation	-0.11	0.86	-0.08	0.89	-0.02	0.98	-0.23	0.77	-0.10	0.87
	Chl a accumulation	-0.38	0.45	-0.36	0.48	-0.30	0.57	-0.46	0.43	-0.38	0.46
	Phytoplankton growth	-0.17	0.75	-0.05	0.93	-0.10	0.85	-0.09	0.88	-0.14	0.79
	Microzooplankton grazing	0.06	0.90	0.29	0.57	0.11	0.84	0.27	0.65	0.12	0.83
18S DNA	Mamiellophyceae	-0.02	0.98	-0.04	0.95	0.05	0.94	-0.10	0.90	-0.02	0.97
dominant	Dinophyceae	0.22	0.72	-0.03	0.96	0.28	0.65	-0.61	0.39	0.19	0.76
phytoplankton	Syndiniales	-0.29	0.64	-0.46	0.43	-0.23	0.71	-0.69	0.31	-0.31	0.61
composition	Prymnesiophyceae	0.01	0.99	-0.08	0.89	-0.08	0.90	0.06	0.94	-0.02	0.97
	Bacillariophyta	0.01	0.98	0.27	0.65	-0.03	0.96	0.64	0.36	0.05	0.94
HPLC	19' Butanoyloxyfucoxanthin	-0.14	0.82	-0.08	0.90	-0.26	0.67	0.30	0.70	-0.15	0.82
phytoplankton	19' Hexanoyloxyfucoxanthin	-0.14	0.82	-0.13	0.84	-0.24	0.70	0.13	0.87	-0.15	0.81
composition	Alloxanthin	-0.31	0.61	-0.39	0.51	-0.20	0.75	-0.70	0.30	-0.31	0.61
	Chl b	0.72	0.17	0.44	0.46	0.74	0.15	-0.10	0.90	0.68	0.21
	Divinyl chl a	-0.29	0.64	-0.25	0.68	-0.41	0.50	0.20	0.80	-0.30	0.62
	Fucoxanthin	0.13	0.84	0.25	0.69	0.14	0.82	0.33	0.67	0.14	0.82
	Peridinin	-0.19	0.76	0.14	0.82	-0.25	0.69	0.47	0.53	-0.13	0.83
	Prasinoxanthin	0.53	0.36	0.27	0.66	0.65	0.24	-0.71	0.29	0.51	0.38
	Zeaxanthin	-0.43	0.47	-0.47	0.42	-0.51	0.38	-0.13	0.87	-0.45	0.44

98 **Supplementary Table 4.** Regression results of plankton stocks and rates as explanatory

variables of POC export fluxes at four depths, and average export flux for all five experimental

100 cycles. Note that export at 500m does not include Salp ST because export was not measured that

101 deep at that location. The only correlation that had p < 0.1 is shown in bold; no variables were

102 significant at p < 0.05.

Supplementary Table 5. Results from DESeq2 analysis. ASVs in common between both types of samples, significant or not significantly different in abundance (p < 0.01). $\chi 2$ results for the 2 SA comparisons and ST comparison. Significant differences in bold (p < 0.01).

	# ASVs not sig. different	# ASVs sig different	Comparison	Cycles	χ2	<i>p</i> -value
Salp SA-Sc	553	142				
Salp SA	496	237	SA	Salp SASc vs Non-salp SA	31.5	1.9 x 10 ⁻⁸
Non-salp SA	387	275	SA	Salp SA vs Non- salp SA	1	0.3
Salp ST	353	154	ST	Salp ST vs Non- salp ST	14.9	0.0001
Non-salp ST	319	173	Control	Non-salp SA vs Non-salp ST	4.4	0.03

Cy or	/cle der	Cycle name	Chl <i>a</i> / size- fractionated chl a	¹⁴ C PP/ Dilution - based growth & grazing	Nutrients	HPLC	Phytoplankton physiology	PIT/MCLane	²³⁸ U: ²³⁴ Th
			Depths (m)	Depths (m)	Depths (m)	Depths (m)	Depths (m)	Depths (m)	Depths (m)
	1	Salp SA- Sc	5, 12, 20, 30, 40, 50, 70, 100	5, 12, 20, 30, 40, 50	5, 10, 25, 40, 50, 70, 100	5, 12, 20, 30, 40, 50, 70, 100	5, 12, 20, 30, 45, 50	70, 100, 300, 500	5,12,20, 30, 40, 50, 70, 100, 150, 200, 250, 300
	2	Salp SA	5, 12, 20, 30, 40, 50, 70, 100	5, 12, 20, 30, 40, 60	10, 25, 40, 50, 60, 70, 80, 100	5, 12, 20, 30, 40, 60, 80, 100	5, 12, 20, 30, 45, 60	70, 100, 300, 500	5,12,20, 30, 40, 50, 70, 100, 150, 200, 250, 300
	3	Non- salp ST	5, 12, 20, 30, 40, 60, 80, 100	5, 12, 20, 30, 40, 50	10, 25, 35, 40, 50, 60, 70 100	5, 12, 20, 30, 40, 50, 70, 100	5, 12, 20, 25, 30, 35, 45, 50	70, 100, 300, 500	5,12,20, 30, 40, 50, 70, 100, 150, 200, 250, 300
	4	Salp St	5, 12, 20, 25, 30, 40, 70, 100	5, 12, 20, 30, 40, 50	5, 12, 20, 30, 40, 50, 70, 100	5, 12, 20, 30, 40, 50, 70, 100	5, 12, 20, 30, 40, 50, 70	70, 100, 200, 300	5,12,20, 30, 40, 50, 70, 100, 150, 200, 250, 300
	5	Non- salp SA	5, 12, 20, 30, 40, 50, 70, 100	5, 12, 30, 50, 60, 70, 90	5, 12, 24, 45, 70, 90, 100, 160	5, 12, 30, 50, 60, 70, 100, 120	5, 12, 25, 30, 45, 50, 60, 70, 90	110, 140, 340, 540	5,12,20, 30, 40, 50, 70, 100, 150, 200, 250, 300

Supplementary Table 6. Depths of water column sampling for each assay/instrument. Organized by cycle order.

Supplementary Table 7. Volumes filtered for each assay. Note that for some measurements,
 such as McLane pumps or DNA estimates, volumes were more variable due to filter loading or
 instrument limitations (slower filtration rates on McLane pumps), we have thus listed the general
 range of the volume filtered for that assay.

Analysis	Volume sampled (L)
Size-fractionated Chl a	0.2-0.5
Chl a	0.28
HPLC	1-2
Nutrients	0.03
¹⁴ C PP	1.3
Phytoplankton physiology	0.005
DNA - water column	1-2
DNA- PIT	1
DNA - McLane pump	150-450
²³⁸ U: ²³⁴ Th	4

110 References

- 1111Savoye, N. et al. 234Th sorption and export models in the water column: A review. Mar. Chem. 100, 234-112249, doi:https://doi.org/10.1016/j.marchem.2005.10.014 (2006).
- Wright, S. W. & Jeffrey, S. W. in *Marine Organic Matter: Biomarkers, Isotopes and DNA* (ed J.K.
 Volkman) 71-104 (Heidelberg, 2006).
- 1153Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux116attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210-1232,117doi:10.4319/lo.2009.54.4.1210 (2009).
- 1184Iversen, M. H. *et al.* Sinkers or floaters? Contribution from salp pellets to the export flux during a large119bloom event in the Southern Ocean. *Deep-Sea Res. Part II* 138, 116-125, doi:10.1016/j.dsr2.2016.12.004120(2017).
- 121