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 HE THIRD soNG of Dallapiccola’s Quattve Liviche di Antonio Machado
T ends with a series of six-note chords in the piano part (Example 0.t
The first chord, repeated and held through measure 80, is 2 member of
set class (SC) 6-228 [013569]; the second chord is its literal comple-
ment, a member of SC 6-Z49 [013479] (they form the two halves of a
twelve-tone serics). The third and fourth distinct chords (from the end of
measure 81 to the end of the excerpt) reverse this pattern at a different
transpositional level. While these chords types all have the same interval-
class (ic) content (as is the nature of Zrelated SCs), the subsets and inter-
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vals that they project differ greatly,. The two realizations of 6-Z49
prominently feature two closely-spaced realizations of 3-5 | 016]—one in
cach hand. In these chords, ics 1, 5, and 6 are most salient. By contrast,
both realizations of 6-Z28 prominently feature a close-position aug-
mented triad (3-12 [048]) in the right-hand part and an open-position
diminished triad (3-10 [036]) in the left-hand part. Or, taking the lowest
four notes of these 6-Z28 chords (including the lowest note in the right
hand) yields a complete diminished seventh chord (4-28 [0369]), spaced
as two tritones, nine semitones apart.
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EXAMPLE l: DALLAPICCOLA, QUATTRG LIRICHE DI ANTONIO
MACHADO, SONG 3, PIANG PART, LAST FIVE MEASURES

These differences between the 6-Z28 and 6-249 chords are not merely
products of spacing. Even though both set types share the same interval-
lic profile, 6-Z49 embeds neither 3-12 nor 4-28. Because 6-Z28 does
embed these two set types, both of which are complete interval cycles, I
will argue that it has the potential of projecting ics 4 and 3 (their cyclic
progenitors) more strongly than does its Z-equivalent, 6-249. This article
will propose a series of pitch-class-based analytical tools (including a sim-
ilarity index) that differentiate such set pairs, while still acknowledging
their intervallic affinities.

Marcus Castrén’s recent work on measures of pitch-class set resemblance
establishes a dichotomy between methods that compare only the sets’
interval-class content and those that consider all subset classes.? Exam-
ples of interval-class-based resemblance measures include Morris’s ASIM,
Isaacson’s IcVSIM and more recent ISIM, my own interval-class satura-
tion similarity measure—or SATSIM(2),? and the new ANGLE measure
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by Damon Scott and Eric Isaacson. Examples of subset-based measures,
which Castrén calls “total” measures, include Rahn’s AT MEMSB,
Castrén’s RECREL, and potentially Lewin’s REL (depending on which
subset classes are included in the TEST group).*

Castrén, among others, objects to interval-class-based measures
because they tend to produce a smaller number of distinct values than do
total measures, and because they do not distinguish between Z-related
set classes.” Total subset-based measures such as the ones mentioned
above de distinguish Z-related set classes, and each of them produces a
greater number of values than do any of the aforementioned interval-
class based measures. However, I'm not convinced that there is any cor-
relation between the number of distinct values produced and the gual-
ity—or effectiveness—of a particular measure. The measure that will be
presented later in this article produces hundreds more values than any of
these total measures, but T don’t believe that this is necessarily an advan-
tage.

‘Total measures, almost by definition, use different criteria in compar-
ing sets that are not the same size. For example, if one wanted to com-
pare two hexachords using 2 total measure, one would examine their
mutual pentachord-, tetrachord-, trichord-, and dyad-class cmbeddings.
If, however, one wanted to compare a hexachord to a trichord, one could
only compare the mutual dyad-class (and perhaps trichord-class) content
of the two sets. While each of these so-called total measures includes an
algorithm to bring such uneqgual comparisons into a COMMOnN range of
values, they still create scenarios where different means are used to com-
pare sets of unequal size.

Rather than judging resemblance by comparing interval classes or all
available subset classes, I will propose a method that is based upon how
cach set is partitioned with respect to the six distinct interval-cycles.
(Because interval 7- through 11-cycles may be understood as cither ret-
rogrades or inversions of interval 5- through l-cycles, they will not be
considered distinct.) This information scrves as the basis for a new
weighted six-argument vector that resembles the interval-class vector
(ICV) in function (or at least in its function as data for similarity indices)
but not in design. Each argument of the vector represents the degree to
which instances of corresponding interval-class » are found in unbroken
n-cycle segments. The assumption behind the weighting is that, for any
set class X, the more that instances of interval-class # form a particular #-
cycle, the more likely that X will project interval-class n. For example,
one might reasonably claim that a four-note quartal (or quintal) chord
projects ic5 more strongly than doces a chord with three cyclically non-
adjacent ic5s, Although I am addressing only pitch-class sets and not
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their particular orientations in pitch space, I believe that it is still
legitimate to assert that many—or even most—realizations of set class
[0257] will project ic5 to a great extent.

* k x

Before introducing the new vector types and similarity index, it will be
useful to make a few comments on the cycles themselves and the ways in
which they can be segmented and concatenated to form “cyclic sets.”
The group of cyclic sets has been discussed elsewhere in the theoretical
literature,® but I will be undertaking an approach that is rather different
in nature from these studies. My approach will lead toward a method for
comparing two set classes based upon their shared and different cyclical
construction.

Let us define an #-cycle (where # is a variable that represents any inter-
val class in standard twelve-pc space) as a closed and finite ordered coliec-
tion of pitch classes where one element maps onto the next (and the last

onto the first) under transposition at a constant interval 5.” The members
of an #-cycle are defined as (x+#, x+#2, x4, . xin? = x) where pis the

period of the #-cycle. For most values of n, there are several distinct #-
cycles in the 12-pc aggregate. For example, there are four 4-cycles:
(048), (159), (26a), and (37b). Because each n-cycle has p elements,
there must be 12 /p distinct cycles formed by interval # (we call this value
m). The complete n-cycles are shown in Example 2.

1 cycle: (0123456789ab)

2 cycles: (02468a) (13579b)

3 cycles: (0369) (147a) (258b)

4 cycles: (048) (159) (26a) (37b)

5 cycles: (0523816b4927)

6 cycles: (06) (17) (28) (39) (4a) (5b)

EXAMPLE 2: CYCLIC SETS IN TWELVE-PC SPACE

Because all instances of ic # occur segmentally within the n-cycle(s),
any pitch-class set that simply is a complete n-cycle naturally features the
maximal amount of a given ic # for a set of its cardinality. {0, 2, 4, 6, 8,
a}, for example, is maximally ic2 saturated; {0, 3, 6, 9} is maximaily ic3
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saturated, and so forth. The same is true of pesets that are wholly the
union of two #-cycles (for a single given 2). Roth {0, 1,4, 5, 8,9} and
{0, 2, 4, 6, 8, a} can be formed by the union of two 4-cycics,g and conse-
quently both hexachords maximally include ic4. For an interval » whose
cycles have periodicity p, then, we know how to identify the “maximally
n-saturated sct types” whose cardinalities are p or integer multiples of p.

A peset that is smaller than p will maximally saturate ic # if it is (again,
whotly) a continucus #-cycle segment. For # = 2 (with p = 6), the two-
through five-element set classes that maximally saturate ic2 are [02],
[024], {02467, and [02468]. A pcset that is larger than p will maximally
saturate ic # if it is the combination of however many complete n-cycles
cardinality permits (possibly just one) and an incomplete n-cycle of what-
ever length cardinality requires. For # = 4 (with p = 3), any combination
of, for example, {0, 4, 8} and some segment from one of the other three
4-cycles will produce sets that are maximally saturated with ic4 {e.g., {0,
1,4,8)},{0,1,4,5,68},{0,2,4,8},and {0,2,4,6, 8}).

We can condense the above conditions for maximal #-saturation into 2
single definition of what we shall call an #s-set (for interval m). An n-set is
comprised of some number of complete n-cycles (possibly none, one, or
more than one) and, at most, one incomplete #-cycle segment. The com-
plete list of all #-sets is the same as Tore Ericksson’s maxpoint series.” All
n-sets are maximally saturated with interval # and all pesets that are max-
imally saturated with interval # are n-sets.

We will now return to the creation of several new vector types that
reflect how the clements of a peset are distributed with regard to the
interval cycles. We will first examine such cyclic distribution, focusing on
the number and position of any cyclic adjacencies. Next, we will create a
version of the interval-class vector that distinguishes the size and quantity
of all n-cycle segments. This amounts to 2 subdivided interval-class vee-
tor, the arguments of which will be wei ghted using a procedure that gives
cyclic strings of intervals more prominence than equal numbers of the
same intervals that are not all cycically adjacent. My final construct will
be derived by comparing these cyclically weighted interval-class vector
arguments to what is possible given any set of the same size. This is what
I have clsewhere called a measure of saturation.’® These adjusted values
will provide us with a relatively cardinality-neutral means of relating sets
based upon their sn-cycle subsets.

We will begin our transformation from an objective inventory of the
intervals within a set to a weighted cyclic saturation vector by examining
the manner in which elements of a pitch-class set are distributed among
the n-cycles. Example 3 shows the cyclic distribution of set class 6-Z28
1013569] (interval-class vector: <224322>). Fach line of the example
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shows adjacencies within a particular n-cycle simply by ordering the
clements of the “most normai” form of 6-228 along the cycle. Parenthe-
ses delineate the cycles, and adjacent pitch classes within the parentheses
(including the wraparound) are n-cycle adjacencies, each producing a
single embedded interval-class #. Dashes indicate vacant places in cach #-
cycle.

1-cycle distribution of 6-228: (01-3-56--9--)

2-cycle distribution of 6-228:  (0--6--) (135-9-)

3-cycle distribution of 6-Z28:  (0369) (1---) (-5--)
4-cycle distribution of 6-Z28:  (0--) (159) (-6-) (3--)
5-cycle distribution of 6-228: (05-3-16--9--)

6-cycle distribution of 6-228:  (06) (1-) (-~} (39) (--) (5-)

EXAMPLE 3: DISTRIBUTION OF (SET CLASS) 6-228 [013569]
AMONG THE $IX DISTINCT #-CYCLES

Example 3 illustrates how the peset’s elements are distributed among
the cycles of any given interval. As 2 means of summarizing this data, we
will create an array called CycleSeg,(X). This construct lists the cardinali-
tics of the #-cycle segments of X from longest to shortest. The sum of
CycleSeg,(X) numbers equals the cardinality of set X. Example 4 shows
the cyclic segment lengths of our set, 6-228; compare these numbers
with the patterns in Example 3. In Example 3, we can see that 6-Z28’
clements fall into four disjunct segments of the 1-cycle, two of two ele-
ments and two of one; these are now represented by the array <2, 2, 1,
1>. Any realization of the set class (for example, {C, C#, Eb, F, F , AD
will have two two-note 1-cycle segments ({C, C¥} and {F, F#}) and two
one-note segments ({Eb} and {A}).

The lengths of the various segments indirectly teli us the interval-class
content of a peset. We can see, for example, that the two-note I-cycle
segments are the source of the two icls in the set, and also that a single
unbroken three-note 2-cycle segment is the source of 6-228’s two ic2s.
Similarly, the three ic4s in 6-Z28 arise from a single complete 4-cycle
subset. We will now create a new vector—the “ic-cycle vector” (abbrevi-
ated as ICCV)—that conveys not only that there are two icls and two
ic2s in set class 6-Z28, but also that those two icls arise from disjunct 1-
cycle segments and that the two ic2s arise from a single 2-cycle segment.



58 Perspectives of New Music

CycleSegl(6-Z228): <2,2,1,1>
CycleSeg2(6-Z28): <3,1,1,1>
CycleSeg3(6-228): <4,1.1>

CycleSegd(6-228): <3,1,1,1>
CycleSeg5(6-Z28): <2,2,1.1>
CycleSeg6(6-228): <2,2.1,1>

EXAMPLE 4: THE LENGTHS OF IC #-CYCLE SEGMENTS { CycleSeg,, )
OF 6-228 [013569]

Each of the ic-cycle vector’s six arguments is derived from the corre-
sponding CycleSeg,, values. Instead of showing the number of pes in each
a-cycle segment, the ICCV lists the number of ic # found in each #-cycle
segment. For the most part, deriving the number of ic # in an s-cycle
segment sirnply amounts to subtracting 1 from the size of cach segment
(for example, a one-note zn-cycle segment yields no interval #s, a two-
note segment yields a single interval #, and so on). This holds true for all
cyclic fragments (i.e., incomplete n-cycles); in cases where a complete #-
cycle is embedded in a set, the number of instances of interval # is equal
to the period of the cycle, not the length minus onc. Consider, for ex-
ample, a complete 4-cycle such as {0, 4, 8}. Here the period of the
cycle—the number of steps until the last element maps onto the first—is
3; therefore, this cycle yields three, not two, interval class 4s. This holds
true for all m-cycles except 6-cycles; two-clement cycles yield only one
interval each. Example 5 shows the interval-class-cycle vector of sex class
6-Z28.

ICCV(6-228): <(1,11, {2}, 4], {3}, (L1}, {L.11>

EXAMPLE 5: INTERVAL-CLASS-CYCLE VECTOR {ICCV)
oF 6-z28 [013569]

For any given sct (or SC), the sum of the numbers in each ICCV argu-
ment equals the paralle! ICV argument; more formally,

ICV (X)) = Y
t

(1CCV, (X))
&r ’



Broken and Unbroken interval Cycles 59

where T'is the set of interval strings of ic # and # are the elements of 7
This efaboration on the interval-class vector will be essential in develop-
ing the notion that two ic # from different #n-Cycle segments produce a
different degree of ic # salience than two ic # from the same n-cycle seg-
ment.

Our new vector lists the icl content of 6-Z28 as {1,1}, which tells us
that the two icls appear in disjunct locations along the single I-cycle; the
ic3 content of 6-Z28 is listed as {4}, which tells us that the four ic3s are
all from a complete embedded 3-cycle. Of course, we only know that an
ICCV3 entry of {4} indicates a complete 3-cycle because we know that
the period of a 3-cycle is 4. That same entry would indicate a cyclic frag-
ment for icl, ic2, and ic5 (and for ic4 and ic6, it wouldn’t even be pos-
sible). Cyclic periodicity must also be taken into account in order to
understand the degree to which a cycle can be fragmented. An ICCV
entry of {1,1}, for example, represents cyclic fragments for any ic but 6,
for which it represents two complete cycles.

Accordingly, we need to understand how many fragments are possible
for the cycles of various ics, with their various periods. Obviously, more
fragments will be possible when their len gths are shortest; and the short-
est possible fragments—single pcs—can be extracted from a cycle in the
greatest number by simply taking every other cyclic element. A maximally
fragmented #-cycle, then, would contain On, 2n, 4n, and so on, as far as
the cycle permits. The maximum number of n-cycle fragments equals the
greatest integer that does not exceed half the period of ic #. Of course
these one-element fragments produce exactly #0 occurrences of ic #; and
we are at least as interested in finding out how uncyclic some actual ic-n
content can be. The process of determining this would be to skip every
third element along an #-cycle. By taking two #-cycle adjacencies, we
form a single ic n, but by skipping the third, we avoid cyclic segments
longer than two notes (and ic # strings longer than one). Thus, the max-
imum number of unconnected ic # instances in an n-cycle is the largest
integer that does not exceed one-third of the period. The product of this
figure and the number of distinct #n-cycles (again we call this variable )
equals the maximum number of arguments in each ICCV,,. This can be
represented more formally as me round(p/3). These values (i.e., the max-
imum number of two-clement or larger n-cyclic fragments for each dis-
tinct ») are provided in Example 6.

A l-cycle, for example, can be broken into as many as four disjunct
two-note or larger fragments. There is only one set class that has four
icls, none of which are conjunct: 8-28 [0,1,3,4,6,7.9,a], the octatonic
collection. Since it is impossible to add another pc to this peset without
adjoining #wo of the cyclic fragments, there will never be any more than
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four clements in ICCV,. In contrast to the single 1-cycle, there are three
possible ic3 cycles. Fragmentation of these cycles is not an issue, how-
ever, since it is only possible to have two nonadjacent fragments within
the same 3-cycle, and both fragments could only be one-pc long, pro-
ducing no ic3. Thercfore, there can only ever be three elements in the
1CCV, vector (representing the three distinct 3-cycles).

ncvele  p " m*(p/3)(rounded)
1 12 1 1-(12/3) =4
2 6 2 2.(6/3) =4
3 4 3 3.{(4/3) =3
4 3 4 4.-(3/3) =4
5 6 1 1-(12/3) =4
6 12 6 6-(2/3) =6

EXAMPLE 6: CALCULATION OF THE NUMBER OF POSSIBLE
ARGUMENTS IN EACH ICCV INTERNAL VECTOR

Let us now retarn to our analysis of 6-Z28’s cyclic distribution. For the
sake of comparison, we will also examine the cyclic distribution and
interval-class-cycle vectors for set class 6-Z49 (prime form [(13479]), the
set class Z-related to 6-Z28. These are shown in Example 7 below. While
each interval-class occurs the same number of times in 6-249 and 6-Z28,
as is the nature of Z-refated SCs, their arrangement differs for three of
the six ics. Later, we will define an index to compare SC similarity based
npon respective ICCVs; to do so, we will clearly need to differentiate val-
ues such as {4} and {2,2} {these are the ICCV; values for 6-228 and 6-
Z49, respectively).

The premise of this article—that a single n-cycle segment projects ic #
more strongly (or at least differently) than do multiple shorter oncs—
neccssitates adjusting the ICCV arguments accordingly. Larger numbers
in the ic-cycle vector, which indicate a significant cyclic presence, should
be weighted more heavily than groups of smaller numbers, which denote
fragmentation. For example, the ic-cycie vector argument {3} should be
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1-cycle distribution of 6-Z49:  (01-34--7-9--)

2-cycle distribution of 6-Z249:  (0-4---) (13-79-)

3-cycle distribution of 6-249:  (03-9) (147-) {----)
4-cycle distribution of 6-Z49:  (04-) (1-9) (---) (37-)
5-cycle distribution of 6-249:  (0--3-1--49-7)

6-cycle distribution of 6-249:  (0-) (17} (--) (39) (4-) (--)

ICCV(6-Z49): <{L,1}, (1,1}, (2,2}, (1,11}, {L,1}, (L,1}>

EXAMPLE 7: CYCLIC DISTRIBUTION AND IC-CYCLE VECTOR
OF 6-249 [013479]

weighted more heavily than {1,1,1}, because the latter indicates a greater
degree of cyclic fragmentation.

This brings us to our next step: the weighting procedure. Perhaps the
casiest method would be to square all the values, then add them
together. This would create elements with values of

; 3%} = 9and ; (1527 %)= 3.
ne N ne N

Any similarity index that examined the difference between these two val-
ues (as do all commonly-used indices) would find that ic4 is three times
as salient in the former set as in the latter. While I want to differentiate
between longer and shorter cyclic segments and establish a bias favoring
the former, I do not want create an exaggerated comparison by weight-
ing the former too heavily.!! Therefore, I believe that simply squaring
theICCV,  values produces a distorted weighting system. Taking the
square rodt of the sum of the squared ICCV, arguments

/‘ cev; (x)°
Na&N %

is one way to temper this roughness.!? The difference between ./ and
J3 (or 3-1.73) is 1.27—a much smalier number, a2nd one that would
still allow for a fairly close relation of these two Z-related hexachords. Yet
even with this adjustment, the former SC still appears to have 73% more
ic4 salience. While this secems more tenable than claiming that it has
300% more ic4 salience (as would be the case if we only used the
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squares), the relationship still seems quite exaggerated; and this discrep-
ancy is considerably magnified in cyclic vectors of larger SCs.

We will therefore adopt a variable weighting system that is capable of
more linear scaling. This system, designated WEIGHT, is a simple addi-
tive formula. We begin with the number 1, which we multiply by a con-
stant value (either a real number or an integer). For the sake of this
demonstration, the constant that [ will be using is 1.2. The weighted
value of the number 1 is 1 times 1.2, or, simply 1.2. If the number we are
weighting is 2, we begin with the weighted value of 1 {again, 1.2),add 1
to it, then multiply the sum by 1.2. So, 1.2 plus 1 equals 2.2; the product
ot 2.2 and 1.2 is 2.64, and this is our weighted value for 2. To weight the
number 3, we start with the weighted value of 2, add 1 to it, then multi-
ply that sum by 1.2, and so forth.!® The values produced by WEIGHT
are provided in Example 8.

WEIGHT(0) = 0.00  WEIGHT(7)= 15.50
WEIGHT(1)= 120  WEIGHT(8)= 19.80
WEIGHT(2) = 2.64  WERIGHT(9)= 2496
WEIGHT(3) = 4.37  WEIGHT(10)= 31.15
WEIGHT(4) = 644  WEIGHT(11)= 38.58
WEIGHT(5) = 893  WEIGHT(12)= 47.50
WEIGHT(6) = 11.92

EXAMPLE &: VALUES RETURNED BY FUNCTION
WEIGHT WHERE THE CONSTANT is 1.2

With Example 9, we return to the problem of weighting the two ic-
cycle arguments {3} and {1,1,1}. As Example 8 shows, WEIGHT(3) =
4.37 and WEIGHT(1) = 1.2. There are three 1s in the latter vector, so
we muldply 1.2 by 3, totaling 3.6. These weighted values, 4.37 and 3.6,
will replace the respective arguments of the ic-cycle vector in our new
weighted ic-cycle vector (abbreviared WICCV). The denvation of the
weighted ic-cycle vectors for both 6-228 and 6-249 is shown in Example
10.

The weighted ic-cycle vector is an interpretation of both the interval-
class vector and the manner in which the elements of a peset fall among
the six distinet ic cycles. In its current state, it could be used in place of
the interval-class vector in any ic-based similarity measure, including
Teitelbaum’s similarity index, Morris’s ASIM, Isaacson’s IcVSIM and



Broken and Unbroken Interval Cycles 63

ICCV(6-Z28):  <{L1), {2}, {4}, {3}, (L1, (Li}>
ICCV(6-Z49):  <{11}, (L1}, (2.2}, {LLi}L (&1L (LI

WICCV,(6-228) = WEIGHT(3) = 4.37
WICCV,(6-749) = WEIGHT(1) + WEIGHT(1) + WEIGHT(1) = 3.60

EXAMPLE 9: WEIGHTED INTERVAL-CLASS 4 (WICCV,)
CONTENT OF 6-228 [013569] aND 6-249[013479]
WHERE THE WEIGHTING CONSTANT 18 1.2

ISIM, and Scott’s and Isaacson’s ANGLE measure. But before using this
new vector as fodder for a similarity index, we will add one more degree
of interpretation to it. The ICCV and WICCV numbers should carry dif-
ferent meaning depending upon the cyclic period and set cardinality. For
example, the 3-cycle ICCV value {4} (WICCV, = 4.37), indicates a com-
plete cycle; if the set is reasonably small (e.g., a tetrachord or penta-
chord), then a high degree of ic3 salience is indicated. That same value
({41}) referring to the icl content of an octachord suggests considerably
less-salient cyclic presence.

We will therefore compare each argument of the weighted vector to
the minimal and maximal possible values for that particular interval class
in any set class of the same cardinality. This will help us understand the
weighted ic-cycle values in the context of what is possible, and also what
is trivial, for any given cardinality. This new comparison forms the “cyclic
saturation vector,” or CSATV for short. To derive it, simply compare
cach weighted ic-cycle vector argument to the minimum and maximum
values for any set of the same cardinality (these are easily dertved by
examining all the n-sets). These minimum and maximum weighted val-
ues are given in Example 11.

Comparing cach of the six weighted ic-cycle arguments to the mini-
mum and maximum possible values produces a total of twelve compari-
sons. These are arranged into two six-place vectors in Example 12. The
top vector, abbreviated CSATV,, shows the comparisons of the weighted
arguments to either their respective minima or maxima, whichever is
closer; the bottom vector, marked CSATVy, shows the more distant
comparisons—that is, the comparisons that were not represented in row
A A walk through Example 12 will demonstrate how CSATV is cre-
ated. The top of this figure shows the minintal and maximal possible
values for each ic-cycle vector argument in any hexachord (these are
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OCV(6-228):  <(L,1}, (2}, (4}, {3} (L), {h1l>

WICCV,(6-728) = WEIGHT(1) + WEIGHT(1) = 2.40
WICCV,(6-728) = WEIGHT(2) = 2.64

WICCV4(6-728) = WEIGHT(4) = 6.44

WICCV,(6-728) = WEIGHT(3) = 4.37

WICCV,(6-728) = WEIGHT(1) » WEIGHT(L) = 2.40
WICCV(6-228) = WEIGHTE(1) + WEIGHT(1) = 2.40
WICCV(6-228) = <2.40, 2.64, 6.44, 4.37, 2.40, 2.40>

)
)

IOCV(6-Z49):  <{1,1}, (L1}, {22}, (1,51, (L1, {Li)>

WICCV,(6-249) = WEIGHT(1) + WEIGHT(1) = 2.40
WICCV,(6-749) = WEIGHT(1) + WEIGHT(1) = 2.40
WICCV4(6-749) = WEIGHT(2) + WEIGHT(2) = 5.28
WICCV,(6-249) = WEIGHT(1) + WEIGHT(1) + WEIGHT(1)= 3.60
WICCV(6-749) = WEIGHT(1) + WEIGHT(1) = 2.40
WICCV(6-749) = WEIGHT(1) + WEIGHT(1) = 2.40
WICCV(6-Z49) = <2.40, 2.40, 5.28, 3.60, 2.40, 2.40>

EXAMPLE L0 DERIVATION OF THE COMPLETE WICCVS OF 6-728
1013569] aND 6-249 [013479] WHERE THE WEIGHTING
CONSTANT 18 1.2

taken directly from Example 11). For example, the icl column shows
that it is possible to have as small 2 value as zero and as large a valuc as
8.93, which would represent 6 pes adjacent within a single icl-cycle (as
in set class 6-1 [0123451). The third line in ¥Example 12 contains the
weighted ic-cycle vector of our now-familiar set class, 6-Z28. The value
5 4G in the icl column is 6.53 less than the maximum and 2.40 more
than the minimum for a hexachord. The comparative value “min+2.40”
is therefore entered in the icl column of CSATV’s top row and “max-
6.53” is entered in CSATV’s bottom row. In its ic3 content, we sec that
6-728 is closer to maximal than it is to minimal saturation. In that casc,
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Minimum possible weighted ic-cycle vector values

Cardinality

Cardinality

1 2 3 4 5 6
0 0 0 0 0 0 0
1 ¢ 0 O ¢ 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 ¢ 0 0 0 0 0
5 0 0 0 1.2 ¢ 0
6 0 0 0 2.4 0 0
7 2.4 2.4 2.64 36 24 1.2
8 4.8 4.8 5.28 4.8 4.8 2.4
9 7.92 8.84 7.92 7.92 7.92 3.6
16 1288 1288 11.72 11.14 1288 48
11 31.15 1836 1552 1430 3115 6.0
12 4750 2384 1932 1747 4750 7.2

Maximuem possible weighted ic-cycle vector values

1 2 3 4 5 6
0 6 0 0 0 0 0
1 0 0 0 ¢ 0 0
2 1.2 12 1.2 1.2 12 12
3 2.64 2.64  2.64 4.37 2.64 1.2
4 4.37 4.37 6.44 4.37 437 24
5 6.44 6.44 6.44 5.57 644 24
6 893 1192 7.64 8.74 893 36
7 1192 1192 9.08 8.74 11.92 3.6
8 15,50 13.12 12.88 994 1550 438
9 1980 1456 12.88 1310 1980 438
16 2496 1629 1408 13106 2496 6.0
11 3115 1836 1552 1430 31.15 6.0

12 4750 2384 1932 1747 47590 7.2

EXAMPLE 11: MINIMUM AND MAXIMUM WICCV VALUES FOR ALL
CARDINALITIES (ROWS) AND INTERVAL CLASSES (COLUMNS)
WHERE THE WEIGHTING CONSTANT Is 1.2
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the max-related value is shown in the top row, and the min-related value
in the bottom row, and so forth.

One of the reasons for segregating min- and max-related values like
this, and not putting all the min-related values in one row of the vector
and all the max-related values in the other row, is to make it easicr, by a
quick glance at the top row, to determine whether each WICCV value is
closer to minimal or maximal saturation. A more formal reason for doing
do will arise shortly when we define our similarity index. Briefly, though,
this alignment will allow us to discriminate on behalf of the nearer com-
parisons. Unlike cther such indices, WICCV will be constructed to inter-
pret arguments that reflect the nearer degree of saturation (those in the
top row) as more valuable when comparing two CSATV.

I have, to this point, been using the terms “min” and “max” rather
casually. More properly, I should have notated a2 value such as
“min+2.40” (as in Example 12 above) in a way that indicates which
“min” is being used. Doing so involves specifying the weighting value,
cardinality of set, and the weighted ic-cycle vector argument being com-
pared. If we use the variables w, ¢, and i to represent these three items
(respectively), then “min+2.40” should properly be written as “min(w, ¢,
z) + 2.40.” In this specific case where w = 1.2, c=6,and i = 1, min(w, ¢,
) = 0.

Having just explained the longer, more precise, way of expressing this
measure of cyclic saturation, I will now move in the opposite direction
and introduce a couple of abbreviations that are warranted for the sake of
space and clarity—the first is trivial, the second more substantive. The
trivial change will simply be to drop the “min” and “max” designations
altogether. The signed numbers alone will tell us whether each value is
min- or max-related, and their placement within particular saturation
vectors will implicitly contextualize them (providing the interval cycle
information and set cardinality). This means that we will have to distin-
guish between -0.00 and +0.00. While they are numerically equal, in our
abbreviated system, these two arguments represent opposite ends of the
spectrum: the first indicating maximal and the latter indicating minimal
saturation of a particular WICCV value. Our strictly numerical represen-
tation will also simplify the formalization of our similarity index. That
matter will be addressed later, however.

The more substantial shortcut involves folding our two-part cyclic sat-
uration vector into a single six-argument vector in which cach value rep-
resents the relative distance from both min and max. This can be
accomplished, but not without some loss of specificity. We begin with
our max(w, ¢, ) value and subtract min(w, ¢, i) from it. This gives us a
“min-adjusted” maximum saturation value. We then take the appropriate
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WICCV argument and subtract min(mw, ¢, 7) from it, producing a min-
adjusted WICCV value. Dividing the min-adjusted WICCV value by the
min-adjusted max value produces a percentage that indicates how close a
particufar WICCV argument is to min{(w, ¢, i) or max(w, ¢, £). We could
not simply divide the WICCV value by max(w, ¢, i), because the result
would not account for the possibility that min(w, ¢, #) is greater than
zero. For example, if max (w, ¢, 1) = 4, min(w, ¢, i) = 2, and WICCV (w, £}
= 2, then simply dividing WICCV by max(2/ 4) indicates 50% saturation.
If we take the min (m, ¢, 7) value into account as described above, how-
ever, we get

indicating minimal saturation.

We will call the complete vector derived using this shorter system the
cyclic proportional satuvation vector, or CPSATV. The derivation of a
CPSATV for our familiar hexachords, 6-Z28 [013569] and 6-249
[013479] are shown in Example 13 below.!5 Formally, CPSATV is
defined as follows:

WIC 1Vi(X) —min{w, ¢, 1)

max{w, ¢, £) — min{w, ¢, {)

CPSATV(X) =

While this new form of the cyclic saturation vector scems much more
convenient and certainly less clumsy than our two-part CSATV (and, two
CPSATVs can be related to each other rather easily using any vector-
based similarity index), I generally prefer the extra degree of specificity
provided by CSATV, and [ worry that perhaps too much information has
been packed into cach of our CPSATV arguments. As 1 mentioned ear-
lier, 1 will shortly introduce a similarity index that is biased in favor of the
upper values (A parts) of each CSATV (the “closer” relations}—some-
thing that would be impossible with this shorter alternative. The single-
part vector is, however, very convenient for obtaining a quick cyclic pro-
file of a particular set class, and pairs of these vectors can be more easily
compared in one’s head while analyzing a parricular piece of music (even
if the vectors themselves cannot be derived on the fly). For this reason, I
prefer to use the CPSATV while forming my initial analytical opinions
and opt for the longer CSATVY when drawing more specific analytical
conclusions.

We have nearly arrived at the end of cur trail of definitions and are
almost ready to put this new saturation vector 1o analytic use. In doing
so, we will feed the cyclic saturation vectors into a similarity index and



69

Broken and Unbroken interval Cycles

L9°0

09°¢
0¥'C

0¥'¢C

L9°0

09°¢
0¥'¢C

T

go'¢

‘LT0

£6'8
‘OF'C

‘0¥T

‘LTO

£6'8
‘OFT

‘0¥

€6'8
0

7T ST LNVISNOO ONILHOIAM 3HL TYHHM
[6£FS10] (67 2-9)ALVSdD ANV {69S€T10] (BT 2-9)ALYSAD 40 NOILVYANAD ¢ HTdWVXH

‘61°0

$£°9
‘0’1

09'¢

‘170

3¢9
‘16T

LEF

$L8
0F'T

‘69°0

¥9°L
‘8T’S

‘8T’S

$8°0

9/
¥¥'9

‘$¥9

oL
G

‘070

7611
‘0%'C

‘0F'C

‘2T0

6’11
99T

¥9°C

61t
0

‘LT0

£6'8
‘0T

‘0% ¢

yaalil

£6'8
‘0T

‘0F'C

£6'8
0

>

6 Z-9)ALVSID

2 ‘g ‘gp)umd - (2 ‘g ‘7 )xew

>:(2 ‘9 ‘gry)um - ADDIM

>

>

(632-9)ADDIM

{87Z-9)ALVSdD

(2 ‘9 ‘g p)unu - (2 ‘g ‘7 )xew

>:(2 ‘g ‘7 un - ADDIM

>

fi

I

(8T7-9)ADDIM

(9 ‘7’ 1)xewt
(9 ‘¢ Duru



70 Perspectives of New Music

examine the results. Almost any ic-based similarity index—including
those named earlier—may be adapted to work with a saturation vector.
The index which I will use is an extension of my own SATSIM.!®
Explained briefly, SATSIM comparces the arguments in each of the top
(A) rows of one saturation vector to the corresponding minimum- of
maximum-related value of the other vector. This similarity index, which
we will now call the cyclic saturation similarity index (or CSATSIM), s a
function that compares saturation vectors of two sets, returning a real
number between O and 1 that serves as an indicator of the two sets’
degree of resemblance, following the model set by Morris’s ASIM(X,
7).17 The principal difference between the construction of ASIM(X, T}
and CSATSIM(X, T) is that the former deals with one-part interval-class
vectors while the latter uses values in 2 two-part saturation vector.

When relating two set classes X and Y using their cyclic saturation vec-
tors, it is necessary to allow for the possibility (in fact, the likelihood) that
the respective rows (A and B) of the two vectors might feature different
patterns of max- and min-related values. The values in row A of the
CSATV always reflect the “closest” comparison between the WICCV(X);
or WICCV(Y); value and either min{w, ¢, i) or max(w, ¢, i), and those
comparative vahues will play most heavily in our relation. To relate two
CSATVs, we first compare each value in row A of peset X’s saturation
vector to the corresponding min- or max-related value in either row A or
B of peset T7s saturation vector. We must then compare cach value in row
A of peset T7s saturation vector to the corresponding min- or max-related
value in either row A or B of peset X's saturation vector. Because the
comparison of peset X to peset Y frequently yiclds different values from
the comparison of peset 7 to peset X, it is necessary to perform both to
insure symmetry.'?

To compare two vectors using the CSATSIM index, we add the abso-
lute values of the numerical differences found in the above comparison,
and divide this sum by the combined vector totals. Vector totals are
obtained by adding together the distances between the numerical values
in the respective arguments of both vector lincs. If, for example, a partic-
ular argument in CSATV, is +4 and the parallel argument in CSATVy is
-1, the distance between +4 and ~1 = 5.2 Cyclic saturation vector total
(ECSATV) is formally defined in Example 14. Saturation vectors wilf
always total the same number for sets of the same cardinality, just as they
do in ic vectors.2® Thesc vatues are provided in Example 15.
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6
ECSATV()Q = z

EXAMPLE 14: FORMAL DEFINITION OF CSATV TOTALS (3CSATV)

CSATV,(X),, - CSATV(X),))

£ >CSATV(X)
0 0.00
1 0.00
2 7.20
3 16.13
4 26.32
5 32.53
6 47.36
7 42.54
8 44.86
9 40.77
10 33.09
11 0.00
12 5.00

EXAMPLE 15: (3CSATV) FOR ALL SET-CLASS CARDINALITIES (¢)
WHERE WEIGHT (w)=1.2

For a demonstration of how CSATSIM values are derived, consider
two cyclic pesets, X and Y where X = [012678] and T = [0369]. These
are shown with their CSATV values in Example 16. X has the value
(max)-3.65 in the icl column of CSATV,, while 7 has +0.00 in the par-
allel place. Because pesets X and Y are of different cardinalities, min(w, ¢,
¢) and max(w, ¢, 7) will represent different extremes for each £, It is there-
fore impossible to compare a min-related value directly with a max-
related value; in this case, we must look to line B of peset Y7s cyclic satu-
ration vector, which shows that [ 0369] is (max)-4.37 saturated with
ic1.*! The absolute value of the difference between -3.65 and -4.37 (i.e.,
0.72) is the value returned for the icl column. In the ic2 column,
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CSATV,(X) has the value (min)+2.40, while CSATV,(Y") row has the
value {min)+0.00, vielding a difference of 2.40. In this case, onc need
not check the value in CSATVy(Y) since row A had the necessary min-
related value. This procedure (step 1 in Example 16) is repeated for each
argument of CSATV,(X). Onc then compares each argument of

TSATV,(Y) to either row A or B of peset X7s saturation vector, creating
a two-part difference vector.??

Because only the “A” row entries of one saturation vector are com-
pared to whichever entrics match them in the other vector, not all the
max- and min-refated values are necessarily employed in the comparison.
In fact, when both sets have, for example, a max-related value in some ic
column of row A, the corresponding min-refated values in the B rows are
never compared. While an index that does not always consider all avail-
able arguments might be viewed as incomplete, by comparing only the
closest arguments in the CSATVs we greatly reduce the effect of cardinal-
ity. If, for example, we compared all the CSATV, and CSATVy, values of
icd in sets X and ¥, we would see that they are

1+0.00 - +0.00| +|-634~-437| _ 197 _ 1040
634 +437 10.71

different with respect to their WECCV, vaiues (I added the differcnces
berween the min-related values and max-refated valucs and divided that
sum by the sum of the distance berweenTSATVg, and CSATV, for
cach peset). Considering that these two sets are maximally similar with
regard to their 4-cycle segmentation (for a hexachord and a tetrachord),
this difference, occurring solely as a product of their difference in cardi-
nality, seems rather extreme. | therefore chose to omit the CSATV} com-
parison when both parallel arguments of the two CSATV, rows are
related to the same extreme {min or max).

As mentioned, the sum of the differences between CSATV,(X) and
the corresponding min- or max-related values in either row of
CSATV(Y) are not mecessarily the same as the differences between
CSATV(Y) and CSATV(X).** This was illustrated in step 1 of Example
16. In order to obtain the same value from a comparison of X to Tand T
to X, it is therefore necessary to add all the difference values together,
creating a composite that reflects both comparisons (step 2 in Example
16).

This dual comparison produces a context-free similarity index that has,
in large part, dealt with the problem of comparing sets with different car-
dinalities # prieri. However, an even greater degree of cardinal-neutrality
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is attained by dividing the sum of the differences by the combined totals
of the two vectors (step 4 in Example 16).2* This cardinality adjustment
better allows us to compare CSATSIM(X, 7') and CSATSIM(S, T )where
#5§ or #7 are not necessarily equal to #X or #7.25 CSATSIM is formally
defined in Example 17.

6
E (gcts,x'rv AlX),~csarv( 'r)n| + |(2SA'I'VA( ), CSATY mw(x)”i, )

#=1
CSATSIM(X, 1) = —
6

}

7

E (ECSATV A(X)” -CSA’IVB( X)”‘ + |CSATV A( 1}, - (:SATVB( ),

=

Where CSATV,(X),, represents the numerical value found in CSATV,’s nth
entry for peset X. Row is a function that determines which row of the
CSATV to use.

Function row:

If CSATV,.(X), is a max-related value and CSATV,(Y), is also a max-
related value, then the function row returns row A (CSATV,(X), is com-
pared to CSATV,(Y),); otherwise, row returns row B (CSATV,(X), is
compared to CSATVy(Y), ).

EXAMPLE 17: FORMAL DERINITION OF THE CYCLIC SATURATION
SIMILARITY INUEX—CSATSIM(X,T)

The value 0.42 that CSATSIM viclds comparing [012678] and [0369]
(step 4 in Example 16) represents the very great differences in their icl,
ic3, and ic5 content and cyclic fragmentation. It also represents the con-
gruence of values in the ic4 and ic6 columns and the more moderate dif-
ference in their ic2 columns, returning a value which indicates that 42%
of the WICCV valucs are equivalent. As mentioned, the number zero
indicates an equivalence relation, while the number one indicates maxi-
mal dissimilarity. As in many similarity measures, however, maximal dis-
similarity is impossible to achieve because no two set classes are
completely different with regard to their interval class occurrences and
cyclic distribution.

There are a number of equivalences yielded by CSATV and, more nar-
rowly, CSATV,.2® When two different set classes can be represented by
the same CSATV, we will call them CSATV Z-related, following Allen
Forte’s well-known ICV protocol. There is only one (traditional) ICV Z-
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pair that is also a CSATV Z-pair: the two all-interval tetrachords, 4-Z15
[0146] and 4-Z29 [0137]. Since they both feature one and only one of
cach interval class, each #n-cycle is segmented to the same degree. There
are a few cases of CSATV, equivalences: they are all relations between set
classes of different cardinalities (this is obviously impossible in ICV Z
relations), and they are all #-sets. The list of CSATV, Z-relations is pro-
vided in Example 18 (the ICVs and complete CSATVs are also shown).
Despite the very small number of Z-relations found using CSATV,, there
is one case of a Z-triple and one of a Z-quadruple. These Z-relations are
all independent of my particular weighting constant. While changing
WEIGHT clearly affects the CSATSIM values, these cases of CSATSIM
equivalence will abways remain invariant because the values in CSATV,
represent minimal saturation, maximal saturation, or one cyclic fragment
away from minimal or maximal saturation. Just as these CSATV Z
refations persist with all values for WEIGHT, so will the distribution of
relatively large and small values across all peset comparisons. For these
reasons, it seems unnecessary to demonstrate CSATSIM using different
WEIGHT constants.

We will now return to the third song of Luigi Dallapiccola’s Quatzre
Liviche di Antonio Machado, the final section of which is provided in
Example 19. My segmentation (shown in Example 19) is rather simple,
drawing upon the picce’s conservative metrical structure. 1 treat each
half-measure as a separate group, with only a few exceptions—mostly
because of notes held over briefly from one group to the next. The pc
content of each of the fifteen groups is labeled using both prime form
and Forte designation. Three pairs within the groups present members of
the same set class: numbers 1 and 3 {set class 5-31), 11 and 15 (6-Z28),
and 13 and 14 (7-26). The remaining groups are all members of different
set classes.

Example 20 provides a comparison matrix listing the CSATSIM values
between all possible pairs of these fifteen groups. The smallest non-zero
number in the matrix is 0.072, found between groups 5 and 11 (or, triv-
ially, 5 and 15); the largest number in the matrix is 0.539, between
groups 9 and 10. To provide a frame of reference, I have underlined ali
the CSATSIM values in the matrix that are higher than the average
CSATSIM value for all #4 to #8 SCs (underlined values thus represent
less than average similarity).?” Of course, using this average as the divid-
ing point for similar versus dissimilar sets is arbitrary. Rather than the
average value for all comparably-sized set classes, I might just as
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Set Classes Forte #CSATV(both rows}

CSATSIM group #1
4[]

B 0]

C [012345678%a]

D [0123456789ab]

CSATSIM group #2
A [0146]

B [8137]
CSATSIM group #3

A [04]

B (048]
CSATSIM group #4

A [036]

B 10369]

C {013467%9a]
CSATSIM group #5

A [01363]

B [(134679]
CSATSIM group #6

A [02468}

B [02468a]

(1/2/3/4/5/6-cyclic sets) (CSATV Z-quadruple)

g-1 < -0.00 -0.00 -0.00
< +0.00 +0.00 +0.00
0-1 < -80.860 -0.00 -0.00
< +0.00 +0.00 +0.00
11-1 < -0.00 -0.00 -0.00
< +0.00 +0.00 +0.00
12-1 < -0.00 -0.00 -0.00
< +(L00 +0.00 +0.00

-0.00
+0.00
-0.06
+0.00
-0.60
+0.00
-0.00
+0.00

-(0.00
+0.00
-0.00
+0.00
-0.00
+0.00
-0.00
+0.00

-3.00
+0.00
-0.00
+0.00
-0.00
+0.00
-0.00
+0.00

(all-interval tetrachords; non-cyclic sets) (CSATV Z -pair)

4-Z715< +1.20 +1.20 +1.20
< -3.17 -3.17 -524
4-729 < +1.20 +1.20 +1.20
< -317 -317 -5.24

(4-cyclic sets) (CSATV 4 Z -pair)

2-4 < +0.00 +0.00 +0.00
< -1.20 -120 -1.20
3-12 < +0.060 +0.00 +¢.00
< -2.64 -2.64 -2.64

+1.20
-3.17
+1.20
-3.17

-0.00
+1.20
-0.00
+4.37

(3/6-cyclic scts) (CSATV, Z-triple)

310 < +0.860 +0.00 -06.00
< -2.64 -2.64 +2.64
4-28 < +0.00 +0.00 -0.00
< -4.37 -4.37 +6.44
8-28 < +0.00 +0.00 -0.00
<-10.70 -8.32 +7.60

+0.00
-4.37
+0.0C
-4.37
+3.00
-5.14

(3/6-cyclic sets) (CSATV, Z-double)

5-31 < +1.20 +1.20 -0.00
< -524 -524 +6.44
7-31 < +1.20 +1.20 -0.00
< -8.32 -8.32 1644

+0.00
-4.37
+0.00
-5.14

(2/4/6-cyclic sets) (CSATVy Z -pair)

5-32 < +0.00 -0.060 +0.00
< 644 +644 -6.44
6-35 < +0.60 -0.00 +0.00
< -8.93 +1192 -7.64

-0.00
+4.37
-3.00
+6.34

+1.20
-3.17
+1.20
-3.17

+3.00
-1.20
+3.00
-2.64

+3.00
-2.64
+0.00
-4.37
+0.00
-10.7¢

+1.20
-5.24
+1.20
-8.32

+0.00
-6.44
+0.00
-8.93

-1.20
+1.20
-1.20
+1.28

+0.08
-1.2¢
+0.0¢
-1.20

-0.00
+1.20
-0.00
+2.40
-0.00
+2.40

-G.60
+2.40
-0.00
+2.40

-(.00
+2.40
-G.00
+3.60

EXAMPLE 18: SPECIAL CSATSIM EQUIVALENCE GROUPS
(:(.‘SATV OR CSATVAZ-RELATIONS>
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EXAMPLE 19: LUIGH DALLAPICCOLA, QUATTRG LIRICHE DI
ANTONIO MACHADO, SONG NUMBER 3, LAST TEN MEASURES

reasonably have chosen the average—or the mean—for the group at
hand. Alternatively, it would also seem reasonable to examine the distri-
bution of values and look for naturally occurring dividing points. Each of
these methods is arbitrary, of course, and the manner in which one
interprets data from similarity indices is as subjective as one’s choice of a
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particufar index.?® Like all analytical decisions, these should be made with
a musical context in mind.

In this comparison matrix, there is a slight dearth of values right
around 0.2. Since that largely conforms to what 1 hear as a close relation,
it will serve as the cutoff for what I will call a close relation. Another such
ebb occurs at 6.1, but this is a very high standard for relatedness, met by
only four of our pairs (discounting the set class duplications). We might
reasonably say that set pairs yielding a number smaller than 0.1 deserve
to be called very closely related.

CSATSIM is particularly useful in the last subsection of this song,
which begins in m. 80 and encompasses groups 11 through 15 {(and the
piano part of which was shown in Example 1). This portion of the
CSATSIM comparison matrix has been excerpted in Example 20. There
are two set-class duplications in this short span of music: between groups
11 and 15, which present the only sets that trivially match because of
Dallapiccola’s use of a particular row {(we’ll discuss that in a moment},
and between groups 13 and 14, which present the same set class despite
being the products of two rows from different row classcs. 2 The values
in Example 21 indicate that all the sets are similar, using our definition,
and that the first or fast sct and number 12 are very similar indeed. The
CSATV similarity between sets 11 and 12 results from their rather close
affinity to 3-cycle scts and their refative lack of ic 1-, 2-, 4- and 5-cycle
segments.*® Sets 13 and 14 also contain heavily segmented 1-, 2-, and 5-
cycles, and are close to neither the minimal nor maximal saturation of 3-
cycle adjacencies. This explains the very close resemblance of sets 11 and
12, and the somewhat less close, bur still similar, relations among the
other sets in this short excerpt.

Example 22 compares the sets presented in groups 1 through 6 (from
the first three measures of Example 1) in another excerpt from the overall
matrix with CSATSIM values greater than 0.2 underlined. As one can see
from the amount of underlining, quite a few set pairs are dissimilar under
our criteria. Notice, however, that sets 1, 3 (erivially), and 5§ are all similar
to each other and are dissimilar only to sets 2, 4, or 6. In more mausical
terms, the first halves of these measures are all similar to each other. The
second halves of these measures are 2 bit harder to generalize. Sets 2, 4,
and 6 are both dissimilar to the odd numbered sets and to each other.
They (and particularly set 2) are, however, refatively much more closely
related to all the sets at the end of the song.

An examination of the first six groups’ cyclic subsets reveals the distin-
guishing feature of group 2. Its most salient cyclic subset is a complete 4-
cycle, expressed compositionally as a close-position augmented triad in
the pianist’s right hand. Group 6 is the only other one that also embeds a



79

LAMHOXH VIOODIAVTIVA HHL NI SHSSVIOD LHS YOI XTELVIW NOSIIVAWOD WISLVSD (7 TTdWVYE

(£97°0 veys 1970013 sroquuny) oBeraae Usy) Jejrus ssof oxe ey sared ()g 61 puods
-2410D sanfeA WIS, LYSD pausapur) “s8ed oy jo do3 oy3 Je stoquun jeurpio sy yresusq) snf papraoad sie sunoj swud
PUE SIAUINU 3110 DISNW dy3 wi §)§ 4 Jo Juswodeid rrodwoy o 3uasoidar »oy pue doi oy 18 sivquunu feurpicy

Broken and Unbroken Interval Cycles

0000 8610 8610 6800 0000 ESFO0  PLCO 91TO  LOTO 6TTO  TLOO0  SFTO  90T0  LFUO 9070

06000 0000 1610 861¢  ¥ET0 O8Z0 6600 SEU0 6020 FIZO0 LLTO 9620 W0 9600

0000 16TC 8610  ¥£€0 OBZ0 6600 SEL0 6070 FITO LU0 T6T0 w0 9620

0000 680G TCFO €970 6810 99C0 S0TO FSTO 0610 T8I0  F6U0  Z8TO

0000 E€SF0  ¥TTO0  91T0  L0T0 6TTO TLO0 S¥TO 9070 LVID 9070

0000 6850 ¥6C0 8Lc0 OFF0 ZCS0 G6S50 1050 10¥0 1050

0000 0LT0 ¥STO TSTO  €0TO0 1£T0 TIf0 8.0 SIifO

0000  9TTO  L6L'0  B8TO 8910 €0 £070 0050

0000 9¥CT0  T6CO SSTO  F8TO  ITTO  FRED

0000 FOEG S£T0  9ZE0  LITO TIE0

0000 TRTO  OLT0 6170 0TT0

0600 ISTO0 9ZZ0 1STO

0000 S9¢TC 0000

0000 S9EQ

0000

{e9sern]l  lesspeiol fessverol leosezio]l fevsgro) [vsvsvziol fezsziol  [sorczol  Isvwiol [ssyeziol [efociol  Izpr0} fevetol [goz10]  [69£10]
87Z-9 9L 9T-L 91, 87Z-9 ¥-8 819 19 08-S €L 059  8I¥ 185 ¥Z9 18§

(11=) st (=) %1 €1 k4! 1t o1 6 ‘8 P 9 5 ¥ (1=)g 'z 1

o S A ori g
— e P = P e

RS BRI TSR S



80 Perspectives of New Music

11. 12. i3, i4. 15.
6-£28 7-16 7-26 7-26 6-Z28
[013566] [0123569] [01345791 [0134579] [013569]

11, 0.000

12. 0.089 0.000

13, 0.198 0.191 0.000

4. 0.198 0.191 0.000  0.000

15, 0.000 0.089 0.198  0.198 6.000

EXAMPLE 21: CSATSTM COMPARISON MATRIX FOR THE LAST FIVE
GROUPS IN THE DALLAPICCOLA EXCERPT (MM. 80-84)

1. 2. 3. 4, 5. 6.
5-31 6-Z24 5-31 4-18 6-30 7-3
[01369] [013468] [01369] [0147] [013679] [0123458]

1. 0.000

2. 0.365 0.000

3. 0.000 0365 0.000

4. 0251 0276 0251 0.000

5. 0120 0219 0120 0282 0.000

6. 0.376 0217 0376 0235 0.304 0.000

EXAMPLE 22: CSATSIM COMPARISON MATRIX FOR THE FIRST SIX
GROUPS IN THE DALLAPICCOLA EXCERPT (MM. 75-77). CSATSIM
VALUES LARGER THAN 0.20 ARE UNDERLINED

4-cycle, and that 4-cycle is much less salient, both in abstract terms
because it occurs within a larger set (and therefore represents a smaller
percentage of the set’s overall content), and in compositional terms
because it is not in as close a position and also because the pitches that
form the augmented triad (C, E, G#) are not struck simultaneously (as
was the augmented triad in group 2). The first and third sets, by contrast,
are comprised of a complete 3-cycle ([0369]) plus onc other note, yield-
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ing as many ic3s as possible in a pentachord. The fifth set is formed by a
complete 3-cycle (found in the pianist’s left-hand part) plus a tritone
from another 3-cycle (we can also think of this as three complete 6-
cycles), and the fourth set can be described as an almost-complete 3-cycle
with an additional note from another 3-cycle. Sets 1, 3, and 5 are the
only ones with complete 3-cycles, and CSATSIM finds them the most
closely related of the lot. Sets 2 and 6 are the next-most closely related
pair among the first six sets; they are also the only other pair that mutu-
ally embed a complete n-cycle of the same type (4-cycles). The connec-
tions between the beginning and end of Example 19 are also quite
strong. In Example 20, we can see that the last five groups are similar to
most of the other groups in the excerpt. Additionally, there are very clear
set-class connections between the beginning and ending of the song.?!

The cyclic saturation similarity measure—or any similarity measure that
uses the weighted interval-class cycle vectors or cyclic saturation vectors
as data—is particularly helpful for a piece such as this one. Dallapiccola
used row-classes that divide into Z-related hexachords, and, as discussed
at the beginning of this article, he compositionally realized the hexa-
chords in ways that take particular advantage of the available cyclic adja-
cencies. The set class of the last chord is 6-7Z28; the set class of the
penuitimate chord is, of course, its complement, 6-Z49. Looking back to
their 3- and 4-cycle distribution in particular (see Examples 3, 7, and
10}, you will recall that the final chord (6-Z28) contains a complete 3-
and 4-cycle, while the peaultimate chord contains two incomplete 3-
cycles and three incomplete 4-cycles. It is exactly because of the last set’s
affinities to both 3- and 4-cycles that CSATSIM finds it relatively closely
related to each of the sets at the beginning of the excerpt.®

My interval-class cycle vector and weighted cycle vector were designed
to illustrate the subtle, yet important, differences between just these sorts
of sets by focusing on their cyclic subsets. Anyone so inclined can fine
tune these vectors and their employment to reflect other notions of set-
class resemblance. One could, for example, simply replace my weighting
constant with a different number, replace my particular weighting system
with a different algorithm, or compare the cyclically-derived data using a
different similarity index. Alternatively, one could use a different (wider
or narrower) assortment of cycles®® or even apply such cycle-based
notions of labeling and similarity to other spaces.** And, if performing an
analysis where you want to equate or more sharply differentiate Z-related
or complementary sets, there are other systems of resemblance in the
waters. My hope is that these cyclic additions to the mix will help
diversify the ways in which we think about and compare pitch-class sets in
atonal music analysis.
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Avrennix: CSATSIM VaLue Grour MaTrIX

Castrén (1994) provides what he calls “value group matrices” to help
compare a variety of similarity measures with his own RECREL. I also
find such a statistical summary helpful in understanding the range of val-
ues that is both possible and average for a given measure of resemblance.
Following his format, I provide a similarly drawn CSATSIM (with
weighting constant 1.2) value group matrix representing comparisons
among all SCs larger or equal to dyad classes and smaller or equal to
decachord classes. Fach cell of Example 23 represents a statistical sum-
mary of the values possibie using CSATSIM(X, T') where X is a peset of
the X-axis cardinality and Y is a peset of the T-axis cardinality {or vice
versa). The upper left corner of each cell is the lowest CSATSIM value
possible in the value group;®® the upper right corner is the highest
CSATSIM value possible in the value group; the middle left value is the
lowest non-zero CSATSIM value (this value is not included in Castrén’s
value group matrices); the lower left corner contains the average of all the
values in the group; and the lower right corner contains the number of
distinct CSATSIM walues in the value group.

The matrix exhibits some patterns. The smallest average CSATSIM
value between #X and #7 SCs tends to occur where #X = #7. The next
smallest average value tends to occur between SCs of #X and #X (i,
the compliment of cardinality X). The average CSATSIM value tends to
increase the greater the difference between cither [#Y - #X] or [#1 - #X|.
Examine, for example, the #3 : #1 comparisons (i.c., all CSATSIM com-
parisons that include & trichord) on the matrix. The smallest average
comparison (and also the smallest maximal and minimal CSATSIM val-
ues) is between SC pairs X and Y where #X = #7 = 3. The next smallest
average value in this case happens to be between #3 and #4 SCs. The
third closest average, however is between #3 and #9 SCs. The largest
average CSATSIM comparison in the #3 value group is between #3 and
#6, which constitutes the largest possible difference between either #3 or
#9 and any other size 8C.

With the exception of the single case cited above in Example 18 (SC 5-
31:8C 7-31), CSATSIM does not suggest equivalence relations between
complementary SC pairs, but it does reflect the similar degree of poten-
tial cyclic distribution ameng SCs of complementary cardinalities. It
bears reiteration that these values are specific to the weighting value 1.2.
Changing the weighting alters the actual CSATSIM values, but does not
alter the distribution of relatively large and small values through all value

groups.
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The author would like to thank Joseph Dubiel for his very carcful
reading of this manuscript and for his helpful comments.

. At the end of this article, we will be dealing with the full texture of

this excerpt.

. Marcus Castrén, RECREL: A Similarity Mrasuve for Set-Classes,

Studia Musica 4 (Helsinki: Sibelius Academy, 1994), 8.

. SATSIM(2) is a particular case of the SATSIM measure that exam-

ines only cardinality 2 subset classes (this is rantamount to saying
interval classes).

Robert 3. Morris, “A Similarity Index for Pitch-Class Sets,”
Perspectives of New Music 18 (1979-80): 445-60; Eric Isaacson,
“Similarity of Interval-class Content Between Pitch-class Sets: The
IcVSIM Relation,” Jouwrnal of Music Theory 34 (1990): 1-28; and
“Issucs in the Study of Similarity in Atonal Music,” Music Theory
Online 2,7 (1996); Michacl Buchler, “Relative Saturation of Subsets
and Interval Cycles as a Means for Determining Set-Class Similarity”
(Ph.D. diss., University of Rochester, 1997): 75-79; Damon Scott
and Fric Isaacson, “The Interval Angle: A Similarity Measure for
Pitch-Class Sets,” Perspectives of New Music 36, no. 2 (Summer
1698): 107-42; John Rahn, “Relating Sets,” Perspectives of New
Music 18 (1979-80): 483-97; Castrén, 101-43; and David Lewin,
“A Response to a Response: On Peset Relatedness,” Perspectives of
New Music 18 (1979-80): 498-502.

. My SATSIM measure is cven less discriminating than the other ic-

based measures since, in addition to Z-related set classes, it also can-
not distinguish complementary set classes.

Some notable examples include: Tore Ericsson, “The IC Max Point
Structure, MM Vectors and Regions,” Journal of Music Theory 30,1
(1986): 95-111; Robert D. Morris, Composition with Pitch Classes: A
Theory of Compositional Design (New Haven: Yale University Press,
1987), 128-35; George Perle, Twelve-Tone Tonality, 2d ed.
{Berkeley: University of California Press, 1996), 7-11; and Dave
Headlam, The Music of Alban Berg (New Haven: Yale University
Press, 1996), 13-31.

In sbstract algebra, this is called a “ring.”
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. The former is the union of {0, 4, 8} and {1, 5, 9} and the latter is in

the union of {0, 4, 8} and {2, 6, a}
Ericksson, 96-100.
Buchler, 37-48.

“Too heavily” is, of course, entirely subjective; when consfructing
these vectors and the associated similarity index, I never wanted the
weighted value for any single z-cycle segment to equal more than
twice the sum of the weighted values of any possible smaller #-cycle
segments that total the same number of ic #. For example, {4}
should be weighed more heavily than {1,1,1,1}, {2,1,1}, {2,2}, or
{3,1}, but not by a factor of 2 or more. This meant moving toward a
weighting scaling that increased more gradually than an exponential
scale.

This resembles the system to compare differences used by Richard
Teitelbaum, “Intervalic Relations in Atonal Music,” Journal of Music
Theory9 (1965): 72-127.

While T believe that WEIGHT is easiest to understand as a recursive
fanction, it can also be modeled as a simple formula. Let # represent
the number that is being weighted and k represent the weighting
constant.

WEIGHT(n) = k—-f;l[;e”w 1

My sincere thanks to Panayotis Mavromatis for constructing this
equation.

In the case of a tie between minima- and maxima-related values,
CSATV, will show the comparison to the maxima-related value.

CPSATV(6-228) might also have been expressed as percentages:
<27%, 22%, 84%, 31%, 27%, 67%>.

Buchler, 51-62.

Since a high CSATSIM(X, T) value indicates a lack of similarity
among pesets X and 7, one might more properly call this a “dissimi-

larity index,” though it could easily be transformed into a true simi-
larity index by subtracting CSATSIM(X, T) values from 1.
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While symmetry might not be a necessary pre-condition for such a
measure, all context-free similarity measures of which I am aware
exhibit this property.

I am using integers in this demonstration for the sake of simplicity;
actual CSATVs will not primarily contain integer values.

In fact, one could arrive at the same vector totals by adding the dis-
tances between min{w, ¢, £) and max(w, ¢, i) for i = 1 t0 6.

Function row, described formally in Example 17, provides a mecha-
nism for determining which row in CSATV(Y) should be compared
to CSATV,(X) for cach of the six arguments.

The term “differcnce vector,” which refers to an ordered list of dif-
ferences between two vectors being compared is introduced in
Isaacson 1990, 16.

. Le., SATV,(X) : SATV,,(¥) = SATV,(Y) : SATV,,,(X) for all values

of Xand Y.

Again, saturation vector totals are obtained by adding together the
distances between the rows for every argument of the vector (step 3
in Example 16 or Example 14).

The basic construction of CSATSIM is similar to Morris’s ASIM
index. (Morris, 1979-80.)

If two sets are equivalent in only the CSATV, vector and not the
CSATVy vector, they will still yield the value 0.00 from CSATSIM.

In our analytic example, we are only presented with four- through
cight-note sets, The CSATSIM values for sets with four to eight ele-
ments ranges from 0.00 for the most simifar pairs to 0.65 for the
most dissimilar pairs. The average CSATSIM value for cardinalities
four through eight is 0.267. Average and extreme CSATSIM valucs
for all cardinality comparisons are provided in an appendix to this
paper.

And, ultimately every similarity index and method of labeling is also
ontologically subjective.

Unfortunately, the interesting play of invariance that facilitates such
similarity is not within the scope of this paper.

. One might imagine that sets 11 and 12 are also very closely related

because the former (6-Z28) is abstractly embedded in the latter (7-
16). While it is true that none of 6-Z28’s three (abstract) seven-note
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supersets (7-16, 7-28, and 7-32) significantly disturb the cyclic com-
position, an embedding/covering relation does not guarantee (or
even necessarily imply) a close CSATSIM relation. For example, 6-
Z3 [012356] is (abstractly) covered by/embedded in six different
heptachord classes. 6-Z3 is related to one of its supersets (7-4
[0123467]) by a CSATSIM value of 0.070, whereas it is related to
another of its supersets (7-16 [0123569]) by a CSATSIM value of
0.236.

There are also close SC connections from one song in the cycle to
the next, despite the fact that different row classes are used in all but
the first and last (fourth) songs of this cycle.

- Of course, no relation that operates in pitch-class space can be influ-

enced by a composer’s particular spacing or instrumentation. None-
theless, Dallapiccola’s setting of the final chord (and also the piano
chord in m. 80), which registrally segregates the embedded aug-
mented triad from the embedded diminished seventh chord, makes
these analytical results more vivid. By comparison, his setting of the
penultimate—and also the antepenultimate—piano chords brings
out their interval-class 1 and 6 content.

C.f,, Morris 1987: 128-35.

For example, pitches (in P-space) or beat classes.

The vaiue in the upper left corner is italicized if it is 0.000 and that
number only represents the trivial case of one SC compared with
itself (in cases where #X = #7). If the upper left number is 6.000 and
there is some CSATSIM Z-relation in the value group then the value
is not italicized.



e~

COPYRIGHT INFORMATION

TITLE: Broken and unbroken interval cycles and their use in
determining pitch-class set resemblance
SOURCE: Perspectives of New Music 38 no2 Summ 2000
WN: 0019701235003

The magazine publisher is the copyright holder of this article and it
is reproduced with permission. Further reproduction of this article in
violation of the copyright is prohibited..

Copyright 1982-2001 The H.W. Wilson Company. All rights reserved.



