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HE THIRD SONG of Dallapiceola's Quatt7- Lirici e di A; ton Mac!ado

I ends wvithl a series of six-note chords in the piano part (]Examlple I ).'

The first chlord, repeated and held through measure 80, is a memnber of

set class (SC) 6-Z28 10135691; the :econd chord is its literal comnple-

mrent, a mecmber of SC 6-Z49 [0)13479] (they formn the two halves of a

twelve -tone series). The th}ird and foulrth distinct chlords (from the ci d of

measure. 81 to the endl of the excerpt) reverse this pattern at a differenlt

tran.spositional level. WhMile these chords types all have the same interval-

class (ic) c ontent (as is the nature of Z-related KSC.). the subsets and inter-
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vals that they project differ greatly. The two realizations of 6-Z49
prominently feature twvo closely-spaced real1izations of 3-S [016]one in
each hand. In these chords, ics 1, 5, anld 6 are most salient. By contrast)
both realizations of 6-Z28 prominently feature a close-position aug-
mented triad (3-12 [048]) in the right-hand part and an open-position
diminished triadi (3-10 [036]) in the left-hand part. Or, taking the lowest
four notes of these 6-Z28 chords (including the lowest note in the right
hand) yields a complete diminlished seventh chord (4-28 [0369]1), spaced
as two tritones, nine semitones apart.

e~~~~~~~~ tempo

EXAMPL.E 1I: DAL.LAPICC'OLA, QUA TTROi LTRiCHE Dl ANT'ONIO
MfACIJAIO, SONG 3, PIANO PART1, LAST FIVE MEASURES

These differences betweenl the 6-Z28 and 6-Z49 chords are not merely
products of spacing. E.ven though both set tyvpes share the same interval-
lic profile, 6-Z49 emlbedls neither 3-12 nor 4-28. Because 6-ZE28 does
emnbed these two set types, both of which are complete interval cycles, r
will argue that it has the potential of projecting ics 4 and 3 (their cyclic
progenitors) more strongly thanl does its Z-equivalent, 6-Z49. lThis article
wil.l propose a series o3fpitch-class-based analytical tools (including a sim-
ilarity index) that differentiate sulch set pairs, while still acknowledging
their intervallic affinities.

MIarcus C;astren's recent wo3rk on measures of pitch-class set resemblance
establishes a dichotomy betwveen methodhs that compare only the sets'
interval-class content and those that consider all subset classes.2 Exam-
ples of interval -class- based resemblance measures include Morris's ASIM4,
Isaacson's IcVSIM and more recent [SIM, my own interval-class satutra-
tion similarity measure-or SATSIM(2),3 and the new ANGLE measure
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54 ~~~~~~Perspectives of New Music

by Damon Scott and lEric lsaacson. Examllpes of subsect-basedL tneasures,

wThich Castren --alEs "total" measulres, include Rtahn's ATMELMB,

Castren's RECREiL, and potentially Lie win's RE,L (depenldii g on which

sulbset classes arc included in the TEST9r groulp) A
G:'astren, amono g others, obajects to interval-c lass-based mneasures

because they tend to produce a smnaller numr£ber of distinct value.s thlan do

totaL measures, anld becaulse they do niot distinguish betwveen Z-related

set classes.
5 Total subuset-based measures such as the ones mnentioned

above da distinguEish Z-related set classes, andl each of them pr )duccs a

greater nurmber of values thanl do an}y of the aforementionled interval-

class based measures. How7ever, I'm not conlvinwced that there is any cor-

relation between the number of distinct values prodluced! and the qual-

itv-or effectivenless-of a pearticullar measulre. The measure that will be

presentedt later in this article produces hundreds more valMues thanl any of

these total measures, but I dton't believe that this is necessarily an advan-

tage.
LTot'l measures, almnost by dlefinititon, use different criteria in compar-

ing sets that are not the same size. For examp?le, if one wanted to com-

pare two hexachords usin7g a total measure, one wsouldI examine their

mutual penztachord-, terrachord-, trichord-, and dAyad- -lass embeddings.

If, however, onle wvan1ted to comlpare a hexachEord to a trichord, one could

onlty compare the mnutual dyad-class (and perhaps trichord-class)| content

of the two sets. While each Of these so-calledt total mneasures includes an

algorithlm to brring suach unequal comparisons intlO a commono range of

values, they still create scenano(s where differentt means are used to com-

pare sets of unequlal size.

Rtathler thtan judging resemEblance by comlparing interval classes or all

available subset classes, I will propose a mnethod chat is Ibased upon bow

each set is partitioned with respect to the six distinct interval-cycles.

(Because interval 7- through 1 1-cycles may be understood as either ret-

rogrades o?r inversions of interval 5- thlrough 1-cycles, they will not be

conlsidered distinct.) This information serves as the basis -for a new

weighted six-argumlent vector thzat resemlbles the inlterval-class vector

(ICyV) in function} (or at least in itS functionl as dlata for similarity indices)

but nlOt in design Each argumlenht of the vector represents the degree to

which instanlces of correspondinlg intervral- cl ass n- are found in unbroken

n-cycle segments. The assumption brehind the weightinlg is that, for any

set cl ass X5 the mrore that inostances of interval -cl-ass n- formn a particular g--

cycle, the more likely that X will project interval-class n. FHor example,

one might reasonably claimr that a four-nlote qartal (or qulintal) clhord

projects ic5 mnore strongly than does a chordL with three cyclically non-

adjacent ic5s. Although I -am addressing; only pitch-class sets and nOt

fi4
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their particular orientations in pitch space, I believe that it is still
legitimlate to assert that mnany-or even most-realizations of set class
[0257] will project ic5 to a great extent.

Befiore introducing the new vector types and similarity Index, it will be
useful to make a few comments on the cycles themselves and the ways in
which they can be segmented and concatenated to form "cyclic sets."
The group of cyclic sets has been discussed elsewvhere in the theoretical
literature,6 but I will be undertaking an approach that is rather different
in nature from these studies. My approach will lead toward a mlethod for
comnparing two set classes based upon their sharedl and different cyclical
construction.

L et US define an n-cycle (wfhere n is a variable that represents any inter-
val class in standard txvelve-pc space) as a closed and finite ordered collec-
tion of pitch classes where one element maps onto the next (and the last
onto the first) under transposition at a constant interval n^.7 The members
of an n-cycle are defined as (x+n, x+n2 , x^+n3, ... x+nP' x) where p is the
period of the n-cycle. For most values of ns, there are several distinct n-
cycles in the 12-pc aggregate. For example, there are four 4-cycles:
(048), (159), (26a), and (37b). Because each n-cycle has p elements,
there must be 12/p distinct cycles fb rmed by interval n (we call this value
mn). The complete n-cycles are shown in Example 2.

l cycle: (0 123456789ab)

2 cycles: (02468a) (13579b)

3 cycles: (0369) (147a) (258b)

4 cycles: (0)48) (159) (2 6a) (37b)

5 cycles: (05a38:L6b4927)

6 cycles: (06) (17) (28) (39) (4a) (5b)

EXAMPLE 2: CYCLIC SETS IN TWEI.VE-PC SPACE

Because all instances of ic n occur segmentally within the n-cycle(s),
any pitch-class set that simply is a complete n-cycle natFurally features the
maximal amount of a given ic n fu)r a set of its cardinality. (0, 2, 4, 6, 8,
a}, for example, is maximally ic2 saturated; JO, 3, 6, 91 is mnaximally ic3
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saturate~d, and SoI forthL. The samle is true of pesets that are wvholly the

uniior of twvo ni-cycles (for a single giv7en n). Both 1Q, 1, 4, 5, 8,, 9} and

0,} 2, 4, 6, 8, a} can be fwmred by the union of two 4-cycles,8 antd conse-

quendly both hexachords maximnally include ic4. For an interval ns whose

cycles have periodliciry p, the~n, we knolFw how to idenltifi the 'nnaximally

n-saturated set types" whose cardinalities arc p or inlteger mulltiples of p.

A pcset that is smaller than p will mnaximally saturate ic ns if it is (again,

wvholly) a continluous 7-cycle segment. :For Xs = 2 (with p = 6), the tWo-

through five-element set classes that maximally saturate ic2 are [02],

[024], [0246,], and [02468]. A pcset that is larger than p will maximally

saturate ic n iiF it is the comb inatdon of however many comaplete iz-cycles

cardinality permits (possibly Just one) and an incomplete n-cycle of wvhat-

ever length eardinality requires. for n = 4 (with p = 3), any com£bination

of,+ for exampsle, 10, 4, 81 and some segmenet fromr one of the othler three

4-cycles will produce sets th at are maximally saturated with ic4 (e.g., 10,

1,458, 1} 0, 1, 4,5, 81, jO), 2, 4, 8}, andA (0, 2, 4, 6, 8)).

We Canl conldense thet above conlditions for maximal S-satulrationA intlO a
sinlgle definition of what we shall call an nt-set (for inlterval n). An nX-set is

comuprised o)f somne number of complete n-cycles (possibly none, one, or

mlore thlan onle) atal, at most, one incomlplete -cycle segment. The com-

plete list of all n-sets is the samec as Tore Erickcsson's maaxpoint series.9 All

n-sets are mTaximally saturated with interval is and all pcsets that are max-

imally saturatedl with interval s] are n-sets.

We will now return to tihe creation of severa new vector typres that

reflect how the elements of a pcset are distribulted with regard to the

interval cycles. We will first exa mine suchl cyclic distributionl, focusing ona

the number and position of any cyclic adjacencies. Next, we will create a

version of the interval-class vector that distinguishles the size and quantity

of all n-cycle segmnents. This amounts to a subdivided inlterval-class vec-

tor, the argumenets of x 'hich will Ibe weighted using a psrocedure that gives

cyclic strings of intervals moire prominence thanl equal nlumlbers of the

same intervals that are nlot all cyclically adjacent. My final conlstruct will

be derived by comparing these cyclically weighted interval-class vector

argum1ents to wh±at is possibsle given any set of thze samne size. This is wh-at

I have elsewlhere called a measure of saturation 1(1 These adjusted valules

wrill provide us with a relatively cardinality-neultral meanls of relating sets

based upzon their ns-cycle subsets.
We wvill beginl our tranlsformlation firom an objective inLventory of the

intervaLs withinl a set to a wveighted cyclic saturation vector by examlining

the mannEer in whkich elemzents of a pitch-class set are distribulted among

the s-L dces. Exampele 3 shows tlhe cyclic diistribu1tionl of set class 6-Z28

[10135691 (interval-class vrector: <224322>). Each line of the examlple
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shows adjacencies within a particular na-cycle simlply by ordering the
elemennts of the "smost normal"9 form of 6-.flS along the cycle. Parenthe-
ses delineate tlhe cycles) and adjacent pitch classes within the parentheses
(including the wraparound) are na-cycle adjacencies, each producing a
single emnbedded interval-class n. Dashes indicate vacant places in each nz-
cycle.

1-cycle distribution of 6-Z28: (01-3-565--9--)

2-cycle distribution of 6-Z28: (0--6--) (135-9-)

3-cycle distribution of 6-Z28: (0369) (1---) (-5--)

4-cycle distribution of 6-Z28: (0--) (159) (-6-) (3--)

5-cycle distribution of 6-Z28: (05-3-16--9--)

6-cycle distribution of 6-Z28: (06) (1-) (--) (39) (--) (5-)

EXAMPLE 3: DISTReIBUTIO5N OF (SET CLASS) 6-z28 [013569]
AMONG THE SIX DISTINCT fl-CYCLES

Examiple 3 illustrates how the pcset's elements are distributed amrong
the cycles of any given interval. As a means of summarizing this data, we
will create an array called C'ycleSeg 2(X). This construct lists the cardinali-
ties of the nz-cycle segments of X fromn longest to shortest. The sum of
CycleSeg,/X) numubers equals the cardinality of set X. Example 4 sAhows
the cyclic segmnent lengths of OUr set, 6-Z28; compare these numbers
with the patterns in Example 3. In Example 3, we can see that 6-Z28's
elements lfall into four disjunct segments of the 1-cycle, twvo of two ele-
ments and twvo of one; these are now represented by the array <2, 2, 1,
IL>. Any realization of the set class (for examlple, {C, C4$, El, i, ii, Al)
will ha.ve two twvo-note 1-cycle segments ({C, C#} and (F, F# 9) and two
one-nlote segments (jEl'} and (Al).

The lengths of the various segments indirectly tell us the interval-class
content of a pcset. We can see, for example, that the two-note i-cycle
segments are the source of the two icis in the set, and also that a single
unbroken three-note 2-c-ycl segment is the source of 6-Z28's two ic2s.
Similarly, the three ic4s in 6-Z28 arise from a single complete 4-cycle
subset. We will now create a new vector-the "ic-c:ycle vector"> (abbrevi-
atedi as ICCV)-that conveys not only that there are two icis and two
ic2s in set class 6-Z28, but also that those two ic1s arise from disjunct L.-
cycle segments andl that the two ic2s arise fromT a single 2-cycle segmnent.
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CycleS'egl(6-Z2 8): <2,2,1,:1>

CycleSeg2(6-Z,2 8 ): <3,1,1,1>

CycleSeg3(6-Z 2 8 ): <4,1 ,1>

CycleSeg5(6-Z2 8 ): <:2,2,1,1>

CycleSeg6(6-Z 2 8 ): <252,1,1>

EXAMPLE 4: THE LENGTHS OF It' fl-CYC' E SEGMENTS ( CycleSegra)

OF 6-z2Y, tO13S69jl

Each of the Ic-cycle vector's S£iX -argumen1ts iS derived from the corre-

spon1dinlg C ycleSeg;^ values. Instead of showinlg the number Of' pCS in each

n-cycle segmelnt, the TC'CV lists the number of ic is found in each nT-cycle

segmnent. For the most part, deriving the number of ic T-' in an nU-cycle

segmenlt simpyly mc ount: to subtracting l from the size of each segment

(for example, a one-note n--cycle segment yields no interval nes, a two-

note segment yields a single interval s-, and s0o on). This ho.lds true for all

cyclic fragments (hoe., incomplete nia-cycles); in cases where a compslete n-

cycle is embedded in a set, the number of instances of interval is is equal

to the per.iod of the cycle, not the length} minus one. Consider, for ex-

ample, a complete 4-cycle such as t0, 4. 8}. Hecre the period of the

cycle-the nmmber of steps until the last element maps onto the first-is

3; theret^ore, this cycle yieLds three, not two? interval class 4s. This holds

true for all n--cycles except 6-cycles; two-eLemnent cycles yield: only one

intervaL each. Example 5 shows the interval-class-cycle vector of set class

6,-Z:28.

ICC(6-28,): <1,11 , 1t21, 141, {3}, fl,1Ji, 1141>

EXAMP'LX 5: INTCERvAL.-CLASS-(:'
T
CL I VEi'TOR (scc.v)

orE 6-z28 10135691

FSor any given set (or SC,), the sumz of the numbers in each ICCV,\ argu-

mecnt equals the parallel IC,V arg mlent; mnore formally,

1CM ;iX) = ; (1CV (X))
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whlere Tis the set of interval strings of ic n and t are the elemnents of 77
This elaboration on the interval-class vector will be essential in develop-
ing the notion that twVO iC t& from different n-cycle segments produce a
different degree of ic nsalience than two ic n from the same n-cycle seg-
ment.

Our new vector lists the icl content of 6-Z28 as {1,1}, which tells us
that the twro icls appear in di.sjunct locations along the .single l-cycle; the
ic3 content of 6-Z28 is listed as {4}, which tells us that the four ic3s are
all from a complete embedded 3-cycle. Of course, we only know that an
JCCV3 entry of f4} indicates a complete 3-cycle because we know that
the period of a 3 -cycle is 4. That samne entry wvould indicate a cyclic frag-
ment for icl, ic2, and ic5 (and for ic4 and ic6, it wouldn't even be pos-
sible). Cyclie periodicity must also be taken into account in order to
understand the degree to which a cycle can be fragmented. An 1C(V5
entry of (1,11, focr example, represents cyclic fragments for any ic but 6,
for which it represents two complete cycles.

Accordlingly, we need to understand how many fragme'nts are pos.sible
for the cycles of various ics, with their various periods. ObvTiously, more
fragments will be possible when their lengths are shortest; and the short-
est possible fragmnents-single pc.s-can be extracted from a cycle in the
greatest number by simply taking every other cyclic element. A maximally
fragmented n-cycle, then, wouldl contain Onz, 2ng, 4nl and so on, as far as
the cycle permits. The maximum number of n-cycle fragmnents equals the
greatest integer th!at does not exceed half the period of ic 7X. Of course
these one-elemnent fragments produce exactly nto occurrences of ic n; and
we are at least as interested in finding out how uncyc7lic some actual ic-n
content can be. The process of determining this would be to skip every
thlird elemnent along an n-cycle. By taking two n-cycle adjacencies, we
form a single ic n, but by skipping the third, we avloid cyclic segments
longer than twvo notes (and ic n strings longer tha n one). Thus, the mrax-
imum numnber of unlconnected ic ninstances in an n-cycle is the largest
integer that does not exceed one-third of the period. The product of this
figure anld the number of distinct n-cycles (again we call this variable an)
equals the maximum number of arguments in eachl JCCV,;. This can be
represented mnore formally as m* ronznd(p/3). These values (i.e., the max-
imum number of two-element or larger n-cyclic fragments for each dis-
tinct n) are providedl in Example 6.

A i-cycle, ftor example, can be broken inltO as many~ as four disjunct
two-note or larger fragrments. There is only one set class that has four

cics, none of which are conjunct: 8-28 [O,1,3,4,6,7,9,a], the octatonic
collection. Since it is impos.sible to add another pc to this pcset without
adjoining two of' the cyclic: fragments, there will never be any more th<an

59



60 ~~~~~Persjectives of New Music

foulr elemnents in ICC'V1 . In contrast to the sinlgle 1-cycle, th}ere are three

possible ic3 cycles. FragmEentationl of these cy7cles is not an issue, hIow-

ever, since it iS o3nly possible to have two nlonadjacenlt fragments within

the same 3-cycle, andL both frag,ments could only ble onle-pc lonlg, pro-

ducing nlo ic3. ThEeretbre, thecre can only ev{er be three elemrents in the
ICGV,3 v7ector (representinlg thEe three distinct 3-cycles).

n-cycle p ^r rn*(p/3)(rounded)

1 12 1 1 q12/3) = 4

2 6 2 2 (6/3) = 4

3 4 3 3 14/3) 3 

4 3, 4 4j(3/i3 ) = 4

5 6 L 1.-(12/3) = 4

6 12 6 6.(2/3) = 6

EXAMPL.E 6. C'ALCULAtTiON O1 TI-E NUMABER OF' POSSIBLE

ARGUMENTS IN EACH lICCV INTlERNAI. VECTOR

Let US nowv returnl to our analysis of 6-Z28's cyclic dRistribution. For the

sake of comTparisonl, we will also examnine the cyclic distributio3n and
inlterval-class-cycle vectozrs for set class 6-Z49y (prime form [013479]), the
set class Z-related to 6-Z28. These- are stown inl Example 7 belo v. While

each interv7al-class occurs the same number of timens inl 6-Z49 and 6-,28,
as is the nature of Z-reiaredt SC:, their arrangemEent differs for three of

the six ics. Later, we will definle an index to compare S§C similarity based

upon respctive ICC,Vs; to do so, we will clearly need to differentiate val-

ues such as {4j and {2,2} (these are the JCCV@3 values for 6-Z28 and 6-

Z49, respectiv7ely) .
The premise of this article-that a single nP-cycle segment projects ic n

more stronlgly (or at least differently) than do multiple shorter ones-

necessitates adijusting the 1tCCtV argumnents accordingly. Larger numbers

in the ic -cycle vector, which indicate a .ignilicanlt cyclic presence,l should

be weighted more heavily than groups of smaller numbers, whichl denote

fragmentation<. For example, the ic-cycle vector argument (3} should be
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1-cycle distribution of 6-Z49: (Oil-34--7-9--)

2-cycle distribution of 6-Z49: (0-4---) (13-79-)

3-cycle distribution of 6-Z49: (03-9) (147-) (----)

4-cycle distribution of 6-Z49: (04-) (1-9) (---) (37-)

5-cycle distribution of 6-Z49: (0--3-1--49-7)

6-cycle distribution of 6-Z49: (0-) (17) (--) (39) (4-) (--)

JCCV(6-Z49): <i1,1), 11,11, {2,2}, 11,1,11, {1,i}, 11,11>

EXAMPL.E 7: CYCL.IC DISTRIBUTION AND IC-C'YCLE VECTOlR

OF 6-Z49 [013479]j

weighted more heavily tlhan { 1,1,1 l, because the latter indicates a greater
degree of cyclic fragmnentation.

this Ibrings us to our next step: the weighting procedure. Perhaps the
easiest method would be to square all the vaLues, then add them
together. This would create elements with values of

n {3N = 9and fi{12 22 i2 i= 3.

Any similarity index that examined the difference between these two val-
ues (as do all commonly-used inldices) would find that ic4 is three times
as salient in the former set as in the latter. While I want to difEferentiate
between longer and shorter cyclic segments and establish1 a bias favoring
the former, I do not want create an exaggerated comparison by weight-
ing the former too heavily."l Therefore, I believ7e that simply squaring
the iCC'Vt values produces a distorted weighting systemn. Taking the
square roo' of the sum of the squared IC,CV, arguments

is one way to temper this roughness.' 2 The difference betwzeen VP and
IA (or 3-1.73 ) is 1.27-a much smaller number, and one that would
still allow for a fainl close relation of these two Z-related hexachords. Yet
even with this adjustmnent, the former SC: still appears to have 73% more
ic salience. While this seemns more tenable thanl claiming that it has

3 0 0%o more ic4 salience (as would be the case if we only used the
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sqtuares), the relatioznship still seems quite exaggerated; and this discrep-
ancyv is conlsiderablyT magnified in cyclic vectors of larger KSCs.

We wiLl therefore adopt a variabtle x eighthn g .system th1at is capable of
more linear scaling. TShis syvstem, designated VE1GHT, is a simple addi-
tive fiormnula. We begin with the number 1, wThic h we mnultiply by a con-
stanlt value (either a real numnber or anl integer). FHor thle sake of this
demonstratlonr, the constanlt that 1 will be using is 1t.2. The w^eighted
value of thle nlumber 1 is I timzes 1.2, or, simply 1.2. If the numtlber wve are
wTfighting is 2,we Ibegin wnith the weig;hted value of 1 (again, 1.2), add 1
to it, then mtultiply the sum by I1.2. So, 1.2 plus 1 equals 2.2; the product
of 2.2 and 1 .2 is 2.64, and this is our weighted value for 2. To weight the
number 3, we start with the weightedi value of 2, add I to it, then mnulti-
ply that sum by 1.2, anad so forth.13 The values produ edi by WEIGHT
are providedl in Examlple 8.

WEIGHT1(0) = 0.0}0 WEiGH'T(7) = 15.50}

WEIGH:T(1) = 1.20 WNEIGHT(S) = 19,80

WEIGHT(2)= 2.64 WEIGH'T(9)= 24.96

WEI0GH'T(3)= 4.37 VEIGHTf(10()= 31.15

WEIGHIT(4) 6.44 WE,IGHT(I ) = 38.58

WETGlHT(5)= 8.93 WEIGHT(12)= 47.50

WEI:GHT(6) 11 l.92

EXA MPLE 8: VAI.UES RETSURNED) BY FUJNCTION

WEIGHKT WHERX THE C ONSTANT IS 1.2

With1 Example 9, we returnl to the problem of w.eighting the two ic-
cycle argumnents {33 and { I,i,1}. A4s Examnple 8 showvs, WEIGHT(3) =

4.37 and W :IG<HT(1) = 1.2. There are three Is in the latter vector, so
wve multiply 1.2 by 3, totaling 3.6. These weighted values, 4.37T and 3.6,
will replace the respecti:ve argumnents of the ic-cyclc vector in four new
wveighted ic-cycle vector (abSbreviated W1CC6V). The derivation cof the
w^eighted ic-cycle vectors for both 6-Z28 and 6-Z49 is shown in Examlple

1.
The weighted ic-cycle vector is an interpretation of boath the interval-

class vector andl the manner in wvhich the elements of a pc-set fall am[ong
thec six distinct ic cycles. in its current state, it could be used in place of
the interval-class vector in any i--based simlariSaty measure, including
TSeitelbaum'os simiularity index, Morris's ASIM, Isaacson's IcVSIM and
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ICCV1(6-Z28): <{1,11, {2}, {4}, 131, (1,11, (1,11>

ICC,V(6-Z49): <(1111 (? 1,1, [? 2,2}, {li,l,il}, (1,1 L9 311,}>

XVTCGV\4(6-Z28) =WEIiGH'(3) = 4.37

WICCV4 (6-7A9) -WEIGH'r(I) + WEIGH KI ) + WE:IGHT(1) = 3.60

EXAMPL.E 9: WEIGHTED INTERVA}.-CLASS 4 (wiccv4 )
CONTENT' OF 6-Z28 [013569] AND 6-z49 [013479]

WHERE THE WEIGHTING CONS'TANT IS 1 .2

IS1[M, and Scott's and Isaacson's ANGLE meassure. But before using this
new vector as fodder for a similarity index, we will add onle more degree
of interpretation to it. The ICCV and WICCV numbers should carry dif-
ferent meaning depending upon the cyclic period and set cardinality. For
example, the 3-cycle ICCV value {4} (WICCV3 =4.37), indicates a com-
plete cycle; if the set is reasonably smnall (e.g., a tetrachord or penlta-
chord), then a high degree of ic3 salience is indicated. That same value
((4}) referring to the icl content of an octachord suggests considerably
less-salient cyclic presence.

We will therefore compare each argument of the weighted vector to
the minimnal and maximal possible values for that particular interval class
in any set class of the samne cardinality. This will help us understand the
weighted ic-cyrcle values in the context of what is possible, and also what
is trivial, for any given cardinaiity. This new comrparison forms the 'icyciEc
saturation vector," or CSATV7 for short. To derive it, simply compare
eachl weigshted ic-cycle vector argument to the rninimnum and maximum
values for any set of the same cardinality (these are easily derived by
examnining all the ns-sets). These minimum and maximum weighted val-
ues are given in Example 11.

Cnomparing each of the six weighted ic-cycle argumnents to the mini-
nulm anad maximum possible values produces a total of twelve compari-

son1S. These are arranged into thvo six-place vectors in Example 12. The
top vector, abbreviated CSAITVA shows the comparisons of the weighted
arguments to either their respective mninima or maxima, whichever i
closer; the bottom vector, marked CSA4TVB, shows the more distant
comnparisons-that is, the comparisons that were not represented in rowv
A.' 4 A walk through Example 12 wzill demonstrate how CSATV7 is cre-
ated. The top of this figure shows the minimal and maxima possible
values for each ic-cycle vector argumnent in any hexachord (these arc

6:S
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ICCVA(6-Z;28):

ICCVpl (6-7.28

WVICCV72( 6-Z28)

w1CaV 3 (6-Z28)

WI'CCV4(6-i28)

w1CCV57T(6-Z28)

WI .CCV 6(6-Z28)

WLC:V(6-Z28)

= WEI[G1HTI(1) + WEIGHXT(1 ) =2.40

= W5EIGFT(2) = 2.64

= W3>EIHT(4) =6.44

=WE1IG4T(3) = 4.37

= WHTEGFI-IT(1E) -F WtEIGFYI (13 - 2 40

= WEICHs1T(1 ) X\Tf 1GHTI(1I) = 2.40

_ <2.40, 2.64, 6.44, 4,37, 2.40,1 2.40>

12CV,(6-Z49):

W1TCC,V1 ( 6-Z749 )

WICG,'V 2 (6-.Z49)

WICCV3 II6-Z49)

WIGCV,4 (6-Z-49)

WICCV/5 (6-Z4'9)

W1CG'V6 (6-Z49)

WIGlCV'(6-Z49)

<(1,1), (1,11, (2,2), (1L ,b11, (111, (1,11>

=WEIGrHT( 1) + WEIGHT( 1 ) = 2.40)

= WEIGH 1'(1) + WEIGHTa(1L) s2.40

= WEIGNT(2) + WFIGHTQ') = 5.28

5WF.JGHT(1CL) + WETGHT(I1) + WEIGHT(l)=G 3 .60

WF,IGHIT(L) F WEIGHT(1) =2.40

=WEIGHET(1) + VEIGHTL(i) = 2.40

= <240,Q 2.40t 5i.28, 3.60, 2.40, 2.o40>

IX. MPLE 1 0- )ERIVATION OF' THE COMPL.ETE wicc'vs or 6-z28

[013369] AND 6-z49 1013479] WHE'RE THE WEIGHTING

CONSTIANT IS 1 .2

taken directly fronl Examuple 1 1). F'or examllpe, the icl c olutnn shows

that it iS possibLe to have as smuall a value as zero anld as large a value as

8.93, 'rhich wouLd represent 6 pcs adjacenlt within a single ci-cl-ycle (as

in set class 6-i 1012345]). The third line in Examrple 12 containls the

weighted ic-cycle vector of )ur nowv-famLiliar set ciass, 6-Z283. The value

2.4Z0 in thle ici czolulmn is 6.53 less than the maximnum and 2.40 mnore

than the minimum for a hexta-hord. The comparative value "min±2 .4 0 "

is therefore entered inl the icl column of C'SAiTV's top row anld "max-

6.53" is enltered in CSATV's bottom row. In its ic3 content, we see that

6-Z28 is cLoser to mzaximal than it is to minimal saturation. In that case,
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Broken and Unbroken Interval Cycles 6

Minimum possible weigthted ic-cycle vector values

1 2 3 4 5 6

0 0) 0 0 0 0 0

1 0 0 0) 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0) 0 0

4 0 0 0 0 0 0

5 0 0 0 1.2 0 0

:a 6 0 () 0 2.4 0) O

3~ 7 2.4 2.4 2.64 3.6 2.4 1.2

8; 4.8 4.8 5.28 4.8 4.8 2.4

9 7.92 8.84 7.92 7.92 7.92 3.6

10 12.88 12.88 11.72 11.14 12.88 4.8

11 31.15 18.36 15.52 14.30 31.15 6.0

12 47.50 23.84 19.32 17.47 47.50 7.2

Maximnum pozssible weighted ic-scycle vector values

1 2 3 4 5 6

0 0 0 0 0 0 0)

1 0 0 0 0 0 0

2 1.2 1.2 1.2Z 1.2 1.2 1.2

3 2.64 2.64 2.64 4.37 2.64 1.2

4 4.37 4.37 6.44 4,37 4.37 2.4

5 6.44 6.44 6.44 5.57 6.44 2.4

:: 6 8.93 1 1.92 7.64 8.74 8.93 3.6

Q) 7 11.92 11.92 9.08 8.74 11.92 3.6

8 15.50 13.12 12.88 9.94 15.50 4.8

9 19.80 14.56 12,88 13.10 19.80) 4.8

10 24.96 16.29 14.08 13.10 24.96 6,0

11 31.15 18.36 15.52 14.30 31.15 6.0

12 47.50 23.84 19.32 17.47 47,50 7.2

EXAMPEL 11: MINIMFUM AND MAXIMUM WICCV VALUES POR AlLI

('ARDINALITIXS (ROW S) AND INTERVAL C'LASSES (COLUMNS)

WI-IERE 'IHE WEIGHTING C.ONSTA NT IS 1.2
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Broken and Unbroken Inter val Cycles 6

the max-related value is show ini the top row, and the min-related value
in the bottom row, and so forth.

O3ne of the reasons for segregating min- and max-related values like
this, and not putting all the mmn-related values in one rowZ of the vector
and all the mlax-related values in the other rowv, is to make it easier, by a
quicki glance at the top row, to dletermine whether each WICCV value is
closer to mninimal or maximal saturation. A more formal reason for doing
do will arise shortly when we define our similarity index. Briefly, though,
this alignmnent will allow us to discriminate on behalf of the nearer com-
parisons. Unlike other such indices, WICCV will be constructed to inter-
pret arguments that reflect the nearer degree of saturation (those inx the
top rowv) as more valuable when comparing two CSATVs.

I hav7e, to this point, been using the terms "min' and "max" rather
casually. More properly, I should have notated a value such as
"&min+2.40" (as in Examfple 12 above) in a way that indicates which
"mmn is being used. Doing so involves specii-jng the weighting value,

cardinality of set, and the weighted ic-cycle vector argument being com-
pared. If we use the variables w, c, and i to represent these three items
(respectively), then "min+2.40" should properly Ibe written as "mm (w, ,
i)+ 2.40." In this specific case where w = 1.2, c = 6, and i = 1, mzin( w, c,

i) =0.
Having just explained the longer, more precise, way of expressing thkis

measure of cyclic saturation, I will now move in the opposite direction
and introduce a couple of abbreviations that are warranted for the sake of
space and clarity-the first is trivial, the second more substantive. The
trivial change willl simnply be to drop the "min" and "max" designations
altogether. The signed numnbers alone will tell us whethe.r each value is
min- or max-related, and their placemecnt within particular saturation
vectors will implicitly contextualize them (providing the interval cycle
information and set cardinality). This means that we will have to distin-
guish between -0.00 and +0.00. While they are numerically equal, in our
abbreviated system, these two arguments represent opposite ends of the
spectrum: the first indicating maximlal and the latter indicating m[inimal
saturation of a particular WJICCV value. Our strictly numerical represen-
tation w~ill also simplifj the formalization of our similarity index. That
matter xwill be addressed latert howvever,

The more substanltial shortcut involves folding our two-pa rt cyclic sat-
uration vector into a singLe six-argumnent vector in wvhich each value rep-
resents the relative distance from both min and max. This can be
accomplished, bult not without some loss of specificity. Wre begin with
our mnax(n; c, i) -alue and subtract min(u, c, i) fromn it. This gives us a
"min-adjusted" maximum saturation value. We then rake the appropriate
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68 ~~~~~~Perspectives of New Music

WJCCV argumrent and subtract rnin( w, G, i) from it, producinlg a min-

adjustezd w0iccv vaLue. Di£vi ling the min-adj£usted WJCCV vTalue by the

mim-adjusted mnax v alu-e produces a percentage that indicates how c-lose a

particular \ 'ICcVX arbumle nt is to min(w, c-, i) or max(w, , i). We could

not simply divide the WJCC-V value by max(w}, , i,), because te result

would noat account for the possibility that min( i, c, i) is greater than

zero. For example, if:max (a', G, i) = 4, minO(}r, C,i = 2, and WItCCY (tv, i)

-2, then simply dividing WICCY by mnax(2/4 )1 indicates 50% saturation.

If we take the mirl (i, G, i) vTaise into accoun£t as described above, how-

evrer, wre get

2 -2 1:

indicating n inimal saturation.
XVe will call the comlplete vector derived using this shorter system the

cychLe proportional saturation/ vector, or C,PSATV. The derivration of a

CPSATFV for our familiar hexachords, 6-J28 [013569] and 6-Z49

[0134791 are shLown in Exampale 13 belo A.l Formally, CPSATVZ is

defined as follows:
WICC'V X) - sin(w2, c, i)

CPAV;X maxg w, c, i)- min(w. c, i)

While this new fo3rm of the cyclic saturation vector seems mluch more

coynvenient and certainly less clumsy than ouLr two-part CSATV (and1, twvo

CPtSATVs can be related to each other rather easily using any ve-ctor-

based similarity index), I generally prefer theC exna degree of specificity

provided by CSATV7, andi 1 worry that perhaps too mnuch infbormation has

been packed into each of our C,PSATV arguments. As I mncntie ned ear-

lier, I will shortly introdiuce a similarity index that is biased in favor of the

upper value~s (A parts) of each C SAT:V (the "clo:ser"' relations)-{some-

thing that would be impossible with this shorter alternative. The sin,gle-

part vector iS, howvever, very convenlient for obtaining a quick cyc lic pro-

file of a particular set class, andi palrs of thzese vectors can be more easily

comparedl in one's head while analyzing a particular piec-e of mulsic (Deven

if the vectors themse lves cannot be derived on th~e fly). For this reason, I

prefer to usse thez CPSATX 7 while formins my intitial analtical opinions

and oapt tor the longer CSATV w er. drawing mo3re specific analytical

coniclusions.
We have nearly arrived at the end of o3ur trail of definitions and are

almlost ready to put this newv saturation vector to analytic us e. In doinlg

so, we will feed the cyclic saturationl vectors into a simiiarity index and
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examnn]e the results. A1lmost any ic-based similarity in3dex-includAing

those namaed earLer-may be adapted to work withw a satn.Pationl vector.

The index whiEch I will use is an extensionl of my own1 SATrSIM .l6

Explainled briefly SAT'SIM com,pares the argulments in; each of the top

(A) row,s of one saturation vector to the corresponding mnjimnum- or

mnaximrum-related value of the other vector. Phis simnilarityF index, which

we will nowT call the cyc-lic saturation} simnilarit index (or C'SAT,SIM), is a

function that comlpares saturation vectors of two sets, returning a real

numIber between 0 anld 1 tha t serve: aS an inldicator of the two sets'

degrere of resermblantce, following the mnodLel set by Morris's ASIM(X,

Y) 17 T he principal difference between thle constructiol- of ASIM(X, Y)

and CSATSIM(X, Y) is that the formler deals wvith one--part interval-class

vectors whlile the latter uses values in a two-part saturation vector.

When relating two set clbasses X and Yulsing their cyclic Saturation vec-

tors, it is necessary to allow for the po)ssibility (in fact, the likelihood) that

the respective rowvs (A and B) of the two vecto)rs might featutre different

patternls of max- and min-related vadlues. The valules in row A of the
CSA'IV7 ahlrays reflect the "closest" comparison b etxeenl the WVICCV( XX

or WICC,VCYX value and either minOrT, c, i) or max(w G~ , i), andi those
comnparative values wvill play most heavily in our relation. To relate two7

CSATVs, wve first compare each1 value. in row A of pcset X5s saturation

vector to the corresponlding min- or mlax-r dated value in either row A or

B of peset Y's saturationl vector. We must then compare each value in row7

A of pcset Yx's saturation vector to thle corresponding mm7- or maxC-related

value in either rows A or B of pcset X's saturation vector. BSec.atre the

comparison of pc-set X to pcset Y frequentlty yields differenlt values from

the comparisonl of pcset Y to p>cset X, it is necessary to p -rthrm both1 to

insulre symmnetry. t8

To compare two vectors using the Ct'ATSIM index, wve add the abso-

lute values of the numerical differenlces founrdl in the above comparison,

and divide this sum by the combined vector totals. Vector totals are

obtained by adding together th£e distances between the numerical values

in the respective argumnents of b?oth vector lines. If; for example, a partic-

ular argument In CSA.TVI4 iS +4 and the parallel argumlent in CSATVa is

-1, the dListance betwveen +4 and -l = 5.)9 Cyclic saturation vector total

(2,CSATV) is formnally defined in Example 14. Saturationl vectors wvilt

always total the same number for sets of the same cardLinality, just as they
do in ic vectors.20) These values are provided in Example 15.
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Broken and Unbroken Interval Cycles 7

63 CSATV(X) = 3 ECSATVA(X)n-CSATV(A<)")

EXAMPLE 14: FORMAL DEPLITITON OF CSATV TOTAJ.S (~csArv)

C .SAh

0 0.00

1 0.00

2 7.20

3 16.13

4 26.32

5 32.53

6 47.3,6

7 42.54

8 44.86

9 40.77

10 33.09

1 1 0.00

12 0.00

EXAM[PI.E 15: (xcsATv) FOR AL.L SET-CLASS CARDINAI.ITIES (C)
WHERE WEIGHT (w)=1.2

For a demonstration of how CSATSIM values are derived, consider
two cyclic pcsets, Xand Ywhere X= [012678J and Y= [0369]. These
are slhown with their CSATV values in Example 16. X has the value
(max)-3.65 inthe ilcolumn of CSATV lleTa +0.00 in the par-
allel place. Because pcsets X ansd Tare of different cardinalities, min( , c,
i) and mlax(w#, c, i) will represent differenlt extremes for each i, It is there-
fiore imnpossible to compare a min-related value directly with a max-
related value; in this case, we must look to line B of pcset Y's cyclic satu-
ration vector, which .shows that [0369] is (max)-4.37 saturated with
ic1.21 The absolute value of the difference between -3.65 and -4.37 (i.e.,
0.72) is the value returned for the ic1 columnn. In the ic2 column,)
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CSATVA(X has thle value (mnin)+t 2 .4O, while CSATVA(Y) row has the

value (min)*-O.OO, yieldinIg a difference of 2.40. I[n this case, one nieed

not check the value in C<SA'1V 1 4Y) since row A hlad the necessary min-

related value. This p>ro tdure (step 1 in Exarnple 16) is repeated fo)r each

argument of C,SW;ATVIx(. One then comnpares each argument of

CSlATVA(Y) to either row A or B of )cset X's s'aturation vector, creating

a tw -o-part difference vector. 2

Because only the "A" row entries of one saturation vector are corn-

paredS to whichever entrics match them in the othler vector, not all the

max- and rnin-reliated values are necessarily emnployred in the comparison.

In fact, whenl bo>th sets havye, for example, a max-related value in somne ic

columnn of row A, the corresponlding min-related values in tlhe B; rowts are

never compared. While an index that does not always consider all avail-

able arguments might be viewed as incomrplete, by comparing only the

closest arguments in the CSA'IYs we greatly reduce the efifect of cardinlal-

ity. If, fior examuple, we compsared all the CSATVA and CSATV 0 values of

ie4 in sets X and Y, we would see that they are

+0.00_-*o.ool + !-6.34- -4 3-1 = 1.97- = 18.4%

6.34 + 4.37 i Q.71l

different with respect to their WICCV4 values (1 added the differences

between the min-relMated values and max-related values and divided that

sum by the sumn of the dstance betw-eenC SATVB 4 anldCSATrVA 4 for

each pcset). Considering that these two sets are maximally similar with

regard to their 4-cycle segmrentation (for a hexachord and a tetrachlord),

this dif;ference, occusrring solely as a product of tlheir difference in cardi-

nality, seems rather extreme. I0 therefore chose to omrit thle CSATVB com-

parison wvvhen both parallel argumlents of the two CSATVA rows are

reL-ated to the same extrceme (mmn or max).

As mentioned, the sum of the differences between CSATVA(X) and

the corresponding min- or mnax-related values in either rowV of

6,SAITV(T) are not necesvsar ly the same as the differences between

CSATVA(Y) and CSATV( X) *24 This was illustrated in step 1 of Example

16. In order to obtain the same value from a comnparisonl of X to Yanld Y

to X, it is therefore necessary to add all the diffSerence values together,

Creating a cornposite that reflects bothl comparisons (.step 2 in Example

1E6).
This dual comparison produlces a context-firee simislarity index that has,

in large part, dealtx 7th the problemr of comparing sets with different car-

dinalities a priori. However, an even greater degree of cardinal-neutraity
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is attainedi by dividing the sum£ ofO the diifferences by the co3mbined totals
of 'the txvo vectors (step 4 in1 EI.xample 1 6).24 This cardinlality adjustmrenlt
bette-r allows us to comnpare CSATSIM(X, Y) andl CSATSIM(S, T)where
#56 or #7' are no0t nc6essarily equal to #X or #Y:2S CSATS;IM is formally

defined in Excample 17.

( TV()F --C SATV rtiw r3 tj| |(SAJIVA( 1!r -CSATVP row(x)zZ)

7= I
CSAISIM(X. -r) - -- ___ -- - -- -- --- -

(, CSATVA( x ),,- CSAT 0 ( X), + |csATvA( ?r)-- ('5ATVB( y6)

Where GSNI'VA(X)V represenlts the numBerical value found in GSATIV 4's nth
entry for pcset X. Row is a fuctionl that determnines which row of the
(:SrAT to) use.

F9unlctionl row:
if CSATVA(X),, is a mzax-re-late-d value and CSATV4A(Y),, is also a max-
related value, then the function row retuErns rowv A (CiSAFVA(X)fl is: com-
pared to C'SATV 4QY)6,); otherwise, row returns row B (GWSXI'VA(Xlfl is
comlpared tSo C\SATV5£(Y)6).

EXAMPLE 17: FORMHAL DEFINITITON OF THEE c-YC}It: SATURA'LTION
SIMIL.ARITY INDFX-C'SATSIM(X,Y)

Th x v=lue 0).42 that CSATISIM yields comparing [012678] and [0369]
(:tep 4 in Example 16) represents thre very great differences in their icl,
iC37 and ic5 con1tent and cli ragmlentation. It also represents the con-
grurence osfvalues in the ic4 and ic6 columns and the more moderate dEif-
fercence in their ic2 coluImns, returning a value which indicates that 42%
of th}e WJCCVv values are eqluivalent. As mentionedI, the numwber zero
indicates an equivalence relation, w:hile the n:umb3er one indicates maxi-
maM dissimuilarity. As in many similarity measures, however, maximal dis-

simrilarity is imspossible to achieve becaulse no twol set classes are
compxletely dif-ferent with regard to their intervral class occurrences and
cyclic distrilbution.

There are a nmrEb r of equivalences yieldied by CkSATV and, more nar-
rowvly, C.SATV4 .26 Whlen two different set classes can be represented by
the same CSAi ', we will call themr CSATV Z-reiated, following Allen

Florte's w>ell-kn1oxvn ICV5 protocol. There is only onle (traditional) ICV Z-
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pair that is also a CSATV Z-pair: the twvo all-interval tetrachords, 4-ZIL5
[0146] and 4-Z29 r0137]. Since they both feature one and only one of'
each interval class, each n-cycle is segmented to the samne degree. There
are a few cases of CSATVA equivalences: they are all relations between set
classes of different cardinalities (this is obviously impossible in JC,V Z-
relations), and they are all n-sets. The list of CSATFVA Z-relations is pro-
vided in Examnple 18 (the JCVs and complete CSATVJs are also shown).
lDespite the vrery small number of Z-relations found using CSATVd\, there
is one case of a Z-triple and one of a Z-quadruple. These Z-relations are
all independent of my particular weighting constant. Whlile changing
WEIGHT clearly affects the CSATSJM values, these cases of CSATSIMl
equivalence wrill always remain invariant because the values in CSATVA
represent minimal saturation, maximal saturation, or one cyclic f'ragment
away from mlinimal or maximal saturation. Just as these CSATV Z-
relations persist wvith all values for WEIGHET, so will the distribution of
relatively large and small values across all pcset comnparisons. For these
reasons, it seems unnecessary to demnonstrate CSATSIM using dif'ferent
WEIGHT constants.

We will now return to the third song of Luigi Daliapiccola's Quatroc
Li -iche di Antonio Macado, the final section of whichl is psrovided in
Example 19. My segmentation (shlownl in Examlple 1i9) is rather simple,
drawing upon the piece's conservative metrical structure. l treat each
half-mleasure as a separate group, with only a fiew exceptions-mostly
because of notes held over briefly from one group to the next. The pc
content of each of the fifteen g;roups is labeled using both primle form
andL FEorte designlation. Three pairs within the groups present members of
the same set class: numnbers 1 and 3 (set class 5-31), 11 and 15 (6-Z28),
and 13 and 14 (7-26). The remnaining groups are all mnemb?ers of diffierenlt
set classes.

Exsample 20 provides a comparison matrix listing the CSA~TSIM values
between all possible pairs of these fifteen groups. ThEe smallest non-zero
number in the matrix is 0.072, found between groups 5 and 11 (or, triv-
ially, 5 and 15); the largest number in the matrix is 0.539, between
groups 9 and 10. To provide a fram^e of reference, I have underlined all
the CkSATSIM values in the matrix that are higher than the average
CSATSIM value for all #4 to #8 SCs (underlined values thus represent
less than average siinilatity).2 7 Of course, using this average as the divid-
ing point for similar versus dissimuilar sets is arlbitrary. Rathler than tlhe
average value for all comparably-sized set classes, I mnight just as
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Set CLasses Folrte #CSAKIV(both rows)

CSATSIM group #1
A I :

R [0]

G (0123456789a]

fI 01 234567139abJ

U>SATEIM group #2
A [0146]

Il [0137]

CEATFIMO group #3
A [04]

B 1048]

(VATSIM grou p #4
A [036]

BE [1)369]

[ 01 34679a]

(i1/2/3/4/5,/6-cyclic sets) (CSATV Z-qoadrople)
01)- < -0.00 -0.0)0 1)}00 -0.00 -0.00

< +0.00 +0.00 +0.00 +0.00 +0.00
0-E <~ -0.00 -0.00 -0.00 -0.00 -0.00

< +0.1)0) +0.0)0 +0.00) +0).00 +0.00
Il£-1 < -0).00) -0.00 -0.00 -0.00 -0.00

< +0.00 +0.00 +0.00 +0.00 +0.00
12- 1 < -0.00 -0.00 -0).00 -0.00 -1)0.00

< +0.1)0 +1).00 +0.0)0 +0.00 +0.00

-0.00 >

+0.00 >

-0.00 >

+0.00) >
-i}.00 a
+0.00 a
-0 .00 >

.to.00 >

(all-interval terrachords; nwon-cyclic sets) (C.SATV0Z-pair)
4-ZZ715< +1.20) +1.20 ±1.20 +1.20 +1.20) -1.20) a

<-3.17 -3.17 -5.24 -3.17 -3.17 +1.20 a
4-Z<29 < +1.20 +1.20 +1.20 *1.20 +1.20 -1.20 a

< -3.17 -3.17 -5.24 -3.17 -3.17 +1.20 a

(4-cyclic sets) (CSATVAZ-pair)
2-4 < +0).00 *0.00 +0.00

< -1.20 -1£.20 -1.20
3-12 < +0.00 +0.00 +0}.00

< -2.64 -2.64 -2.64

-0.00
+1.20
-0.00
+4.37

(3/6-cyclic sets) (CL ATV< -ttiplc)
3-10 < +0.00O +0.00 -000U +0.00

c -2.64 -2.64 +2.64 -4.37
4-28 < +0.00 +0.00 -0.00 +0.00

< -4.37 -4.37 +6.44 -4.37
8-28 < +0.00 +0.00 -0.00 +0.00(

< -10.70 -8.32 +7.60 -5.14

C SATSIM groulp #5 (3/6-cyclic sets) (GCSAIVAZ-doublE)
A [01369] 5-31 < +1.20 +1.20 -0.00 +0.00)

< -5.24 -5.24 +6.44 -4.37
B [0)134679] 7-31 < 1.20 +1.20 -0}.00 +0.00

< -8.32 -8.:32 +6.44 -5.14

+0.00
-1.20
+0.00
-2.64

±0.00}
-2.64
+0.0Q
-4.37

+t).OO
-10).70)

+ £.20
-5.24

+1l.20
-8.32

+0.00X a
-1.20 a
+0.00a>
-1.20} a

-0.00) a
+1.20) a
-0.00 >

+2.40 >

-0.00 a
+2.40 a

-0.00 a
+2.40 a
-0}.00 a
+2.40 a

C SATSIM group #6
A [024681

B [\2468a]1

(2/4/6-cyclic acts ) (C.SAI'VAZ -pair )
5-33 < +0).00 -0).00 +00)0 -0).00

< -6.44 +6.44 -6.44 +4.37
6-35 < +0.00{ -0).00 +0.00) -0.00

< -8.93 +11t.92 -7.64 +6.34

EXAMPLE 18: SP'ECIAL. CSATSIM EQU1VA1.ENCE GROUPS

(CiSATV OR CSATVAZ-REI.ATIONS)

+0.00)
-6.44
+0.00
-82.93

-0.00 a
+2.40} a
-0.00) >

+3.60 >
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-� 80
f/f

so- los _ mi oo - ra -zon y el mar._ Ay !

_ . .~~____ 1_ |I____ A .,

7. 5-30r0146818.6-21[02346819. 6-18[0125781 10. 824�01AE6S. Ill. 6-Z28�0]3569] 12. 7-i6lOl235�9I

- ; Tempo 1.( . - 4)

13. 7-26[0134579] 14. 7-26[0534S791 15. &228[013569]

EXAMPLE 19: LUIGI I)AI.LAI'IC.COI.A, QU.A TTRO LIRICHE DI
ANl'ONIO MACI-IADO, SONG NUMBER 3, I.AST TEN MEASURXS

reasonably have chosen the average-or the mean-for the group at
hand. Alternatively, it would also seem reaksonable to examine the distri-
bution of values and look for naturally occurring dividing points. Each of
these methods is arbitrary, oXf course, and the manner in which one
interprets data from similarity indices is as subjective as one's choice of a
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particular index.28 Like all anlalytical decisions, these shouEld be madle with
a musical context in mind.

In this comlparison matrix, there is a slight dearth of values right
around 0.2. Since tlhat largely conformls to what I hear as a close relation,
it will secrve as the. cuEtoff fior what I will call a close relation. Another such

ebb occurs at 0).1, but this is a very high standard for relatedness, mnet by
only four of our pairs (dliscounting the set class duplicationxs). We might
reasonlably say that set pairs yielding a nlum[ber .snma,ler than 0).1 deserve
to be calledi very clo.sely related.

CSATSIM is p3articularly useful inl the last subsectionl of this song,
which be~gins in mn. 80 and encompasses groups 11 through 15 (anld the
piano p art of whlic ±was shown in Examprle 1). This portion of the
C,SATSIM comparison moatrix has been excerpted in ExamTple 20. There
arc two set-class duplication.s inl this short spanz of mnusic: between groups
11 and 15, which presenlt the only sets that trivially match because of
Dallapsiccola's ulse of a particullar rowr (we'll discuss th at in a moment),
and betwZeen gZroup.. 13 and 14) which present the samel set class despite

being the products of tWo rows from diff'erent row- classes. 29 The values
in Examnple 21 indicate that all the sets are simnilar, using our definition,
and that the first or last set and nxumber 12 are very simnilar indeed. The
CSATV simuilarity betwveen sets l11 and 12 results fromn their rather close
affinlity to 3-cycle sets and their relative lacDk of ic 1-, 2-, 4- and 5-cycle
segmTents. 30 Sets 13) and 14 also contain heavily segm[ented 1-, 2-, and 5-
cycles, and are close to neither the mninimal nor maximal saturation of 3-
cycle adjacencies. this explains the very close resemblance of sets 11 and
12~, and the somrewhat less close, but still similar, relations amnong the
other sets in this short excerpt.

Example 22 compares the sets presented in grroups 1 through 6 (from
the first three measures of lExample 1 ) in anothler excerpt from the overall
mnatrix wvith CSA 'SIM valulesegrctcr than 0.2 underlined. As one can see
fromn the amount of underlining, quite a few set pairs are diss imilar under
our criteria. Notice, howvever, that sets 1, 3 (trivially), and 5 are all similar
to each other and are dissimilar only to sets 2, 4, or 6. In more musical
terms, the first halves of these measures are all similar to) each other. The
secondl halves of these measures are a bit harder to generalize. Sets 2, 4,
and 6 are both dissimilar to the odd numbered sets and to eac-h other,
Thley (and particularly set 2) are, however, relatively rmuch moBre closely
related to all the sets at the end of the SOllg.

An examnination of the first six groulps' cyc.lic subsets reveals the distin-
guishing feature of groups 2. Its most salient cyclic subset is a complete 4-
cycle, expressed momposirionally as a close-pu. ition augmnented triad in
the psianist's right hand. Group 6 is the only othera one that also emnbeds a

78



Broken and Unbroken Interval Cycles 79

II 00 �

0 0 ON�-'0- .

0 02 ON

p. So 0�ON -� -C
'-Vt �0'4(1 �

00
gz N-:1

O 0 00
OOON -�

00- o
000 'Nd

'cr0 00N0N00 02--. -c
-"N

0
0000 fT

-C

00'00000
0000' ONO00--c (S� 02�'

00000 0.) oO't H

0COClt'�CC C4'NC*JO -
0 CN�' 0 '�4 Cli en en en c-S

OClClt 4�4(4� N

10 02 4-'

00'ItC1OVIVU�r <10enIeiV00I00�Cl
0 usol ro ro rol Cli Cl 02
doooololo H

ON
00"1'V0'0'0'V Q � C-t ON0'-0000'0',-4 a4 02 �

ON OVt00NVW.inN V � 02 H
0 Cl 10 Cl 0 V en en 00eClClClCl-,-rCl 'C
000000000 -

'C
C-c P

ON 02 1-. - Z
0 V N Cl 010' 000' 0' 0'0�'0'tfl '4" ClO C 0Cl oCr eA ii 1-� 02 10

'ONS oooo�l6666d 02+.-.C
;� 4-' 'C

ON CON 0 tCICOICONIClI'ttlCl
0O0'10010 Clj N in N Nj N

- C CO Cli Cli eN) in,o - Cl (10
O0000000000 ON

4.4 ON
ON 'C

0ClUO10'N0�0'LIO0NNI0 Q,�02
-� 000CO10'OeOtnt0'NN,lr O*-J

- 0ClClClr-4ClCOCl-,.�.-,Cl Z-��d 6
d6d6oooooo

Er-rON
�COON 0Clr-' 101010LCClClClCl - C

- -- A H I
oooddddoooooo ON C4-ON

'0'0 OIOIVI0'Nten00 NN)'N)'t N

0 'NO Cl Cl Cl Cl Cl- EONQ
OrON:�e4O 16666; 'C

-C
k

ON 0tfl0-.OVotjOluOj-ri'OCl'O'OV c02 N
-� OVOuOClN00Foo-r:oIo000'0'o

OCOOClCOCO;CO)COCCOIClrClClCl
ON Ill I I I-10. d

6 6
d�

6
666oooooo

K '6 4 '6'6 K '6 0 - Cl CO 'j' ItO



80 ~~~~~~Perspectives of New Music

1 A.
6-Zv28
[01 3569]

12.
7-16
[0)123569]

13.
7-26
[01345791

1 1. 0.000

12. 0.089 0.000

13. 0).198 0.191 0.000

14. 0J.1I98 0.191 0.000 0.000

15. 0.000) 0.089 0)198 0.198 0.000:

EXAMPLEI. 21: C.SATISIM C'OMPARISON MATRIX FOR TF.E LAST FIVE

GROUPS IN TI'HE DALI,APIC'COT.A EXCERPT1 (MM. 80-84)

1.
5-31

01 036)]

2.
6-ZE24
rot 34681

3.
5-31
[01369]

4.
4-18
[0147]

5.

[0136791

6.
7-.3
[0)12345]

1. 0.000}

2. 0.365 0.000

3. 0.000

4. 0.251

0).365 0).000

0.276 0.251

0. .120 0.219t 0.120

6. 0.376 0.217 0.376

0).000)

0).282 0.000

0.235 0.304 0.000

EXAMPL.E 22: C-SATSIM C:O.MPARISON MATRIX F'OR THE F'IRST SIX

G.ROUPS IN Tl-IE DAJI.APICCOL]A EXCERPT (MM. 75-77). CSATSIM

VALUCES LARGER THAN 0.20 ARE UNDERLiNED

4-cycle, andt thavt 4-cycle is m}uch less salienlt, both in abstract terms
bec ause it occurs within a larger set (and therefore represents a smlaller
percenstage of the set's overall conltent), andl in compsositional terms
because it is nlOt in as close a position andc also beucause the pitches that
form the augmlented triad (C, X, G#)j are not struc k simultaneously (as
was the augmented triad in group 2). The first anld third sets, by contrast,
are comnprised of,a complete 3-cycle ([0(369]') plus one other note, yield-

1L4.
7-26
[0 13457Z9]

15.
6-Z28
[013569 1
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Broken and Unbroken interval Cyd'es 8

ing as mnany ic3s as possible in a pentachord. The fifth set is formled by a
complete 3-cycle (found in the pianist's left-hand part) pius a tritone
fromn another 3-cycle (we can also think of this as three complete 65-
c,vcles), and the f'ourth set can be described as an almost-complete 3-cycle
wvith an additional note from another 3-cycle. Sets 1, 3, and 5 are the
only ones witlh complete 3-cycles, and CSATSIM finds them the mnost
closely related of the lot. Sets 2 and 6 are the next-most closely related
pair among the first six sets; they are also the only other pair that mnutu-
ally embed a complete n-cyTcle of the same type (4-cycles). The connec-
tions betwveen the beginning and end of Example 19 are also quite
strong. In Example 20, we can see that the last five groups are similar to
most of the othter groups in the excerpt. Additionally, there are very clear
set-class connections betweenl the beginning and ending of the song.31

The cyclic saturation similarity measure-Or any similarity measure that
uses the weighted interval-class cycle vectors or cyclic saturation vectors
as data-is particularly helpfil for a piece such as this one. Dallapiccola
used row-classes that divide into Z-related hexachords, and, as dliscussed
at the beginning of this article, he comnpositionally realized the hexa-
chords in ways that take particular advantage of the avTailable cyclic adja-
cencies. The set class of the last chord is 6-228; the set class of the
penultimnate chord is, of'course, its complement, 6-Z49. L,ooking back to
their 3- and 4-cycle distrilbution in particular (see E,xamnples 3, 7, and
10), you will recall that the final chord (6-Z28) contains a comnplete 3-
and 4-cycle, while the penlultimate chord contains two incomplete 3-
cycles and three incomplete 4-cycles. It is exactly because of the last set's
affinities to both 3- and 4-cycles that CSATSIM finds it relatively closely
related to each of the sets at the beginning of the excerpt,3 2

-My interval-class cycle vector and weighted cycle vector were designed
to illustrate the subtle, yet important, differences between just these sorts
of sets by focusing on their cyclic subsets. Anyone so inclined can fine
tune these vectors and their employment to reflect other notions of set-
class resemblance. One could, f'or examnple, simply replace my wveighting
constant with a different number, replace my particular xveightinlg system
with a diffierent algorithmn, or compare the cyclically-derived data using a
different similarity index. Alternatively, one could use a different (wider
or narrowYer) assortment of cycles33 or even apply such cycle-based
notions of labeling and similarity to other spaces.3 4 And, if performing anl
analysis xvhere you want to equate or more sharply dif'ferentiate Z-related
or complementary sets, there are other system[s of resemnblance in the
xvaters. My hope is that these cyclic additions to the mix will help
dvers'ifyr the ways in whlich we think about and compare pitch-class sets in
atonal music analysis.

1
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APPENDIX: CSATSIM: VALUE G[ROUP MATRIX

Castren (19974) provrides what he calls "value group mnatrices"' to help
'ompEare a vari:ety of similarity m.easures with his own RECREL. I alss
find sucht a statistical sumlmary helpful in unlderstanding the range of val-
ues that is 1)oth possible and average fior a given measure of resemblance.
Following his format, It provide a similarly drawn CSATRSIM (with
weighltinlg constant 1.2) value group matrix represenuting comlparisons
among all SCs larg,er or equal to dyad classes and smaller or equal to
deca hord ciasses. Each eell of :Examnple 23 represents a statistical sum-
mary of the values possible using CSATSIM(X, Y) where Xis a peser of
the. X-axis cardinlality anldl Yis a pcset of the Y-axis cardinaliry (or vice
versa). T he upper left corner of each cell is the lowest CSATSIM value
po)ssible inl the value group;3 5 the upper right corner is tLhe high 'st
CSAT5SIMr value possible in the value grouEp; the middle left val-:ue is the
lowest non-zero CSATS1IM value (this value. is not included in C'astren's
valuae group matrices); th}e lower left corner conltains the average of all thne
values in the group; and the loxver right corner contain1s the numbser of

distin1ct CS-ATSIM vzalues inz the value group.
The matrix exhlibits somle patterns. The smallest a vra,ge CSATQSIM

value betwveen1 #X and #YSCs tendLs to oc-zur wvhere #X 3 #Y The next
smnallest average value tends to occur between SCs of #X and #X (i.e.,
the co,mpliment of cardinality X)V. The average CSASIM value tenlds to
ii crease the greater the difference between either I#Y- #1 or j#Y- #Xj
Examline, for exampale, the #3 :#Ycomparisonls (i.e., all CSATSJM com-
parisons that include a tricho rd) on the mwatrix. The smallest average
comnparison (and also ite smalalest maximlal anld minimal CKSATSIM val-
ues) is between SC pairs X and Y 'here #~X = #Y = 3. The next smnallest
average value in this case hap,pens to be boetween #3 and #4 SC,s. The
third closest average, hoxvever is be~twenl #3 and #9 SCs. The largest
average CSATSIM comparison1 ina the #3 valu3e group is betwveen #N3 and
#6, which constitutes the largest poessible difference between either #3 or
#9 and any other size SC.

With the exception of thc single case cited above in Examnple 18 (SC 5-
31 :SC 7-3 1), CSATSIM does not suggest equivalene~e relationzs betwveen
comlplementary SC. pairsa but it does reflect the simnilar degree of poten-
tial cyclic distribution among SC:s of complementary cardinalities. It
bears reiteration thlat these values are specific to the wTeightting value 1 .2.
Changing the wTeighting alters the acta al: CSATSIM values, but does not
alter the distribution of relatively large and sin all values through all value
grouaps.
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NOTE:

The author woutld like to thank Joseph 1)ubicl fo3r h1is v7ery carefuli
re-ading of this manuscrip>t andl for his helpful comlments.

1. At the end of this articl1e, wve will be dealing wzith the full texture of

this excerpt.

2. Marcus Castitnl, R>vEC.REL: A Si Jaar Yy Mfeasu.re for Scttilasse.y;
Studia Mulsica 4 (Helsinlki: Sibelius Acadlemyr, 19)94), 8.

3. SiATSIM(2) is a particular case of the SAT5SIM mleasure that exam-
inets only cardinality 2 subset classes (this is tantamount to saying

interval classes) -

4. Robsert I). Morris, "A. Similarity Index for Pitch-Class Sets,"'

P5erspectives of N7ewsk Music 18 (1979-80): 445-60; Eric Isaacson,
"'Similarity of Interval-class Content Between Pitch-cia. s Sets: The
IcVSIM5 Relation," Journ;al of Msic{7V Theory 34 (1990): 1-28; and
'"Issues in the Study of Similarity in Atonal M&usic," Maisc Trheory
Onlin7e 2,7 ( 1996); Mdichael :Buehler, "Rtelative Saturation of Subsets
and In.terval Cycles as a Means foxr D:)etermining iSet- Class Similarity'
(Ph.D. diss., Unliversity of Rochester, 199>7): 75-79; I)amon Scott

and fEric Isaacson, "The Intervral Angie: A Simrilarity Measure for
Pitch-Class Sets,"' Perspectives of Ntw M 7vsic 36, no. 2 (Summer
1998): 10O7-42; Johnl Rahil "Relating Sets," Pe7rspectiv s of New
Music 18 (1979-80)): 483-97; Castneln, 101-43; and DOavid Lewin,
">A Response to a Respconse: On Peset Relatednoess," Pe7rspectives of'
Ncr Mussic 18 (1979-80)): 498-5032.

S. My SAT:'SIM measure is even less discriminlating than the other ic-
based measulres sinlce, in addition to Z-related set classes, it also can-
not distinguishl compFlementary set classes.

6. Somle notable examples include: Tore Ericsson, ";The IC' Max Point
Structure, MIM Vectors and Region',9' Joi rual f< Music The.ory 30,1
(1986): 95-111 ; Rlobert D). Morris, ComxTpositionl withy Pitch Classes: A
ThAeoi y o.f Camp )5'itoe I 7 Dfs An (New Haven: Yale University Press,
1987T), 128-35; George Perle, 7]Telve-lbR e Toality, 2d ed.
(BerkeLey: University o.f California Press, 1996), 7-1L1; anld Dave
H -adlam,l 7 e Mwsic of AlbanD Berg (Nevn Haven: Yale University
Press, 1996), 13-31.

7. In abstract algebra, this is called a "ring.'9

5J4
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8. The former is the union of fO, 4, Sf and {1, 5, 91 and the latter is in
the union of (0, 4, 8} and (2, 6, a3

9. IEricksson, 96-1 00.

10. Buchier, 37-48.

11. "Too heavily" is, of course, entirely subjective; when conlstructing
these vectors and the associated similarity index, I never wanted the
wveighted vaue for any sing3le n-cycle segment to equal more than
twice the sum of the w7veighted values of an3y possible smnaller nz-cycle
segmenets that total the same number of ic nz. For example, (41
should be weighed more heavily than 11,1,1,11, {2,1,1}, 12,2}, or
t3,1f, but not by a factor of 2 or more. This meant movinlg toward a

weighting7 scaling that increased mnore gradually than an exponential
scale.

12. This resembles the sy7stemI to compare differences ulsed by Richard
Teitelbaumn, "Intervalic Relations in Atonal Music," Journal of Music
Theory 9 (1965): 72-127.

13. While I believe that V/EIGHIT is easiest to understand as a recu.rsive
function, it can also Ibe modeled as a simple formula. Let ns represent
the numnber that is being weighted and k represent the weighting
constanlt.

WEIGHT(7nz) = k-i [k -i]

My sincere thanks to PXanayofls Mavromlratis for constructing this
equation.

14. Inl the case of a tie between minima- and maxima-related values,
CSATVA will showv the comTparison to the maxima-related value.

15. C'PSATV(6-Z28) might also have been expressed as percentages:
<27%, 22%, 84%, 31%, 27%, 67%>.

16. Buchler, 51-62.

17. Since a high CSATSILM(X, Y) valuae indicates a lack of similarity
amrong pcsets X and 22 one mnight more properly call this a "dissimni-
larity index," though it could easily be transformed into a true simi-
l-arity index by subtracting CSATSIM(X, Y) values from 1.
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18. While symmetry might not be a necessary pre-condition focr such a

mzeasure, 1l context-free similarity measures of which IE am* aware

exhibit this propertv.

19. I amr using integers in this demnonstratio)n for thEe sake of simplicity;
actual C,S.ATVs will not primlarily contain integer values.

20. In fact, one couldl arrive at the same vector totals by addinlg the dis-

tances Ibetween min(w, c) i) and max( ii; c, i) for i = 1 to 6.

21. Function3 rowv, described formnally inl Exampl3e 17, p>rovides a mecha-

nism fir determnining which row in CSATVN(Y) should be compyared
to CSATVA(X) for each of the six arguments.

22. Th}e term "differ 'nee vector," w.hich re~fers to an ordered list of dif-

ferences between two vectors being coinparedc is introducedi in
Isaacsonl 1990, 16.

23. I.e., SATVA(X): SATVo(Y) ^ <SATVA(Y) SATVrUJXt.() for all values
of Xa2nd Y:

24. Againl, saturation vecto)r totals are obtained3 by adding together the

d1istances betweenl the rows ifor every argument of the vector (step 3

in ZExample 16 or ZExample 14).

25. The basic -onstruction ofc C,SATSIM is simlilar to Morris's ASIM

index. ( h rris, 1'979-80.)

26. If two sets are equivalent inl o tiy the CSATVX vTector anEd not the

CSATV3 vector, theCy will still yield the value 0.00 froml CSAJSIM.

27. Inl our analytic examnple, we are only poresen}ted with four- through

eight-note sets. The CSATSIMSA values for sets with four to eight ele-

mzents ranges froml 0.00 for the most similar pairs to 0.65 for the

mnost dissimsilar pairs. T[he average CSiATSIM value for cardinalities

f-our through eight is 0.267. Average anld extreme CSAT'SIM values

f^or all cardinality comparison: are provided in an appendix to this
papwer.

28. And, ultimrately e.very simlilarity inldex and mnethod of labeling is also
ontologically subjectiv7e.

29. Unfortunately, the inlteresting play of invariance that facilitates such
similarity7 is not within tlhe scope of this paper.

30. One might im1agine that sets II andl 12 are also very closely relatedl

because the former (6-Z28) is abstractly emnbedded in the latter (7-

16). While it is true that none of 6-228's three (abstract) seven-note
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supersets (7-16, 7-28, and 7-32) significantly dlisturb the cyclic com-
position, an embeddinlg/covering relation does not guarantee (or
evenl necessarily imply) a close CSATSIM relation. For examnple, 6-
Z3 [012356] is (abstractly) covered by/emlbedded in six diffEerent
heptachord classes. 6-Z3 is related to one of its supersets (7-4
[0123467]) by a CSATSJM value of 0.0)70, whereas it is related to
another of its supersets (7-16 [0123569]) by a CSATSIM value of
0.236.

31. There are also close SC connections from one song in the cycle to
the next, despite the fact that different row classes are used in all but
the first and last (fourth) songs of this cycle.

a2 . Of course, no relation that operates in pitch-class space can be influ-
enced by a comnposer's particular spacing or instrumentation. None-
theless, Daliapiccola's setting of the final chord (and also the piano
chord in m. 80), which registrally segregates the embedded aug-
mnented triad from the embedded diminished seventh chord, makQes
these analytical results more vivid, By comparison, his setting if the
penultimnate-,and also the antepenultinmate-piano chordls brings
out their interval-c-lass 1 and 6 content.

33. C:'f., Morris 1987: 128-35.

34. For example, pitches (in P-space) or beat classes.

35. The value in the upper left corner is italicized if it is 0.000 and that
numnber only represents the trivial case of one SC comlpared with
itself (in cases where #X= #YX). I£f the upper left number is 0.000 and
there is some CSATSIMv Z-relation in the value group then the value
is not italicized.
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