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MARINE MICROBIOME

Ocean biogeochemistry modeled with
emergent trait-based genomics
V. J. Coles,1* M. R. Stukel,2 M. T. Brooks,1 A. Burd,3 B. C. Crump,4 M. A. Moran,3

J. H. Paul,5 B. M. Satinsky,3 P. L. Yager,3 B. L. Zielinski,4 R. R. Hood1

Marine ecosystem models have advanced to incorporate metabolic pathways discovered
with genomic sequencing, but direct comparisons between models and “omics”
data are lacking. We developed a model that directly simulates metagenomes and
metatranscriptomes for comparison with observations. Model microbes were randomly
assigned genes for specialized functions, and communities of 68 species were simulated in
the Atlantic Ocean. Unfit organisms were replaced, and the model self-organized to
develop community genomes and transcriptomes. Emergent communities from
simulations that were initialized with different cohorts of randomly generated microbes all
produced realistic vertical and horizontal ocean nutrient, genome, and transcriptome
gradients. Thus, the library of gene functions available to the community, rather than the
distribution of functions among specific organisms, drove community assembly and
biogeochemical gradients in the model ocean.

G
enomic technologies that elucidate the
links between microbes and biochemistry
have revolutionized our understanding of
marine ecology and the cycling of nitrogen,
carbon, and other elements (1–5). However,

the models used to predict regional and global
ocean biogeochemistry and the microbes mediat-
ing their variability do not simulate quantities
that can be directly compared with genomic data.
In deep chemosynthetic environments, simulat-
ing the genes of each individual species has
proven fruitful (6); however, for the vast diversity
of microbes in the open ocean, most of which are
uncultured, this approach is impractical. Hence,
we developed the Genome-based EmergeNt Ocean
Microbial Ecosystem (GENOME) model, in which
organisms with genomes and transcriptomes are
simulated and compared with “omics” data. The
model was inspired by trait-based emergent phy-
toplankton community models (7), but we took a
different approach to developing model microbes
with diverse metabolic potential. The model ad-
dresses how the distribution of metabolic func-
tions among members of microbial communities
influences ocean biogeochemistry (8), asking
whether communities with distinctly different
types of organisms but common metabolic ca-

pabilities create similar marine biogeochemical
gradients over space and time.

Constructing model communities

The GENOME model was incorporated into a
general circulation model of the tropical and
subtropical Atlantic Ocean to provide flow fields
and environmental conditions for the model com-

munities. To construct model communities, orga-
nisms were first randomly assigned sizes (1 to
2000 mm) spanning the range from bacteria to
large phytoplankton. General substrate uptake
affinity, growth rate, mortality, and sinking pa-
rameters were established, which varied with size
on the basis of observations and theory (fig. S1
and table S2) (9–11). These allometric equations
described functional responses for all organisms
as a function of their size, but the functional re-
sponses were only applied when an organism
carried a gene relevant to the response. For ex-
ample, functional responses to light were not
invoked for organisms lacking a light-harvesting
gene. The model was not especially sensitive to
the slope of these scaling relationships because
the cumulative impact of the traits associated
with each gene led to high variance in the scaling
relationships, consistent with observations of
natural populations (fig. S1).
Each organism was then randomly assigned

a degree of complexity (number of genes selected
from 20 gene functional groups; table S3). Here,
we use the term “gene” to refer to a single mark-
er gene used to identify a biochemical pathway
that might involve many coordinating genes. To
avoid generating “super” microbes with all gene
combinations simultaneously, the model penal-
ized complexity by linearly reducing maximum
potential growth rate as the gene number in-
creased. This accords with the hypothesis that
microbes with smaller genomes require less car-
bon and other limiting nutrients to produce a
new cell (12) but are unable to maintain as many
specialist gene functions (13), although in prac-
tice this may not always be the case (14). In the
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Fig. 1. Organism replacement over time in the GENOME model. The first seven rows are
substrates that are constant over the model run. The next 68 rows delineate organisms by color.
Color change denotes replacement of an organism.
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model, organisms with highly streamlined ge-
nomes had reduced energy investment in replica-
tion and reduced expression and maintenance
of specialist gene functions. In contrast, orga-
nisms with high genome complexity were capable
of responding better to more nutrient- and energy-
replete environmental conditions. This assump-
tion was consistent with research illustrating
genome streamlining in some marine bacterio-
plankton (15, 16), yet allowed specialist life strat-
egies that enabled more complex organisms to
thrive in oligotrophic environments.
The model constructed genomes for each or-

ganism by randomly assigning genes from the
predetermined ensemble (table S3) of known
genes or environmental responses for which an
indicator gene has not been identified. The en-
semble accounts for the cycling of nitrogen and
organic matter in the Amazon River plume, for
which we have “omics” observations and biogeo-
chemical data (17–19). The model genetic path-
ways each mediate a biochemical transformation
or metabolic process. Organismal responses were
adapted using the costs and benefits estimated
for each genetic pathway in the organism’s ge-
nome (fig. S1 and table S3). The actual costs and
benefits of maintaining or transcribing genetic
pathways are unknown for most metabolic func-
tions; thus, their relative magnitudes were esti-
mated indirectly. First, the organismal integrated
cost-benefits were scaled to create variance in
the size-structured environmental response func-
tions, consistent with observations (fig. S1). Sec-
ond, the relative cost-benefits were adjusted to
ensure that all the model genes existed in at least
one organism somewhere within the model do-
main. Third, for nitrogen fixation and nitrifica-
tion, for which we have observations of genes,
transcripts, and biochemical rates, cost-benefits
were adjusted until the model simulated reason-
able integrated basinwide rates of nitrogen fix-
ation and local rates of nitrification. Last, our
limited direct observations of gene and transcript
abundance provided a constraint on the model.
Importantly, all organisms given a particular ge-
netic function received the same cost-benefits
for that gene, although their integrated responses
varied widely according to the other genes they
carried. Because different microbial communities
emerged in each model run, the basinwide bio-
chemical transformations mediated by the com-
munity were not tuned to match observations
and were thus free to vary as environmental con-
ditions changed.
Seven substrates and 68 microbes coexisted

at any given time, which is computationally tax-
ing but still insufficient to explore all genetic
combinations. To incorporate broader genetic
potential, organisms whose biomass never rose
above 1% of the local community anywhere in
the model were replaced with a new organism.
Most organisms were rapidly replaced because
their genomes did not encode a sustainable
organism in the model ocean. Others persisted
for long periods but were ultimately replaced by
new organisms that were better adapted to ex-
ploiting the model ocean and community (Fig. 1).
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Fig. 2. Normalized transcript concentrations in the Amazon River plume from June observations
in 2010 and modeled June. In (A) to (C), normalized transcript concentrations are shown along the
salinity gradient. (A) Transcription of genes involved in nitrate uptake and storage. (B) Transcription
of the amtB gene for ammonium transport and the glnA gene that indicates nitrogen limitation.
(C) Transcription of the amoA gene for nitrification. (D) Transcription of genes for degrading lignin-related
or aromatic compounds along the normalized colored dissolved organic matter gradient. l, liter.
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Fig. 3. Satellite observations and one model estimate of upper ocean particle density in June.
(A) Satellite-derived >5-mm particle number per cubic meter. (B) Model run showing surface >5-mm
particle number per cubicmeter assuming conversions of 20 and 25 fg of nitrogen per cell volume (measured
in cubic micrometers) for nano- and microparticles, respectively. (C) Satellite-derived <5-mm particle
number per cubic meter. (D) Model run showing surface <5-mm particle number per cubic meter assuming
aconversionof 1 fgof nitrogenpercell volume (measured in cubicmicrometers) for picoparticles.Observations
are 2003–2007 SeaWIFS (Sea-viewing Wide Field-of-view Sensor) climatological data.
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Each model simulation included more than 2000
organisms over the course of 20 years.

Modeling regulation of transcription

Equations for each organism were dynamically
linked to dissolved and particulate substrates,
such as nitrate, ammonium, and marine and ter-
restrially derived organic matter (eqs. S1 to S34).
Model microbes had multiple strategies for en-
ergy and substrate acquisition depending on
their individual genomes. However, at each mod-
el location and time, the model organisms tran-
scribed genes with the highest growth potential
given the local environmental conditions. Thus,
model microbes up- and down-regulated meta-
bolic processes rapidly in response to external
environmental variability.
One goal underpinning development of the

GENOME model was to have the capacity to
compare measurements and models of gene and
transcript concentration. Expression levels of
genes for substrate uptake or light harvesting
were modeled as the sum of constitutive transcrip-
tion, regulated transcription, and steady-state
transcription (eq. S30) and were parameterized
using observations of transcription in the Amazon
plume. For example, observations of the expres-
sion ratio (transcripts per gene) in the plume
increased with increasing numbers of transcripts
(fig. S4), indicating that elevated transcript con-

centration was not solely due to higher biomass,
but was also caused by up-regulation of nitrogen-
cycling genes in the western tropical North
Atlantic (17). As a result, we modeled constitutive
and regulated transcription of these genes as a
multiplicative function of nutrient limitation and
growth rate (eq. S30). However, the smallest val-
ues for modeled normalized transcription were
too low compared with observations until very
low levels of steady-state transcription, propor-
tional to biomass, were also added to the model.
In genes with an observational analog, the com-
parisons suggested that all three factors may be
important in setting the community transcript
concentration for substrate transporters. Genes
that selected for processes such as biogenic shell
formation or motility were modeled as consti-
tutively transcribed as a function of energy avail-
ability (20) or the local concentration of particles
(eqs. S32 and S33) (21).
We observed high abundances of cphA and

cphB, genes involved in intracellular nitrogen
storage, in the nutrient-rich, low-salinity plume,
and normalized transcript abundance decreased
with increasing salinity and decreasing nitrate.
A similar pattern emerged in the model for genes
regulating nitrogen uptake (Fig. 2A). The ammo-
nium transporter gene amtB and ammonium
assimilation gene glnA were also abundant in
the fresher region of the plume in observations

and high- and low-affinity amtB model gene
pathways, coincident with observations of higher
ammonium concentrations (Fig. 2B). Observa-
tions of elevated amtB gene expression at a sa-
linity of 32 was associated with production of
ammonium by symbiotic diazotrophic cyano-
bacteria, which was then assimilated by host
diatoms (22–24). Because the model assumed
that fixed nitrogen was used by the organism
that fixed it, ammonium assimilation was not
simultaneously up-regulated. This presents an
interesting challenge for future model evolution.
Observed transcript abundance for the amoA
gene encoding for nitrification was relatively low,
with maximum transcript abundance only 4%
of the maximum for amtB, and its and maximal
abundance occurred in low-salinity water. The
model showed a similar pattern, although it over-
estimates nitrification at intermediate salinity
levels (Fig. 2C). Measurable nitrite (32 nmol liter−1)
was observed in the low-salinity water with the
highest amoA transcripts, indicating competi-
tion for ammonium between nitrifiers, hetero-
trophs, and photoautotrophs, as occurred in the
model. Genetic signatures of the processing of
land-derived organic material include transcrip-
tion of genes such as pcaH and vanA (Fig. 2D).
Both modeled and observed transcription of these
genes indicated higher effort allocated to deg-
radation of terrestrial organic matter where
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Fig. 4. Vertical sections from the Atlantic Meridional Transect and
model. Sections are shown from observations approximately along 28°W
in 2005 [(A), (F), (K), and (P)] and from the model runs at 28°W in June
(all other panels). Depth is shown in meters on the y axis and latitude
in degrees on the x axis. (A to E) Nitrate (millimoles per cubic meter).

(F to J) Ammonium (millimoles per cubic meter). (K) Observed nitrite
(millimoles per cubic meter). (L to O) Model runs showing normalized
transcript concentration of archaeal amoA (dimensionless). (P to
T) Observed concentration of amoA genes and model runs showing
concentration of amoA genes (gene copies per cubic meter).
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concentrations are high, with a sharp decay in
transcript abundance as organic matter con-
centrations dip to less than 20% of the highest
observed concentrations (Fig. 2D).

Large-scale model validation

We ran the GENOME model repeatedly with
identical physical forcing but different micro-
bial communities, each randomly derived from
a common genetic pool (table S3). Satellite ob-
servations of particle size and density (25) pro-
vided spatial patterns for validating the model
organism density in different size classes (Fig. 3
and fig. S2). However, the satellite-derived par-
ticle density also included abiotic particles, such
as Saharan dust, that are not represented in the
model. Saharan dust collected in Atlantic sedi-
ment traps mainly falls into size classes greater
than 5 mm, and aerosol optical thickness mea-
surements indicate higher dust concentrations
between 20°N and the equator east of 40°W
(26) than to the north and south. This is the
area where the model underestimated the num-
ber of particles larger than 5 mm, compared with
observations. The model also underestimated
particle abundance in the oligotrophic gyres,
which is consistent with underestimated vertical
nutrient fluxes at the spatial resolution of this
model (27). The subtropical gyres in the Atlantic
are dominated by small particles (<5 mm), whereas
coastal, river-influenced, and mixing or upwell-
ing regions with higher nutrient concentrations
have greater densities of particles and a higher
fraction of large particles (>5 mm) (Fig. 3, A and
C). The model runs showed the same pattern
(Fig. 3, B and D, and fig. S2), which was de-
termined by nutrient availability and uptake.
Small organisms in the oligotrophic ocean benefit

from larger ratios of surface area to volume (28)
and lower sinking rates (29). Larger cells thrive
in nutrient-rich coastal and upwelling areas.
However, microbes have evolved strategies for
compensating for size constraints, such as reg-
ulating their buoyancy through ballasting or
energetic regulation of turgor pressure (30) or
using motility to seek out substrate plumes emit-
ted from moving particles (31). This allows some
large organisms to maintain their presence in
oligotrophic regions (32). In the model, specialist
genes for increasing nutrient or substrate uptake,
by allocating energy to motility or to high-affinity
nutrient transporters, provided a mechanism to
offset low nutrient availability (fig. S3). Conse-
quently, each model run maintained populations
of large cells that expressed genes encoding for
specialist strategies in oligotrophic regions.
All the GENOME runs established vertical

nutrient distributions that were similar to ob-
servations, regardless of the specific organisms
that emerged in each run. Some model errors,
such as broader and deeper nutrient gradients,
were primarily caused by coarse physical model
resolution (27). Vertical gradients in nitrate and
ammonium (Fig. 4, A to J) were determined
jointly by abiotic processes, including physical
advection and sinking, and biologically medi-
ated processes. One of these processes, nitrifica-
tion (conversion of ammonium to nitrate, carried
out by organisms with amoA genes), illustrates
how the model community shaped the distri-
bution of nitrogen species. Although there are
no direct observations of amoA transcript concen-
tration, high concentrations of modeled archaeal
amoA transcripts (Fig. 4, L to O) occurred co-
incidentally with observations of nitrite (Fig. 4K),
which is generated as an intermediate in the

process of nitrification, indicating that the model
nitrifying communities occurred in the correct
locations. Observations of vertical gradients in
archaeal amoA genes (Fig. 4P) showed that the
greatest concentrations occurred at ~100 m and
decreased toward 500 m depth (33). The model
runs (Fig. 4, Q to T) exhibited a similar gradient
in most cases. However, the similarity between
model runs was lower for genes than transcripts
because genes indicate the potential of the com-
munity, whereas transcript concentrations reflect
the realized model biochemical transformation.
It is unlikely that nitrification transcription would
be completely silenced, given that observations
show similar ratios of genes to transcripts across
a broad gradient of depths and nitrification rates
(34). Thus, the model formulation, which allowed
nearly complete down-regulation of processes,
was likely oversimplified.

Emergent communities and
metabolisms in the model

Not just nitrification, but all biochemical trans-
formations in the model, such as the return of
organic nutrients to inorganic nutrients, were
determined by organisms on the basis of their
biomass and growth rates. Thus, the nitrogen
transformation rates were not adjusted to set
the model nutricline. In conventional efforts
to simulate the biogeochemical gradients in
the Amazon River plume and elsewhere, model
parameters are adjusted to accurately represent
these vertical gradients (35–37) by selecting envi-
ronmental rates and response functions and by
balancing organic matter mineralization and sink-
ing. However, the optimal formulation for each
process is likely to differ under changing climate.
Because these processes are emergent in the
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Fig. 5. Surface genes and transcripts for amtB and pcaH in June.
(A) Modeled amtB gene concentrations. Observed amtB gene concentrations
are overlaid in circles. (B) Modeled pcaH gene concentrations. Observed
pcaH gene concentrations are overlaid in circles. (C) Modeled normalized
amtB transcript concentrations. Observed normalized amtB transcript con-

centrations are overlaid in circles. (D) Modeled normalized pcaH transcript
concentrations. Observed normalized pcaH transcript concentrations are
overlaid in circles.We assume a single gene copy per organism.Transcripts
are normalized by the maximum value in the region of the observations.
The color scales differ for all panels. (Additional runs are shown in fig. S5.)
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GENOME model, the composition of the emer-
gent communities, the rate of biochemical trans-
formations that the microbes mediate, and the
resultant metagenome and transcriptome can
freely adapt to a changing environment.
The gene for ammonium transport into cells,

amtB, was broadly distributed in the model
(Fig. 5A), with a spatial pattern similar to that
of ecosystem biomass (Fig. 3), because this func-
tion is ubiquitous. Observations of amtB gene
concentrations along a gradient in the Amazon
River plume (17, 38) broadly matched the model;
however, the spatial scale of the observations
was smaller than the gradients achieved in the
model. amtB was also actively expressed in the
model (Fig. 5B), because recycling food webs

fueled by ammonium dominated in the modeled
subtropical and tropical Atlantic.
In contrast, a gene for aromatic compound

metabolism (pcaH, indicating aromatic ring cleav-
age) was observed at lower absolute abundance
than amtB, although it remained finite across
the sampling domain (Fig. 5C), and the model
projection was consistent with this pattern. Ob-
served pcaH gene expression is generally higher
in water with high organic matter content (Fig. 2D).
This resulted in higher transcript concentrations
in the model near river mouths, such as the
Amazon, Orinoco, and Mississippi, where aro-
matic compounds are introduced (Fig. 5D). Each
of the GENOME model runs developed a dif-
ferent community with diverse individual gene-

tic capabilities, but for which the community
transcriptomes and genomes were consistent
with the limited observations (Fig. 2 and figs.
S4 and S5).
At present, we lack mechanistic understand-

ing of the cost-benefit trade-offs for marine mi-
crobial communities when carrying, expressing,
and regulating genes or synthesizing proteins,
and therefore we inferred these indirectly. Fur-
thermore, some processes were included in the
model for which we have no identified genetic
pathway or marker genes (e.g., genes associated
with grazing). As quantitative observations of
gene abundance and expression expand, data-
assimilative techniques to minimize the differ-
ence between modeled and observed gene copy
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Fig. 6. Comparison
of metagenomic and
transcriptomic
similarities between
model runs along a
salinity gradient.
(A) Metagenomes
along the Amazon
River plume salinity
gradient in each
of four model runs in
June, clustered by
similarity (genes
per cubic meter).
(B) Normalized
transcription along
the Amazon River
plume salinity
gradient in each of
four model runs
in June, clustered
by similarity. (C and
D) Model run and
salinity associated
with each sample.
Genes are described
in table S3.
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and transcript numbers could provide authentic
constraints on cost-benefits for modeling. For
example, in chemosynthetic environments for
which the Gibbs free energies of reactions are
known, a model of gene abundance and pro-
duction rate has been tuned to replicate obser-
vations (6). The costs and benefits of these gene
processes could potentially be determined from
their best-fit model parameters.

Different communities, common
metabolic functions

Microbial consortia do not align themselves pas-
sively along preexisting ocean biogeochemical
gradients; rather, they shape the biogeochemical
environment in a tight feedback loop that cou-
ples the physical environment to biological com-
munity structure. Thus, observations of taxa and
gene transcription across large gradients in nu-
trients following the path of the Amazon River
plume (17, 19, 24, 39) provided context for test-
ing the ability of the model to reproduce ob-
served patterns. Three potential outcomes of
GENOME model simulations were envisioned.
Initially, we considered it possible that random
allocation of genes to organisms would not re-
sult in correct and repeatable biogeochemical
gradients because the organisms needed to ex-
ploit specific conditions might be absent. How-
ever, this was not the case (Fig. 4 and fig. S2).
Second, it was possible that highly similar emer-
gent communities developed in each model
simulation and led to common biogeochemical
gradients. Third, it was possible that different
emergent communities developed in each model
simulation, but their common metabolic func-
tions created similar biogeochemical gradients
through space and time (i.e., that metabolic ca-
pabilities rather than specific taxa regulated ocean
biogeochemistry). The second and third outcomes
were evaluated by comparing the similarity of
community genomes between model simulations
with the similarity of community metabolic ex-
pression between model simulations.
The similarity between metagenomes (Fig. 6A)

and normalized metatranscriptomes (Fig. 4C) for
each model run was computed at locations along
the salinity gradient (Fig. 6, B and D) in the
model Amazon plume and clustered hierarchi-
cally. Salinity is a proxy for biogeochemical and
ecological community gradients that are attribut-
able to dilution and biogeochemical dynamics.
In general, as salinity increases, inorganic and
organic nutrients decrease, and communities
shift from groups representing Gammaproteo-
bacteria, Flavobacteria, and diatoms to those
containing oligotrophic bacteria, such as SAR11
and autotrophic cyanobacteria (17, 22, 40–42).
In the metagenome heatmap (Fig. 6A), dif-

ferent locations across a broad biogeochemical
gradient in a single model run were more simi-
lar than equivalent locations across model runs,
indicating that the emergent model communi-
ties differed widely in genome content between
runs. However, the metatranscriptome heatmap,
which indicates the actual metabolisms in use at
each location (Fig. 6B), clustered across runs,

with similar metabolisms expressed at equivalent
salinities. For example, at the lowest salinities,
genes encoding for heterotrophic processes in-
volving degradation of dissolved and particulate
organic matter (pcaH, AMA, and AMA-det) and
processes reducing mortality (motG, mot-P, sil,
and cheA) were highly expressed across runs,
whereas at intermediate salinities, photosynthesis
and nitrogen uptake genes (pcb, pbs, nrt, and
amtB) were highly expressed. Thus, the genetic
composition of each GENOME assemblage dif-
fered between runs, but the metabolic functions
were similar for a given environment across
model runs.

Conclusions

Randomness in community assembly has also
been observed in space-limited communities
such as the biofilms on macroalgae (43) and
in communities of coral reef fish (44), where
genetically distinct communities that perform
similar metabolic functions are found in adja-
cent environments. It is hypothesized that ran-
dom events determine the arrival of the first
organism with a given metabolic function, result-
ing in highly divergent communities coexisting
side by side. By analogy, each model run repre-
sents a different surface. However, there is no
direct competition for space in the water column.
Instead, niche space is hypothesized to be jointly
developed by the interaction of physical factors
and the metabolic activity of the members of the
community that may act as ecosystem engineers
(45). In the model, all simulations developed simi-
lar biogeochemical gradients that acted as niche
space, indicating that the evolution of metabolic
capacity was more important than any specific
ecosystem engineer. Global studies of marine dis-
persal and evolution suggest that microbes dis-
perse more slowly than they evolve, leading to
formation of biogeographic provinces (46). Thus,
a testable hypothesis emerging from this work is
that the global pool of available metabolic func-
tions, rather than the distribution of functions
among organisms, drives community assembly
and formation of biogeochemical gradients in
the ocean.
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