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RELATIVE SATURATION OF

INTERVAL AND SET CLASSES:

A NEW MODEL FOR

UNDERSTANDING PCSET

COMPLEMENTATION

AND RESEMBLANCE

Michael Buchler

An Introduction to Saturation Vectors
and Associated Similarity Indices

In the well-established field of pitch-class set (pcset) theory, scholars
have expressed rather different opinions regarding what exactly should
constitute an equivalence and what sorts of materials and methodologies
should be used in determining similarity. As Morris (1982) has amply
demonstrated, there are essentially two ways that theorists have deter-
mined equivalence among pcsets: either operationally or through a com-
parison of common elements. The first method relies upon a canon of
operators, such as transposition, inversion, or multiplication by 5 or 7;
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when two pcsets can be related using a canonical operator, they are said
to be equivalent. Vector equivalence, on the other hand, is based upon the
comparison of two tallies of interval- or subset-classes (e.g., the interval-
class vector); when two pcsets share a vector class, they too can be de-
clared equivalent.!

Pcset resemblance has also been evaluated using these two types of
data, though methods based upon vector relationships predominate. That
a large number of similarity relations have arisen, reflecting a variety of
methodologies, seems extremely healthy for our discipline, and I find it
enormously helpful to have multiple means for comparing pcsets (or any
musical entities).? Although there are many features that distinguish sim-
ilarity indices such as Morris’s ASIM, Rahn’s ATMEMB, Lewin’s REL,
Isaacson’s IcVSIM and Castrén’s RECREL, all such methods for deter-
mining pcset similarity have examined raw counts of interval- or subset-
classes and, through their mechanisms, attempted to form cardinality-
neutral comparisons. My aim here is not to evaluate these indices, but to
suggest that one way to facilitate such cardinality-neutral comparisons is
through a contextualization of the vector data itself before any external
comparisons are initiated.

Before discussing vectors, however, pcset embedding (particularly as
defined by David Lewin) will be reviewed, and I will suggest some elab-
orations on Lewin’s tools that take account of what is minimally and max-
imally possible in a given cardinality. This relative value will be called
the “degree of saturation” of element or subset x in set X. Strings of sat-
uration values will form “saturation vectors” that compare the quantity
and types of embedded interval- or subset-classes to what is possible in
any pcset of a given cardinality. Saturation vectors, in turn, will be used
to illustrate some interesting relationships among complementary pcsets
and, more generally, they will serve as data for comparing pcsets with a
similarity index.

Relative Abstract Pcset Inclusion

As a point of departure, it will be useful to create a function that for-
mally defines abstract pcset inclusion. This function will be called AS (for
“abstract subset”). Given two set classes (scs) /X/ and /Y/,? where /X/ has
the same number or fewer elements than /Y/ #/X/s #/Y/),* AS(/X/, 1Y/) is
a Boolean function (relation) which returns “true” if at least one X of /X/
is embedded in some Y of /Y/.> AS(/X/, /Y/) returns “false” if no form of
/X/ is embedded in some Y of /Y/. If AS(/X/, /Y/) = true, then /X/ is said to
be an abstract subset of /¥/.® Consider, for example, the following three
set classes: /A/ = [014], /B/ = [0145], /C/ = [0167]. AS(/A/, /B/) = true;
AS(/A/, IC/) = false.

David Lewin’s EMB(/X/, /Y/) function provides more specific infor-
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mation than does my AS(/X/, /Y/).” EMB(/X/, /Y/) returns the number of
distinct forms of /X/ that are embedded in some Y of /Y/. If, for example,
/X! = sc(3-1) [012] and Y = {1,2,3,6,7,8,a}, EMB(/X/, /Y/) = 2 because
both {1,2,3} and {6,7,8} are forms of [012] and are included in
{1,2,3,6,7,8,a}. Given that {1,2,3} (or any form of [012]) is an inver-
sionally symmetrical set, it can map onto itself through two distinct oper-
ations: the identity operation (Ty{1,2,3} = {1,2,3}); and under transposi-
tion and inversion (T4I{1,2,3} = {1,2,3}). These two transformations
yield the same pcset and will be considered a single distinct form of 3-1.

Abstract inclusion vectors, including n-class vectors,? such as the #2
subset-class vector (which is equivalent in appearance to the ICV) can be
derived by performing EMB(/X/, /Y/) for each distinct /X/ where #X = n.?
When #X = 2, EMB(/X/, /Y/) returns an argument of the #2 subset-class
vector of /Y/ (ICV(Y)). Formally, each argument (i) in the 2CV can be
defined as follows: 2CV(X); = EMB(, /X/).'°

Later in this article, I will introduce a new inclusion function,
SATEMB(/X/, /Y/), which returns two arguments that reflect a compari-
son between EMB(/X/, /Y/) and the largest and smallest EMB(/X/, /Y/)
values for all sets of #Y. We will call SATEMB’s output the degree to
which /Y/ is saturated with /X/.!! Just as abstract inclusion (n-class) vec-
tors such as the interval-class vector can be derived by performing
EMB(/X/, /Y/) for each distinct /X/ where #X = n, we will similarly cre-
ate n-class “saturation vectors” by concatenating SATEMB(/X/, /Y/) val-
ues for each /X/ where #X = n. Wherever the places in a vector V(X) show
the number of scs A, through A, that are embedded in pcset X, a satura-
tion vector SATV(X) can be constructed to display how the quantity of
subsets A; through A, fall into the range of what is possible given any
peset of #X.12 Several n-class (largely interval-class) saturation vectors
will be introduced.

One can construct saturation vectors that measure the degree to which
different collections of scs (/X/; ... /X/;) are maximally or minimally
embedded in pcset Y (or sc /Y/) in a variety of musical spaces, and under
different means of defining equivalence. An sc collection might contain
all scs of a particular cardinality (e.g., interval classes, trichord classes)
or might (or might not) share some other property (e.g., all transposi-
tionally-symmetrical scs). Certain scs might even be weighted in the vec-
tor. Initially, the principal focus will be on interval-class vectors, but it
should be evident that the same saturation functions used to determine
relative ic embedding can also determine relative embedding of any
other size subset class. Additionally, while T,/T,I-based n-class vectors
(nCVs) will form the basis for the vectors demonstrated herein, one could
certainly achieve similar goals using any other well-defined standard for
equivalence.'?
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Minimal and Maximal Saturation of Interval Classes

The next section of this article will introduce a variation on the inter-
val-class vector that compares the arguments of an ICV with the mini-
mum and maximum such values found in any pcset of the same cardi-
nality. Before discussing this vector, it will be useful to examine how one
calculates the minimal and maximal amounts of each ic in any pcset of a
particular cardinality. One could, of course, simply examine the ICVs of
all sets of a particular cardinality and, by inspection, keep track of the
values at each extreme. But one can derive this information more directly,
and with a greater appreciation of the inherent boundaries of pitch-class
space, through an examination of the properties of interval cycles. The re-
lationship between the following systematic discussion of interval cycles
in pc space and minimal and maximal saturation of interval classes shall
become apparent as we progress.

In standard 12-pc space, where inverted set forms are considered
equivalent, there are only six distinct interval cycles. These regular cyclic
forms, listed in Figure 1 below, have been discussed by other authors.!
have previously defined an i-cycle (where i represents any interval class
in pc space) as “a closed and finite ordered collection of pcs where one
element maps onto the next (and the last onto the first) under transposi-
tion at a constant interval i.”'> The periodicity (p) of an i-cycle is its
length, or the number of distinct elements before a pc is repeated (e.g.,
the periodicity of a 3-cycle is 4).'° It therefore follows that the number of
distinct i-cycles for any ic i (I will call this m) can be derived by dividing

twelve by p (orm = % .

Elsewhere I have formally defined an i-set X as a pcset that is 1) either
a completed i-cycle or the union of two or more completed i-cycles (of
the same type); 2) a contiguous i-cycle fragment with no extraneous notes;
or 3) the combination of any number of completed i-cycles and at most a
single contiguous fragment.'” The group of i-sets also forms Tore Ericks-
son’s maxpoint series.'® Since all instances of ic i are found within the
i-cycles, it stands to reason that any i-set X contains as many instances of

lcycle:  (C,C4, D, D4 E, F F¥, G, G, A, A4, B) 0,1,2,3,4,5,6,7,8,9,a,b)
2cycles: (C, D, E, F4, G4, A¥), (Db, Eb, F, G, A, B) 0,2,4,6,8,a),(1,3,5,7,9,b)
3cycles: (C, D4, F¥, A), (C4 E, G, Ab), (D, F, G#, B) 0,3,6,9),(1,4,7,2),(2,5,8,b)
4cycles: (C,E, Gh), (Ch F, A), (D, 4, Ab), (Eb, G, B) 0,4,8),(1,5,9),(2,6,a),(3,7,b)
Scycle:  (C,F,Bb,Eb,Ab, Db, F4, B,E, A, D, G) 0,5,a,3,81,6,b,4,9,2,7)

6 cycles: (C, F¥), (Db, G), (D, G¥), (Eb, A), (E, Bb), (F, B) (0,6),(1,7),(2,8),(3,9),4,2),(5,b)
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ic i as possible for a set of #X (i.e., it is maximally saturated with ic i).'°
The maximum quantity of ic i in any pcset of cardinality c shall be
called max(c, i). The algorithm for deriving this value can now be for-
mally expressed (for ease of reading, it will also be less formally ex-
pressed below). Since we are working in the realm of integers, all divi-

sion will be integer division, which truncates any remainder (e‘g.,% =3).

“Mod” is a binary operation which returns the remainder of integer divi-
sion (e.g., 7 mod 2 = 1). Variables are defined as follows:

Let ¢ = the cardinality of pcset X.

Let p = the periodicity of interval cycle i (p = 12).

Let m = the number of distinct cycles of i in U (m = % .

Let s be a temporary variable that we shall use en route to deriving
min(c, i) and max(c, ).

Derivation of max(c, ):2°
(cmodp=0)=s=§'p

~(cmodp=0)=s=(§-p) +(cmodp) -1

(i=6)=s=5

max(ci) =s

The first statement (which might be read: if the periodicity (p) of an i-
cycle divides evenly into c, then s equals the product of p and the integer
quotient of ¢ and p) is a test of the first i-set condition. If the left side of
the statement is true, then the completed i-cycle or combination of com-
pleted i-cycles will yield the maximum number of ic i in any pcset of car-
dinality c. That number will equal the product of the i-cycle periodicity
and the number of completed i-cycles that fit into c (this is represented

by 5), except in cases where i = 6. In the case of the tritone, s must be

divided in half to account for the fact that completed 6-cycles yield only
a single ic6. This “fix” is provided on the third line of the above equation.
The second line of the equation describes the second and third /-set con-
ditions where completed i-cycles cannot be evenly partitioned into a

peset of ¢. In such cases, we take the number of ic is from any potentially-

completed cycles (IQ, ) P) and add ‘to it the number of ic is found in a

fragment the size of the remainder of IQ, The number of ic is in any i-cycle
fragment equals its cardinality minus 1 (since it is not a closed cycle, the
“wraparound” interval must be subtracted).

The minimal values of interval-class i in any pcset of cardinality ¢
(denoted min(c, i)) can also be described formally using these parame-
ters. Min(c, i) is not always 0 but is variable, dependent on the periodic-
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ity of the i-cycle and the cardinality of the pcset. Before presenting
the entire equation for min(c, i), let us state the conditions where
min(c, i) = 0:

(c < g m) = min(c,i) =0

Earlier, I remarked that “all instances of ic i are found within the i-
cycles.” By extension, there are no i-cyclic non-adjacencies or elements
in different i-cycles that are separated by ic i. This corollary motivates the
first half of the above formula. If we remove every other element of a par-
ticular i-cycle (thus removing all instances of the generating ic), the
length of what remains is, quite obviously, L We then multiply the length
of our half-cycle by the number of i-cycles (m) to determine the maxi-
mum cardinality with no embedded ic is. The values of fp -m for all p and
m are given in Figure 2.

With this condition in place, we can now compose an algorithm to
determine min(c, i) values for all ¢ and i:

Derivation of min(c, i):

=c-L.
s=c-5'm

(5>1) v(((g-m)-2)< c)=s=(s0)-(12-§m) 2
(s<0)=s5=0
min(c,i) = s

In most cases where ¢ = £+ m, a pcset X which has the minimum

number of i will be optimally fragmented with respect to the i-cycle. This
means that it is impossible to add a single pc to pcset X without adding
twoic is. {0, 2, 4, 6, 8, a} might be regarded as an optimally fragmented
1-cycle. Any (non-redundant) pc that we add to that pcset will add two

i m p é’m
1 1 12 6
2 2 6 6
3 3 4 6
4 4 3 4
5 1 12 6
6 6 2 6

Figure 2. Values of %’ - m for all m and p.
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icls yet the resultant seven-note pcset will still include the fewest icls in
any septachord. Therefore, min(c, i) is incremented by 2 for every c

higher than i_v -m.

The only exceptions arise when deriving the minimal amounts of ic6
and ic4 where min(c, i)= 0. Because it is impossible to add one note to
a set and consequently add two ic6s, we only increment min(c, 6) by 1

for every c higher than L. 1. The case of min(c, 4) is more complex.

Since the periodicity of completed 4-cycles is 3, it is impossible to have
two non-adjacent elements. Thus, a pcset can only exclude ic4 when all
its elements are members of different 4-cycles. Unlike maximally frag-
mented 1-, 2-, 3-, and 5-cycles, any pc added to a maximally fragmented
4-cycle will add only one ic4 to the set’s ic content. This condition cov-
ers five- through eight-note pcsets. An eight-note pcset that minimally
includes ic4 will have two pcs from each of the four 4-cycles. Any note
added to it will complete a 4-cycle and therefore add two more ic4s.
Thus, min(c, i) is incremented by two whenc=9. . . 12. The special con-
ditions to handle ic4 and ic6 are found in the second line of the above
formula.

In some cases ¢ — £-m will yield a negative number. Because it is

impossible for members of any pcset X to be separated by a negative
number of i, the third line of the formula maps all negative values to 0.2!
Figure 3 lists all min(c, i) and max(c, i) values. For example, min(6,4)—
the minimal amount of ic4 in any pcset of #6—carries the value 2 and
max(6, 4) carries the value 6. Such values will be used frequently in this
article.

More than one i-set (for a given i) sometimes exists within a particu-
lar cardinality. This is, in part, because we have not specified an interval-
lic distance that must separate the multiple completed cycles (under con-
dition 2) or completed cycle(s) combined with a cyclic fragment (under
condition 3). The following hexachords are all 6-cycle sets:

{0,1,2,6,7, 8}
{0,1,3,6,7,9}
{0,2,4,6,8,a}

All three contain three instances of ic6, but in other respects they possess
different properties. The first and third are all-combinatorial sets; the sec-
ond is not. The third pcset is also a completed 2-cycle and the combina-
tion of two completed 4-cycles. Thus, we see that it is possible for a pcset
to satisfy a condition of cyclic set membership for more than a single
interval class. Such pcsets (and their scs) will be called “multiple-cyclic
sets.” There are only three varieties of multiple-cyclic sets: 1) those which
are products of all six i-cycles; 2) those which are products of i-cycles 2,
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Minimum ic counts Maximum ic counts

1 23 4 56 1 2 3 4 56

0 000 O0O0O0O0 0 0 00 00O

1 000 O0O00O0 0O 0 0 00O

> 2 000 O0O0OO0 1 1 1 1 11
-3 000 O0O0O0 2 2 2 3 21
— 4 000 O0O0ODO0 3 3 4 3 32
< 5 000100 4 4 4 4 4 2
= 6 000200 5 6 56 53
'_; 7 222 3 21 6 6 6 6 63
- 8 4 4 4 4 4 2 7 7 8 7 7 4
« 9 6 6 6 6 63 8 8 8 9 8 4
O 10 8 8 8 8 8 4 9 9 9 9 95
11 101010 10 10 5 10 10 10 10 10 5

12 1212121212 6 12 12 12 12 12 6

Figure 3. Min(c, i) and max(c, i) values for all cardinalities (rows)
and interval classes (columns).

4, and 6; and 3) those which are products of i-cycles 3 and 6. All multi-
ple-cyclic sets are therefore 6-cycle sets (the converse is obviously not
true).

Figure 4 lists all i-sets in 12-pc space. The first column provides the
cardinality of the cyclic set class, the second column lists the Forte num-
ber for each set class, the third column lists the prime form of each set
class (under T,/T,I equivalence), the fourth column, labeled “type,”’
states the condition under which each pcset qualifies as a cyclic set (“C”
= completed cycle or concatenation of completed cycles; “F” = cyclic
fragment; “CF” = one or more completed cycles plus one cyclic frag-
ment), the fifth column identifies mutliple-cyclic scs (“1” indicates a
cyclic set for all interval-class cycles; “2” indicates an ic2, ic4, and ic6
cyclic set; and “3” indicates an ic3 and ic6 cyclic set), and the remaining
columns show the interval-class content (interval-class vector).??

It has already been demonstrated that every i-set X embeds the maxi-
mal number of ic i in any pcset of #X. An interesting by-product of this
maximal saturation is that most cyclic sets also include the minimal
amount of some other ic or ics (that is to say maximal i-cycle adjacencies
usually necessitate that a different i-cycle be maximally fragmented).
The italicized “most” becomes a more definitive “all” if a single condi-
tion is added (I will call this the maximal cyclic fragmentation condi-
tion): an i-set will not only feature maximal values for ic i, but also min-
imal values for some other ic j if, after one i-cycle has been completed in
the generation of the pcset, a new cycle is begun at Ty, Ty; (T.;), Ts, or T;
(T.s) of some pc in the completed cycle. All 1-, 2-, 3-, and 5-cycle sets
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Icl cyclic set classes

#0  0-1 []

#1  1-1 [0]

#2 2-1 [01]

#3  3-1 [012]

#4  4-1 [0123]

#5 5-1 [01234]

#6  6-1 [012345]

#7  7-1 [0123456]

#8  8-1 [01234567]
#9  9-1 [012345678]
#10 10-1 [0123456789]
#11 11-1 [0123456789a]
#12 12-1 [0123456789ab]
Ic2 cyclic set classes

#0  0-1 []

#1 1-1 [0]

#2 22 [02]

#3  3-6 [024]

#4 4-21 [0246]

#5 5-33 [02468]

#6 6-35 [02468a]

#7 7-33 [012468a]

#8 8-21 [0123468a]
#9  9-6 [01234568a]
#10 10-5 [012345678a]
#11 11-1 [0123456789a]
#12 12-1 [0123456789ab]
Ic3 cyclic set classes

#0  0-1 []

#1  1-1 [0]

#2 2-3 [03]

#3 3-10 [036]

#4 4-28 [0369]

#5 5-31 [01369]

#6 6-27 [013469]

#7 7-31 [0134679]

#8 8-28 [0134679a]
#9 9-10 [01234679a]
#10 10-3 [012345679a]

Figure 4. Cyclic sets in 12 pc space
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0 O
0 O
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2 1
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4 4
6 6
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10 10
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0 O
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2 0
4 0
6 0
6 2
6 4
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8 8
10 10
12 12
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APV, OOOOO
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#11 11-1 [0123456789a] CF 1 10
#12 12-1 [0123456789ab] C 1 12
Ic4 cyclic set classes Type MC icl
#0 01 [] F 1 0
#1  1-1 [0] F 1 0
#2 24 [04] F 0
#3 3-12 [048] C 0
#4 4-19 [0148] CF 1
4-24 [0248] CF 0
#5 5-21 [01458] CF 2
5-33  [02468] CF 2 0
#6 6-20 [014589] C 3
6-35 [02468a] C 2 0
#7 7-21 [0124589] CF 4
7-33 [012468a] CF 2 2
#8 8-19 [01245689] CF 5
8-24 [0124568a] CF 4
#9  9-12 [01245689a] C 6
#10 10-4 [012345689a] CF 8
#11 11-1 [0123456789a] CF 1 10
#12 12-1 [0123456789ab] C 1 12
Ic5 cyclic set classes Type MC icl
#0 01 [] F 1 0
#1  1-1 [0] F 1 0
#2  2-5 [05] F 0
#3 39 [027] F 0
#4 4-23 [0257] F 0
#5 5-35 [02479] F 0
#6 6-32 [024579] F 1
#7 7-35 [013568a] F 2
#8 8-23 [0123578a] F 4
#9 99 [01235678a] F 6
#10 10-5 [012345789a] F 8
#11 11-1 [0123456789a] F 1 10
#12 12-1 [0123456789ab] C 1 12
Ic6 cyclic set classes Type MC icl
#0  0-1 [] F 1 0
#1  1-1 [0O] F 1 0
#2 2-6 [06] C 0
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Figure 4. (continued)

10 10 10 10 5
12 12 12 12 6

ic2 ic3 ic4 ic5 ic6
O 0 0 0 o
O 0 0 0 o
0O 0 1 0 O
0O 0 3 0 O
0O 1 3 1 O
2 0 3 0 1
0O 2 4 2 O
4 0 4 0 2
0O 3 6 3 O
6 0 6 0 3
2 4 6 4 1
6 2 6 2 3
4 5 7 5 2
6 4 7 4 3
6 6 9 6 3
8 8 9 8 4
10 10 10 10 5
12 12 12 12 6
ic2 ic3 ic4 ic5 ic6
O 0 0 o0 o
0O 0 O o0 O
O 0 o0 1 O
1 0 0 2 O
2 1 0 3 0
3 2 1 4 0
4 3 2 5 0
5 4 3 6 1
6 5 4 7 2
7 6 6 8 3
8 8 8 9 4
10 10 10 10 5
12 12 12 12 6
ic2 ic3 ic4 ic5 ic6
O 0 o0 o0 o
o 0 o0 o0 o
O 0 0 0 1



#3

#4

#5

#6

#7

#8

#9

3-5 [016] CF 1 0 0 0 1

3-8 [026] CF 0o 1 0 1 O

3-10 [036] CF 3 0 0 2 0 O

49 [0167] C 2 0 0 0 2

4-25 [0268] C 0o 2 0 2 O

4-28 [0369] C 3 0 0 4 0 O

5-7 [01267] CF 3 1 0 1 3

5-19 [01367] CF 2 1 2 1 2

5-15 [01268] CF 2 2 0 2 2

5-28 [02368] CF 1 2 2 2 1

5-33  [02468] CF 2 0 4 0 4 O

5-31 [01369] CF 3 1 1 4 1 1

6-7 [012678] C 4 2 0 2 4

6-30 [013679] C 2 2 4 2 2

6-35 [02468a] C 2 0 6 0 6 0

7-7 [0123678] CF 5 3 2 3 5

7-15 [0124678] CF 4 4 2 4 4

7-19 [0123679] CF 4 3 4 3 4

7-31 [0134679] CF 3 3 3 6 3 3

7-28 [0135679] CF 3 4 4 4 3

7-33 [012468a] CF 2 2 6 2 6 2

8-9 [01236789] C 6 4 4 4 6

8-25 [0124678a] C 4 6 4 6 4

8-28 [0134679a] C 3 4 4 8 4 4

9-5 [012346789] CF 7 6 6 6 7

9-8 [01234678a] CF 6 7 6 7 6

9-10 [01234679a] CF 3 6 6 8 6 6

#10 10-6 [012346789%a] C g8 8 8 8 8
#11 11-1 [0123456789a] CF 1 10 10 10 10 10
#12 12-1 [0123456789ab] C 1 12 12 12 12 12

Figure 4. (continued)

(those i-cycles where i’-’ > 1) will meet this condition. In the case of the

1- and 5-cycles, completion is only attained with the entire aggregate of
pes; in the case of 2- and 3-cycles, there are no pcs that do not lie within
a semitone of some element of a completed 2- or 3-cycle. In effect, this
condition sifts out type 2 and type 3 multiple-cyclic sets from the group of
4- and 6-cycle sets, assigning them sole status as either 2- or 3-cycle sets.

The above condition is true of all i-sets, regardless of their cardinality
(e.g., any 2-cycle pcset X will have the minimal amount of icl, ic3, and
ic5 for any pcset of #X). With the maximal cyclic fragmentation condi-
tion in place, we can now chart those cases in which the saturation of
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INTERVAL CLASSES

1 2 3 4 5 6
l-sets | Max Min Min
w1 |2-sets | Min Max Min Max Min Max
: 3-sets Max Min Max
»n |4-sets (Min) Max (Min)
o |5-sets Min Max Min
6-sets Min) | (Min) Max

Figure 5. Minimal and maximal ic content generated in all cardinalities
by each i-set (rows = i-set type; columns = interval class levels)

some ic i is inversely proportional to the saturation of another ic j. Figure
5 depicts these relationships. Where, for example, “min” is found in a
location in the table, all i-sets (where i = row) will generate the min(c, j)
amount of ic j (where j = column). Places where “min” is in parentheses
are true only when the maximal cyclic fragmentation condition is satis-
fied. Similarly, where “max” appears in the table, all i-sets will generate
the max(c, j) amount of ic j. For example {0, 1, 3, 4,5, 8} and {0, 2, 3, 4,
5, 7} are both minimally saturated with ic6, yet neither is a cyclic set. In
general, 2-sets only generate maximal saturation of ic4 and ic6 when they
are comprised of one or more complete 2-cycles (type “c” in figure 4),
give or take one note. 3-sets (trivially) only produce maximal ic6 satura-
tion in trichrods and larger sets. It should be noted that while all sets that
are maximally saturated with a particular interval class are i-sets genera-
ble from the same i-cycle, not all sets that are minimally saturated with a
particular interval class are i-sets (e.g., {0, 1, 3,4, 5, 8} and {0, 2, 3, 4, 5,
7} are both minimally saturated with ic6, yet neither is a cyclic set.)

Figure 5 shows some interesting patterns that will not only impact
how we interpret data from the ic-based vector proposed in the next sec-
tion, but should also influence the manner in which we interpret data
from any ICV-based similarity relation. We can, for example, make the
following observations about particular families of pcsets: any time that
one finds a maximal amount of icl or ic5, a minimal amount of ic6 and
ic4 is guaranteed as a by-product; it is impossible to maximize ic3 con-
tent without also maximizing ic6 content—but the inverse of this state-
ment is not true; ic4 and ic6 are either maximized or minimized in every
cyclic set, but, while the six ic cycles yield minimal ic6 content equally
as often as maximal ic6 content, there is twice the likelihood of finding
minimal ic4 content as maximal ic4 content.

As mentioned earlier, it might have been simpler to survey all set
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classes and make note of which in each cardinality had the largest and
smallest numbers of each ic. I hope that this detailed approach has re-
vealed more about the interplay among ics, the cardinalities of pcsets,
and the properties associated with minimal and maximal interval-class
saturation.

PSATYV: The Proportional Saturation Vector

This section introduces a relatively simple saturation vector, contain-
ing six arguments that reflect the saturation level of each interval class as
a percentage of what is maximally possible. Simply dividing each value
in the interval-class vector by the maximum possible ic value for that car-
dinality (max(c, i)) would effectively eliminate any comparison with the
min(c, i) values. To avoid this situation, we first create a “min-adjusted ic
vector” (MAV) by subtracting the min(c, i) values from the ICV values.
PSATYV is then derived by dividing the MAV values from the respective
“min-adjusted” max(c, i) values (i.e., max(c, i) —min(c, i)). PSATV is
demonstrated in two steps in Figure 6.

The ranges of possible ICV values in each cardinality (i.e., the dis-
tance between min(c, i) and max(c, i) for all ¢ and i) are shown in Fig-
ure 7. As one can see, complementary cardinalities yield for each ICV
place ranges of possible values of the same size (bandwidths). It follows,
therefore, that the “min-adjusted” max(c, i) values of complementary set
class cardinalities are also the same.??

The above observation—combined with Ericksson’s theorem that
when a set class maximally embeds one or more interval class, its com-
plement will also maximally embed the same interval class(es)—leads to
a very interesting property of interval-class saturation vectors.?* Because
the PSATYV places each interval-class vector argument into the context of
its range of possible values, and because complementary set classes sat-
urate each interval class to the same degree (within that range), PSATVs
of complementary set classes yield the same values. For example, 3-1
[012] and 9-1 [012345678] both feature the maximal possible icl con-
tent, the max-1 possible ic2 content, and the minimum amount of all the
other interval classes. In fact, complementary set classes also produce
identical MAVs (the basis for PSATV). Figure 8 offers one illustration
using complementary set classes 5-z36 [01247] and 7-z36 [0123568].

The saturation vector can contribute significantly to analyses of pieces
in which complementary relationships play a structural role. However,
the equivalence of complementary scs under PSATV should not limit its
application only to such pieces since, fundamentally, all compositions
written in twelve-tone equal temperament (and where it is reasonable to
assert octave equivalence) operate to some degree within the boundaries
of pc-space.? The PSATV simply represents one method of examining
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Step 1.

Step 2.

Create a min-adjusted ic vector (MAV):
MAV(X); = ICV(X); - min(c, i)
foralli €l

Each ic i place in the MAV of X is derived by subtracting the
minimal amount of ic content in any set of cardinality X (c)
from the respective ICV(X) argument.

For example, one would perform the following steps to arrive
at the MAV of set class [012678]:

ICV([012678]) <420243>
min(6, i) = 000200
MAV([012678]) <420043>

Divide the values in the min-adjusted vector (MAV) by the
min-adjusted maximal values of any set of #X:

MAV(X);
max (c,i) — min(c,i)

PSATV(X), =

foralliE I

For example, one would perform the following steps to arrive
at the PSATYV of set class [012678]:

MAV[012678] =< 4 2 0 0 4 3>
max(6, i) = 5 6 5 6 5 3
min(6, i) = O o O 2 0 O
max(6, i) - min(6, i) = 5 6 5 4 5 3

PSATV[012678] < 4/5 2/6 0/5 0/4 4/5 3/3>

< 0.80 0.33 0.00 0.00 0.80 1.00 >

Figure 6. Demonstration of PSATV of SC 6-7 [012678]

these boundaries. The musical logic supporting complementary PSATV
equivalence may also reinforce complement-based relations such as Kh
and ZC, even in pieces that do not actually exhibit pcset or sc comple-
mentation.?®

The Interval-Class Saturation Vector (SATV)

We will now introduce a slightly more complex tool for measuring
interval-class saturation with greater specificity. The interval-class satu-
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ration vector (SATV(X)) is a dual six-argument vector: each place in the
upper (A) row of the vector carries the designation “min+n” or “max-n”
(n represents the difference between the corresponding ic vector place i
(that is, ic i) and the minima (min(c, {)) or maxima (max(c, f)) of its car-
dinality), depending upon which extreme is closer to the ic vector value.
In the case of a tie, the ic vector place is (arbitrarily) compared to the
maximal value. Each place in the lower (B) row of the vector shows the
opposite (furthest) comparison (if the A row compares the ic vector place
with min(c, i), the B row compares the ic vector place with max(c, 7), and
vice versa). For example, the SATV for the all-combinatorial hexachord
6-7 [012678] (JCV: <420243>) is shown below.

SATV,[012678]: <max-1, min+2, min+0, min+0, max—1, max—0>
SATV3[012678]: <min+4, max—4, max—5, max—4, min+4, min+3>

For the sake of concision, and in order to use vectors that are entirely
numerical, I will henceforth omit the keywords “min” and “max” from
the vectors and retain only the signs (+ or —) and the difference values.
“Positive” values will imply a comparison to the appropriate min(c, i) val-
ues and “negative” values will imply a comparison to the appropriate
max(c, i) values.?’ Thus the SATV for [012678] will appear as follows:

SATV,[012678]: <-1, +2, +0, +0, -1, -0>
SATV3[012678]: <+4, -4, -5, -4, +4, +3>

Both rows of the vector are necessary because the range of possible
values for ic i in #X is not consistent for all i values. In other words, the
difference between min(c, i) and max(c, i) is different in many cases

Interval-class vector range (max(c, i) - min(c, 7))

1 2 3 45 6
0 00 0 0 0 O
1 00 0 0 0 0
2 11 1 11 1
~ 3 2 2 2 3 2 1
- 4 3 3 4 3 3 2
s 5 4 4 4 3 4 2
g 6 56 5 4 5 3
T 7 4 4 4 3 4 2
< 8 3 3 4 3 3 2
O 9 2 2 2 3 2 1
10 1 1 1 1 1 1
1 0 0 0 0 0 O
12 0 0 0 0 0 0

Figure 7. Maximum min-adjusted ic values for all set-class cardinalities
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5-236 [01247] 7-236 [0123568]

ICV(5-z36) <2 2 21 21> ICV(7-z36) <44 4342>
min(S, i) 000100 min(7, i) 222321
MAV(5-236) <2 2 2 0 2 1 >= MAV(7-236) <222 021>

Figure 8. Min-adjusted ic vectors (MAV)
for two complementary set classes

(e.g., when ¢ = 4 and i = 2, the distance between max(c, i) and min(c, i)
is 3, but when ¢ = 4 and i = 3, the distance between the two extremes is
4). The reason I scatter min- and max-related values among the two rows
of SATV rather than segregating them into a row of min-related values
and a row of max-related values will become apparent in the next section
of this article, where SATV is used for relating set classes.

The Interval-Class Saturation Similarity Index—SATSIM(X, Y)

This section of the article describes one method of utilizing the SATV
to examine how closely two set classes resemble each other. The ic satu-
ration similarity index—SATSIM(X, Y)—is a function that compares ic
saturation vectors of two sets, and returns a real number between 0 and 1
that serves as an indicator of the two sets’ relative similarity. Since a high
SATSIM(X, Y) value indicates a lack of similarity among pcsets X and ¥,
one might more properly call this a “dissimilarity index.”?® Architec-
turally, SATSIM(X, Y) resembles Morris’s ASIM(X, Y); the principal dif-
ference between the two is that Morris’s measure uses one-part ic vectors
while SATSIM employs values in a two-part vector.?’

I have elsewhere detailed how one might compare saturation vectors
in a similarity measure.’® [ will avoid duplicating that work here, limit-
ing my description to a few words and a demonstration. Readers who are
familiar with the Cyclic Saturation Similarity Measure (CSATSIM) can
skip past the similarity measure demonstration. While CSATSIM proc-
esses different data, it is structurally the same as the Saturation Similar-
ity Measure introduced herein.

The basic idea of SATSIM(X, Y) is to compare SATVs of two set
classes by adding together their differences and dividing that sum by the
sum of all the numbers in both vectors. We thus divide the sum of the dif-
ferences by the sum of the possible differences to calculate the degree to
which both set classes are similar. The only formidable aspects of ex-
acting this comparison come in dealing with two-part saturation vectors
and comparing non-commensurable values.

Because the designations “min” and “max” do not refer to absolute
values but are variable depending on interval class and set cardinality,
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one cannot calculate the difference between a min-related and a max-
related value a priori. It is only possible to compare min-related values
to other min-related values and max-related values to other max-related
values. A new function, row, will determine which SATV value to use in
each case when calculating SATSIM.

In a nutshell, SATSIM is calculated by adding together the differences
between the two vectors being compared and dividing that sum by the
total of all the arguments in both vectors. Totaling the arguments in a sat-
uration vector is a bit less straightforward than when working with purely
numerical vectors. Figure 9 provides a formal definition of SATV totals
(this is sometimes called “vector cardinality”); it is derived by adding
together the distances between the numerical values in the respective
arguments of both lines of the vector. Figure 10 lists all SATV totals for
all set-class cardinalities. Like ic vector totals, the combined values in
saturation vectors will always total the same number for sets of the same
cardinality. Unlike the ic vector, however, saturation vectors of comple-
mentary sets will also add up to the same combined total, since comple-
mentary sets yield precisely the same saturation vectors. Figure 11 pro-
vides a concise definition of SATSIM and function row, mentioned
above.

Figure 12 presents a demonstration of how SATSIM values are at-
tained. In it, we see that /X/, [012678], has the value (max)-1 in the icl
column. /¥/, [0369], on the other hand, has +0, which means it is mini-
mally saturated with icl. Because X and Y are different cardinality scs
(and because it will always be possible that #X= #Y for any X and Y),

6
#SATV(X) = 2, (ISATVA(X), ~ SATV5(X),)

Figure 9. Formal definition of SATV totals (ZSATV)

c 2SATV(X)
Oor12 0
lorll 0
20r10 6
30r9 12
4or8 18
Sor7 21
6 28

Figure 10. SATYV totals for all set-class cardinalities ¢
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SATSIM(X, Y) =

6
2(ISATVA(0), = SATV,,,(X),| + ISATVA(Y), — SATV,,,(X),)

6
2 (ISATVA(0, — SATVa(X),| + ISATVA(Y), — SATVg(1),l)

Where X,, and Y, are the nth entries in the SATVs of pcsets X and Y
respectively and row is a function that decides which row of the
SATV to use.

Function row:

If SATV,A(X), is a max-related value and SATV,(Y), is also a max-
related value, then the function row returns row A (SATVa(X), is
compared to SATV,(Y),); otherwise, row returns row B (in that case,
SATV4(X), is compared to SATVg(Y),).

Figure 11. Formal definition of function SATSIM(X, Y)

min(c, i) and max(c, i) will represent different extremes for each i. It is
therefore impossible to compare a min-related value directly with a max-
related value; in this case, we must look to line B of /¥/’s ic saturation
vector, which shows that [0369] contains the (max)-3 amount of icl (see
function row, described formally in Figure 11). The absolute value of the
difference between -1 and -3 (i.e., 2) is the value returned for the ic1 col-
umn. In the ic2 column, SATV,(/X/) carries the value (min)+2, while
SATV4(/Y/) has the value (min)+0, also yielding a difference of 2. In this
case, one need not check the value in SAT V(/Y/) since row A had the nec-
essary min-related value. This procedure (step 1 in Figure 12) is repeated
for each argument in SATV,(/X/).

One then compares each argument in SATV,(/Y/) to either row A or B
of /X/’s saturation vector, creating a two-part difference vector (after
Isaacson, 1990). Because only the A row of one saturation vector is com-
pared to whichever row has the matching argument in the other vector,
not all the max- and min-related values are necessarily employed in the
comparison. In fact, when both sets have, for example, a max-related
value in some ic column of row A, the corresponding min-related values
in the B rows are never actually compared. While an index that does not
always consider all available arguments might be viewed as incomplete
(or even inconsistent), the effect of cardinality is further reduced by com-
paring only the closest arguments in the SATVs. If, for example, a tri-
chord and a hexachord both have the max(c, i) amount of icl (that is to
say, the first argument in SATV, of both sets contains the value -0), they
would have SATV; icl values of +2 and +5, respectively. If SATSIM
employed all these values in its comparison, then we would see that
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the two sets are Q——Ozl—:%—:—ﬂ = % = 42.8% different in their icl con-
tent (I have added together the difference between the min-related values
and max-related values and divided that sum by the sum of the distance
between SATV, and SAT V3 in the ic1 place for each pcset). Considering
that these two sets are both maximally similar in icl content (for a tri-
chord and hexachord), this difference seems extreme, and it occurs solely
as a product of their difference in cardinality, a factor I have tried to tem-
per in this index.

When the differences between row A of /X/’s saturation vector and the
corresponding min- or max-related values in either row of /Y/’s vector are
added together, they may not necessarily be the same as the equivalent
comparison of /Y/ to /X/ (i.e., SATVA(/X/) : SATV,,,,(/Y/)= SATVA(/Y/):
SATV,,,(/X/) for all /X/ and /Y/). This is the case in the two scs compared
in Figure 12. Therefore, in order to obtain the same value from a com-
parison of /X/ to /¥/ and /¥/ to /X/, it is necessary to add all the difference
values together to obtain a composite that reflects both comparisons (step
2 in Figure 12).

We could stop here and have a perfectly acceptable, context-free sim-
ilarity index, one that has, in large part, solved the problem of comparing
sets with different cardinalities. However, an even more cardinality-neu-

X [012678] <420243> SATVAa: < -1 +2 40 +0 -1 -0 >
SATVg: < +4 4 -5 -4 +4 43 >

Y [0369] <004002> SATV,: < +0+0 -0 +0 +0 -0 >
SATVg: < -3 344 -3 342 >

Step 1: Compare the vectors, creating a two-part difference vector:
SATVA(X) : SATV,,,(Y) = 2 2 4 0 2 0 =10
SATVA(Y) : SATV,,(X) = 4 2 5 0 4 0 =15

Step 2: Add together the values in the difference vectors: =25

Step 3: Add together all the numerical distances between SATV, and

SATVp for each set:

#SATVa (X)) = 546 +5+4 +5+3 =28
#SATVa,s(Y) = 3+3+4+4+3 +3+2 =18
= 46

Step 4: Divide the sum from step 2 by the sum from step 3 to complete
the SATSIM function:
SATSIM(X, Y) = 25/46 = 0.54

Figure 12. SATSIM(X, Y) comparison of [012678] and [0369]
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tral index is attained by dividing the sum of the differences by the com-
bined SATV totals (step 4 in Figure 12). This cardinality adjustment bet-
ter allows us to compare SATSIM(X, Y) and SATSIM(S, T), where #S or
#T is not necessarily equal to #X or #Y.3!

The comparison value 0.54 that SATSIM yields for [012678] and
[0369] (step 4 in Figure 12) represents the very great differences in their
icl, ic2, ic3, and ic5 content. It also represents the congruence of values
in the ic4 and ic6 columns, returning a value which indicates that more
than fifty percent of the interval classes in the two sets are not mutually
saturated. The larger the number, the more dissimilar two sets are said to
be using this formula. The number 0 indicates an equivalence relation,
while the number 1 indicates maximal dissimilarity. Maximal dissimilar-
ity, however, is impossible to attain in pitch-class space. Even when two
set classes share no common interval classes (e.g., [012] and [048]), they
will necessarily share some mutual exclusions ([012] and [048] both
minimally saturate ic3, ic5, and ic6).

By definition, any similarity index or equivalence relation that uses
the interval-class vector as its sole datum will consider members of the
same set class and Z-related sets as either maximally similar or equiva-
lent.3? Because of the way SATV interprets the data from the interval-
class vector, maximal similarity is found in more places using this index
than with others because complementary sets, like members of the same
set class and Z-related sets, also return a value of 0 using SATSIM,
reflecting the fact that they are equally saturated with the same interval
classes.

Through the lens of SATSIM, sc 4-28 [0369] appears identical to sc
8-28 [0134679a]. Therefore, rather like Forte, I will consider a broader
definition of set class that equates T,/T,I-related sets and their comple-
ments. More generally, any mention of the SATV or SATSIM properties
of, for example, #4 scs will also be taken to include #8 scs.

To avoid confusion, I will adopt a standard of referring to SATSIM-
equivalent sets together at all times. Scs 4-28 and 8-28 will be referred to
singly as sc 4/8-28 or [0369] / [0134679a]. This coupling of comple-
mentary cardinalities will be called “cardinality pairs” (or c.p.s). For the
sake of comparison, sets of c.p. #4/#8 will be considered larger than sets
of c.p. #3/#9; or, more formally stated, the larger the difference in cardi-
nality between a pcset and its complement, the smaller the combined
set class size. When a single cardinality is required for the sake of a
formalization, the lower number is chosen (thus, #W = 4 where W =
sc[0369] / [0134679a] ).

Z-related scs are also SATSIM-equivalents (as are, by transitivity, the
complements of Z-related scs). Therefore, Z and ZC-related set classes
will also be referred to jointly as, for example, 6-3/36 ([012356] /
[012347]) or 5/7-18/38 ([01457] / [01258] / [0145679] / [0124578]). Let
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us define a SATSIM group as an equivalence class containing all scs that
are SATSIM equivalent.>® There is only one distinct sc in the 6-14
[013458] SATSIM group; there are two distinct scs in the 6-3/36 or 5/7-1
SATSIM groups; there are four distinct scs in the 5/7-18/38 SATSIM
group.

In addition to the SATSIM equivalence of complementary and
Z-related scs, there are also six SATSIM groups that include scs which
are neither complements nor Z-relations (see Figure 13). We will con-
sider these special equivalences to be SATV, Z-related sets since each
pair shares the same SATV,. When SATV,(X) and SATV,(Y) contain the
same pattern of min- and max-related (“positive” and “negative”) values,
SATSIM(X, Y) will yield the value 0.00 since it only evaluates line A. The
SAT Vg values for sets X and Y in the second through sixth groups in Fig-
ure 13 are, in fact, different, reflecting the differences in cardinality
between the two scs and the resultant differences in ic ranges of possi-
bility.3* (Both SATV, and SATVj are given for each complementary sc
pair in Figure 13.)

Each SATSIM group in Figure 13 shares some common traits. Unlike
ICV Z-related sets, none of these special SATVA Z-pairs are of the same
cardinality. Each is a pair of i-sets, using the same i-cycle(s) as generators.
Each X/Y or X/Y pair differs in size by a single member (i.e., pcset X is
either one note larger or smaller than pcset Y).% In each case, pcset ¥ (and
Y) is comprised of a completed cycle (or concatenation of completed
cycles) and X 2 (Y 2) Y 2 X. That is, the complement of X is a superset
of Y, which is a superset of X (and, if the complement of Y is distinct from
Y, then it is a superset of Y and a subset of the complement of X).

Since complementary set classes also yield identical PSATVs, that
vector likewise produces a number of special Z-relations beyond those of
complementary set classes and ic vector Z-relations. There are, however,
only three special PSATSIM groups (shown in Figure 14), and these are
a subset of the SATSIM groups (shown in Figure 13). The special PSAT-
SIM groups share the same traits as the special SATSIM groups, and they
are also bound by one additional constraint: all PSATV values must be
either 0 or 1, reflecting minimal or maximal saturation of each ic. This is
a necessary constraint for these special non-complementary PSATV Z-
pairs of different cardinality, because the range of ic values in each car-
dinality is different and the real-number values of PSATV will reflect
those (sometimes subtle) differences.

One might expect that SATSIM group #1 from Figure 13 (0/12-1 com-
pared to 1/11-1) would also appear as a PSATSIM group. This would
seem logical given that each ic is both minimally and maximally satu-
rated in each sc. However, because the ICV content of these sets is, in
each case, equal to the min(c, i) place, the MAV yields nothing but zeros.
The min-adjusted max values are therefore also zeros. Since one cannot
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Set Classes

(Complementary set classes
shown together)

Forte # SATV

SATSIM group #1  (1/2/3/4/5/6-cyclic sets)
X/X [1/[0123456789ab] 0/12-1 <

<

Y/Y [0]/[0123456789a] 1/11-1 <

<

SATSIM group #2  (4-cyclic sets)

X/X [04]/[012345689a] 2/10-4

Y/Y [048]/[01245689a] 3/9-12

AN AA

SATSIM group #3  (6-cyclic sets)

X/X [016]/[012346789] 3/9-5

Y/Y [0167]/[01236789] 4/8-9

AN ANA

SATSIM group #4  (3/6-cyclic sets)

X/X [036]/[01234679a] 3/9-10

Y/Y [0369]/[0134679a] 4/8-28

AN AA

SATSIM group #5  (4-cyclic sets)

X/X [01458]/[0124589] 5/7-21

Y/Y [014589] 6-20

AN ANA

SATSIM group #6  (2/4/6-cyclic sets)

X/X [02468]/[012468a] 5/7-33

Y/Y [02468a] 6-35
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AN AA

Figure 13. Special SATSIM groups (SATV, Z-relations)

-0 -0 -0
+0 +0 +0
-0 -0 -0
+0 +0 +0

+0 +0 +0
-1 -1 -1

+0 +0 +0
202 -2

-1 +0 +0
+1 -2 -2

-1 +0 +0
+2 -3 -4

+0 +0 -0
202 +2

+0 +0 -0
3 -3 44

-2 40 -2
+2 4 +2
-2 40 -2
+3 -6 43

+0 -0 +0
-4 +4 -4

+0 -0 +0
-5 46 -5

-0
+0
-0
+0

-0
+1
-0
+3,

+0
-3

+0
-3

+0
-3

+0
-3

-0
+3
-0
+4

-0
+3
-0
+4

+0
-1

+0
2,

-1
+1
-1
+2

+0
-4

+0
-5

-0 >
+0 >

0 >
+0 >

+0 >
-1 >

+0 >
-1 >

0 >
+1 >

0 >
+2 >

-0 >
+1 >

-0 >
+2 >

+0 >
20>

+0 >
-3 >

0 >
+2 >

-0 >
+3 >



Set Classes Forte # PSATV

PSATSIM group #1 (4-cyclic sets)
X /X [04]/[012345689a] 2/10-4
Y/Y [048]/[01245689a] 3/9-12 <

A

PSATSIM group #2 (3/6-cyclic sets)
X /X [036] /[01234679a] 3/9-10
Y /Y [0369]/[0134679a] 4/8-28

ANAY

PSATSIM group #3 (2/4/6-cyclic sets)
X /X [02468]/[012468a] 5/7-35 <
Y /Y [02468a] 6-35 <

0.00 0.00
0.00 0.00

0.00 0.00
0.00 0.00

0.00 1.00
0.00 1.00

0.00 1.00 0.00 0.00 >
0.00 1.00 0.00 0.00 >

1.00 0.00 0.00 1.00 >
1.00 0.00 0.00 1.00 >

0.00 1.00 0.00 1.00 >
0.00 1.00 0.00 1.00 >

Figure 14. Special PSATSIM groups (PSATSIM Z-relations).
Complementary set classes shown together

divide zero by zero, it is impossible to create PSATVs for these set
classes. One could include them as PSATV Z-relations if one were will-
ing to allow for PSATVs with undefined values. Perhaps PSATYV is only
of limited use because it cannot represent these two sc pairs in a manner
consistent with the way it represents all the other scs. Yet “undefined”
may be the best possible way to describe their intervallic content. After
all, they each maximally and minimally saturate each ic. Therefore, nei-
ther the value 0.00 nor 1.00 is entirely representative—and certainly nei-
ther is anything in between.

While there are more occurrences of maximal similarity found using
SATSIM(X, Y) than with other similarity indices, there are no instances
of total dissimilarity (SATSIM value of 1).>® The highest value returned
by SATSIM in all comparisons of sets of cardinality 2/10 through 6 is
0.74. This value is found between scs 2/10-4 [04] / [012345689a] and
either 6-27 [013469] or 6-30 [013679]. Figure 15 shows these compar-
isons. For the sake of space, demonstrations of SATSIM will herein be
abbreviated from the illustration in Figure 12. Rather than showing each
SATV(X)4 : SATV(Y)row and SATV(Y), : SATV(X)row comparison, I will
use a difference vector (Diff SATV(X, Y)) that, in each place, has the for-
mer comparison followed by the latter (the two comparisons are sepa-
rated by commas). The values in each difference vector are added to-
gether, and the total appears at the end of the line. For clarity, Figure 16
abbreviates the illustration in Figure 12.

There are two sc pairs that generate the smallest non-zero SATSIM
value (0.02). The first pair is 5/7-4 [01236] /[0123467] and 6-2 [012346];
the second is 5/7-29 [01368] / [0124679] and 6-33 [023579].% These two
comparisons are illustrated in Figure 17. Notice that the SATV, of each
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SATV(2/10-4) < +0 +0 +0 0 +0 +0 >

< -1 -1 -1+ -1 -1 >
SATV(6-27) < +2 42 -0 +0 +2 -1 >

< -3 4 45 4 3 42 >
SATV(6-30) < 42 +2 -1 40 +2 -0 >

< 3 4 +4 4 -3 +3 >
Diff. SATV(2-4, 6-27) 2,2 2,2 51 4,1 2,2 2,0 =125
Diff. SATV(2-4, 6-30) 2,2 2,2 4,0 4,1 2,2 3,1 =25
SATSIM(2-4, 6-27) =25 /34 =0.74
SATSIM(2-4, 6-30) =25/34=0.74

Figure 15. Largest possible SATSIM relations

SATV(6-7) < -1 +2 +0 +0 -1 -0 >

< +#4 4 5 4 +4 +3 >
SATV(4-28) < 40 +0 -0 +0 +0 -0 >

< -3 -3 +4 -3 3 +2 >
Diff. SATV(6-7, 4-28) 2,4 2,2 45 0,0 24 0,0 = 25
SATSIM(6-7, 4-28) =25 /46 = 0.54

Figure 16. SATSIM(X, Y) comparison of [012678] and [0369]
using the difference vector

set pair is identical except in the ic6 columns, accounting for the very
close relation.

A summary of the possible SATSIM values is given in Figure 18 in the
form of a “value group matrix” (after Castrén 1994).% Each cell repre-
sents a statistical summary of the values possible using SATSIM(X, Y)
where X is a pcset of the X-axis cardinality and Y is a pcset of the Y-axis
cardinality (or vice versa). The upper left corner of each cell is the low-
est SATSIM value possible in the value group; the upper right corner is
the highest SATSIM value possible in the value group; the middle left
number is the lowest non-zero SATSIM value; the lower left corner con-
tains the average of all the values in the group; and the lower right corner
contains the number of distinct SATSIM values in the value group.*

Some patterns become apparent when examining the SATSIM value
group matrix. Almost without exception, the average SATSIM value
increases with the difference in cardinality. (Again, for our purposes, sets
larger than hexachords count as the cardinality of their complement;
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therefore the comparison of a #4 pcset to a #9 pcset is equivalent to the
comparison of a #4 pcset to a #3 pcset—a difference of one, not five.)
This seems reasonable when one considers the number of variants possi-
ble in a #3/#9 pcset compared to the number possible in a #6 pcset. In the
#3/#9 pcset, not only are there many fewer set classes (12 tri/nonachord
classes compared to 50 hexachord classes), but there is a much smaller
range of possible values in each ICV place. Naturally, the greater the range
of ic values, the more potential there will be for relatively similar con-
structions. Therefore, it should not be surprising that, as a general trend,
the larger the c.p. of the set classes in the value group, the smaller the
SATSIM values will tend to be. Thus, the smallest average SATSIM val-
ues occur when comparing hexachords to hexachords. The largest aver-
age SATSIM values occur when comparing #2/#10 sets to #6; this is, not
coincidentally, also the source of the largest cardinality difference in our
value group.4°

The above statistical summary should not imply that either SATV or
SATSIM is weighted in such a way to reward sc comparisons which have
a small difference in cardinality. Such mention of statistical likelihood is
more a reflection of the range of possible ICV values in different cardi-
nalities of pcsets. As we have seen when considering individual compar-
isons, SATSIM’s primary determinant of sc similarity is the degree to
which each sc is saturated with the same ics. The fact that SATSIM can

SATV(5/7-4) -1 2 2 40 +1 -1 >

< 43 2 42 3 -3 +1 >

A

SATV(6-2) < -1 2 2 40 +1 +1 >
< +#4 +4 +3 4 4 -2 >
Diff. SATV(5-4, 6-2) 0,0 0,0 0,0 0,0 0,0 1,0 =1

SATSIM(5-4, 6-2) = 1/49 = 0.02

SATV(5/7-29) < +1 -2 2 4+ -1 -1 >
< -3 +2 42 -3 43 41 >
SATV(6-33) < 41 -2 2 40 -1 +1 >

< 4 +4 +3 -4 +4 2 >

Diff. SATV(5-29, 6-33) 0,0 0,0 0,0 0,0 0,0 1,0
SATSIM(5-29, 6-33) =1/49 =0.02

1]
—

Figure 17. Smallest possible (non-zero) SATSIM relations
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#2/#10

0.000 0.333
#2/#10| 0.333
0278 2 #3/#9

0.000 0.500 | 0.000 0.500
#3/4#9 | 0.056 0.167
0.318 10 0312 4 #4148

0.125 0.5830.000 0.567| 0.000 0.556

#4/4#8 | 0.125 0.033 0.111

0414 12 0.345 18 0.288 6 #5147

0.222 0.704 | 0.061 0.636| 0.051 0.590 | 0.000 0.571
#5/#7 | 0.222 0.061 0.051 0.095

0.504 14 0363 18 0299 22 0250 7 #6

0.265 0.735]0.100 0.700 | 0.087 0.609 | 0.000 0.653| 0.000 0.643
#6 0.265 0.100 0.087 0.020 0.071
0.575 15 0421 23 0339 24 0253 32 0214 10

Key to figures in value group matrix:

v w | v =smallest SATSIM number w = largest SATSIM number
x x = smallest non-zero SATSIM
y z number
y = average SATSIM value z = number of distinct SATSIM
values

The value 0.000 is italicized when it only occurs trivially (when comparing a sc to itself
or to its complement)

Figure 18. SATSIM value group matrix

return the value 0.000 when comparing scs of different size should dis-
pel any notion that such sets are automatically considered less similar.
Despite the statistical information presented above, one could actually
make what might seem like a counterintuitive, or even contradictory, claim:
that distinct scs of different sizes are potentially more similar than sets of
the same size. Let us sort out the instances of maximal similarity yielded
by SATSIM and examine the smallest non-zero values returned by SAT-
SIM in each value group (the middle left value in each matrix cell). This
removes comparisons of each sc to itself and to its SATV Z-relations,
leaving the nearest relations possible where the vectors are not the same.

We can see from these values that given any SATSIM(X, Y) compari-
son, the closest possible non-equivalent relationship between any #X and
#Y sets almost always occurs when #X= #Y.%! That is to say, comparisons
where #X = #Y generally yield a higher minimal value than comparing
peset X to the “most similar” pcset Y where #Y= #X. Almost every sc is
highly similar to at least another sc that is one pc larger or smaller (its
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superset(s) and subset(s), for instance). This is particularly true of cyclic
set classes that are structurally unique in their cardinality. While there
may be an sc of another size that shares the same structural features, there
will not be any other sc of the same size that does so0.*? This is why many
of the most similar (non-equivalent) sc pairs are of different sizes. Natu-
rally, though, when #X = #Y, the nearer the cardinality is to 6, the larger
the comparison group, and the greater the likelihood that some pcset Y
will share many of pcset X’s degrees of intervallic saturation. This is
reflected in the gradually smaller numbers that occur from left to right
along the top diagonal in the value group matrix (Figure 18).

Appendix A contains an sc-specific statistical summary of SATSIM
values. It is a table that shows the average SATSIM(/X/, /Y/) value for
each /X/ compared to all /¥/in the comparison group of all scs of c.p. 2/10
through 6. Additionally, it shows the lowest and highest possible SAT-
SIM(/X/, /Y/) values for each /X/ with respect to all /¥/ in the comparison
group. Appendix A also contains the average, lowest, and highest values
found when comparing each /X/ to the entire range of /¥/s. Both Figure
18 and Appendix A contextualize the range of SATSIM values, allowing
one to make more meaningful analytical statements. In particular,
Appendix A illustrates that some scs are, on average, more distantly
related to all other sets. For example, i-cyclic set classes and scs which
are similar to i-cyclic scs are more distinctive—or singular—than aver-
age (i.e., their average SATSIM value is much higher than the average
SATSIM values for other scs of the same cardinality).

PSATSIM: The PSATY Similarity Index

By and large, PSATV conveys the same information as SATYV, but
without the necessity of a two-part vector. This makes it a bit easier to
compare PSATVs at a glance. However, one potential downside of using
PSATYV as the basis for a similarity index is that the vector does not pro-
duce a constant cardinality (vector total) for each X of #X.43 For ex-
ample, the values in PSATV[036] add up to 2.00 while the values in
PSATV[048] add up to only 1.00 (see Figure 19).

The problem with having no constant cardinality is that it is not imme-
diately obvious how one might use this vector in an ASIM-style index;
that is, an index that compares the arguments in two vectors and then
divides the sum of the difference-vector values by the combined cardi-
nality of the saturation vectors. Arguably, one does not need this type
of index where the differences in cardinality have, in large part, been
adjusted for in the vector. This is a valid premise—even more so than in
the case of comparing SATVs—but it is useful to bring the measure’s val-
ues within the constant range of 0 and 1 for the sake of comparison.
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The largest value in any argument of a difference vector (diffV) that
compares two PSATVs is 1.00. This is the case when one sc has the max-
imal amount (1.00) of some ic and the other has the minimal amount
(0.00) of the same ic. Given that we are currently working with a six-
place vector, maximal dissimilarity is represented by the number 6.00.
This, then, is the number by which we will divide the sum of the PSATV
diffV values to create an index that is comparable to SATSIM. Figure 20
contains a step-by-step demonstration of PSATSIM; Figure 21 provides
a formalization of the index.

Appendix B is an sc-specific statistical summary of PSATSIM values.
A value group matrix providing a more general summary of the possible
PSATSIM values is given in Figure 22. As before, each cell represents a
statistical summary of the values possible using PSATSIM(X, Y), where
X is a peset of the X-axis cardinality and Y is a pcset of the Y-axis cardi-
nality (or vice versa). The number of distinct PSATSIM values (lower
right corner of each cell) might seem extraordinarily large in some
instances (e.g., there are 242 different PSATSIM(#4/#8, #6) values). To

PSATV[036]: <0.00, 0.00, 1.00, 0.00, 0.00, 1.00> #PSATV[036] = 2.00
PSATV[048]:  <0.00, 0.00, 0.00, 1.00, 0.00, 0.00> #PSATV[048] = 1.00

Figure 19. PSATV[036] and PSATV[048]

X [012678] <420243> PSATV: < 0.80 0.33 0.00 0.00 0.80 1.00 >
Y{0369]  <004002> PSATV: < 0.00 0.00 1.00 0.00 0.00 1.00 >

Step 1: Compare the vectors, creating a difference vector:
PSATV(X) : PSATV(Y) = 0.830 0.33 1.00 0.00 0.80 0.00

Step 2: Add together the values in the difference vectors: = 2.93

Step 3:  Divide the sum from step 2 by the number 6 (the largest potential
PSATSIM diffV sum) to complete the PSATSIM function:
PSATSIM(X, Y) = 2.93/6.00 = 0.49

Figure 20. PSATSIM(X, Y) comparison of [012678] and [0369]

6
2 (IPSATV(X), - PSATV(Y), )
6

Figure 21. Formal definition of PSATSIM(X, Y) measure

PSATSIM(X, Y) =
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#2/#10

0.000 0.333
#2/#10] 0.333
0.278 2 #3/#9

0.000 0.500 |0.000 0.583
#3/#9 | 0.056 0.139
0.335 16 0321 17 #4/48

0.153 0.556 |0.000 0.611 | 0.000 0.583
#4/4#8 | 0.153 0.056 0.097
0.390 25 0.345 64 0.294 40 #5/#7

0.208 0.667 |0.125 0.625 | 0.056 0.597 | 0.000 0.625
#5/#7 | 0.208 0.125 0.056 0.083
0.450 35 0.364 43 0.309 76 0.259 50 #6

0.244 0.667 |0.156 0.661 | 0.092 0.633 | 0.000 0.689| 0.000 0.689
#6 0.244 0.156 0.092 0.031 0.061
0471 74 0385 143 0322 242 (0267 248 | 0219 153

Key to figures in value group matrix:

v w v = smallest PSATSIM number w = largest PSATSIM number
X x = smallest non-zero PSATSIM
y z number
y = average PSATSIM value z = number of distinct PSATSIM
values

The value 0.000 is italicized when it only occurs trivially (when comparing a sc to itself
or to its complement)

Figure 22. PSATSIM value group matrix

reflect this degree of precision, all similarity-index values have been
rounded to three significant digits in the value-group matrices.*

The same patterns identified when examining the SATSIM value-group
matrix in Figure 18 remain invariant in the PSATSIM value-group com-
parisons. I commented, in the former case, that ‘almost without excep-
tion, the average value increases with the cardinality difference.” When
discussing PSATSIM, we can remove the word “almost” from that obser-
vation and make it more systematic. Without exception, the primary deter-
minant of average PSATSIM values in any value group is the difference
in cardinality between the two set classes; once again the secondary deter-
minant is the size of the set classes being compared.

The overall range of possible values using PSATSIM is a bit smaller
than that yielded by SATSIM. SATSIM produces values ranging from
0.00 to 0.74; PSATSIM yields values ranging from 0.00 to 0.69. Un-
like SATSIM, however, the #6 : #6 group gives us not only the widest
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range of values (the #5 : #6 group also has the same range), but also the
largest possible single comparison (the most dissimilar set-class pair).

The smallest non-zero number yielded by PSATSIM is 0.03, between
5/7-7101267] / [0123678] and 6-7 [012678] (see Figure 23). The largest
PSATSIM relation is found between any of the first-order all-combina-
torial hexachords (6-1 [012345], 6-8 [023457], or 6-32 [024579]) and
either the whole-tone collection (6-35 [02468a]) or its five/seven-note
sub/superset (5/7-33 [02468] / [012468a]).*> While the latter pair maxi-
mally saturates each of the even ics, the first-order all-combinatorial
hexachords have the maximal total amount of the odd ics and the mini-
mal amounts of ic4 and ic6. These comparisons are shown in Figure 24.

All the observations derived regarding the smallest non-zero SATSIM
values hold true with PSATSIM as well. In summary, the values in the
middle row of each cell of the PSATSIM value-group matrix increase in
size from the top to the bottom of each column, except for the first value,
which is the highest. Each diagonal decreases in size from left to right.
The top cell in each column indicates the PSATSIM(X, Y) values where
#X = #Y and X = Y. While many characteristics of the PSATV and
PSATSIM values strongly resemble their respective SATV and SATSIM
values, I would be reluctant to propose PSATV as a replacement for
SATYV, both because PSATV provides less specific information than does
SATV and also because it does not lend itself to weighted comparisons
as readily as does the two-part SATV.

PSATV(5/7-7) < 075 025 000 000 075 100
PSATV(6-7) < 080 033 000 000 0.80 100
Diff. PSATV(5/7-7, 6-7) 005 008 0.00 000 0.05 0.00
PSATSIM =0.18/6.00 = 0.03

v v

0.18

Figure 23. Closest non-equivalent PSATSIM SCs

0.00 1.00 0.00 1.00 0.00 1.00
1.00 0.67 060 0.00 0.20 0.00
0.60 0.67 0.60 0.00 0.60 0.00
020 0.67 0.60 0.00 1.00 0.00

PSATV(6-35 or 5/7-33)
PSATV(6-1)
PSATV(6-8)
PSATV(6-32)

V V. V V

Diff. PSATV(6-35, 6-1) 1.00 033 0.60 1.00 020 1.00
Diff. PSATV(6-35, 6-8) 0.60 033 0.60 1.00 0.60 1.00
Diff. PSATV(6-35,6-32)  0.20 033 0.60 1.00 1.00 1.00
PSATSIM =4.13/6.00 = 0.69

Figure 24. Farthest PSATSIM relations

4.13
4.13
4.13
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Forte# (3-) 1 2 3 4 5 6 7 8 9 10 11 12
SATV;3,(6-7) <-2 40 +0 -2 -0 +0 +0 +4 -2 +0 +0 +0 >
SATV3p(6-7) <+2 6 -6 +4 +8 -6 -6 -8 +2 -4 -6 -2 >

Figure 25. SATV3(6-7) [012678]

The Generalized Saturation Vector (SATVr)

To this point, the saturation vectors have shown only relative quanti-
ties of interval classes within a pcset. This was a useful limitation to
demonstrate the construction of both vector classes and their associated
similarity indices. One can, however, easily create saturation vectors (of
either variety already demonstrated) that show relative content of any
subset size.*6 As noted earlier, an interval class is not the same as a #2
subset: the former represents a distance between two elements, while the
latter represents a collection of two elements (which are necessarily sep-
arated by some interval). That said, one can produce an equivalent struc-
ture to the ICV(/Y/) by performing EMB(/X/, /Y/) six times, where /X/
cycles through all #2 scs (2-1 through 2-6), and by displaying the results
in a six-argument array.

By extension, we could have a trichord-class SATV for scs larger than
#3, or a hexachord-class SATV for scs larger than #6. In this section,
SATV will be generalized to allow any or all subset-class cardinalities.
The generalization, SATVn(X), is constructed exactly like our earlier
SATV(X), but carries an extra variable, n, which signifies the cardinality
of subsets. The interval-class SATV(X) will now be called SATV2(X) and
the relation SATSIM will now be called SATSIM2(X) in keeping with
this new convention.

Let us now return to the function SATEMB(/X/, /Y/), first suggested at
the beginning of this article. SATEMB(/X/, /Y/) returns the degree to
which /X/ is saturated in /¥/ compared to maximal and minimal
EMB(/X/, /Y/) values for any sc of #Y. If, for example, /X/=3-1 [012] and
/Y/=6-7[012678], EMB(/X/, /Y/) = 2. There is, however, a maximum of
four embedded [012]s in any hexachord (there are four in 6-1 [012345])
and the minimum number is zero (there are none in 6-35 [02468a], among
other scs). Therefore, SATEMB(/X/, /Y/) = < (max)-2, (min)+2 >.

We can now redefine SATVn(Y) as a complete listing of all
SATEMB(/X/, /Y/) values where each /X/ is an sc of cardinality c. The
SATV3(6-7) is shown in Figure 25. In the second section of this article,
minimal and maximal ic saturation was derived from the cyclic set classes.
Naturally, one could do the same sort of thing with larger subset classes,
examining imbricated chains of all the trichord-classes, tetrachord-
classes, etc., to generate set classes that maximally saturate each sc of car-
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dinality c.*” However, the number of scs involved and the length of the
process make this exercise prohibitively long. Appendix C contains a
complete list of the maxc, i and minc, i values where ¢ = #2 through #12
and i includes the complete range of scs smaller than or equal to the super-
set cardinality.

Complementation and SATVn

Generalizing SATVn for any value of n reveals an interesting corol-
lary to the SATV?2 equivalence of complementary scs. Readers will recall
that all complementary scs generate identical SATV2s, PSATV2s, and
min-adjusted ICVs (MAV2). The same does not hold true with comple-
mentary scs using SATVn where n > 2. Figure 26 shows the SATV3s of
complementary scs 5-1 [01234] and 7-1 [0123456]. While there are dis-
tinct similarities between the two SATV3,s, they are not precisely the
same and their SATV3gs are markedly different, reflecting the sig-
nificant differences in the range of possible SATEMB(#3, #5) and
SATEMB(#3, #7) values.

Clearly, then, complementary scs would not be considered equiva-
lences under an index that uses SATVns where n > 2. However, just as
SATV2 yielded an interesting complementary equivalence, a similar
property is found when examining all the SAT Vns of #10 scs. Figure 27
shows all the SATVns (for n = 2 through 10) of sc 10-3. Notice that all
complementary set classes are saturated to precisely the same degree
(SATV3(10-3) = SATV9(10-3), SATV4(10-3) = SATV8(10-3), etc.).
Similarly, complementary hexachord classes are also saturated to the
same degree (e.g., SATEMB(6-z3, 10-3) = SATEMB(6-z36, 10-3) =
< (max)-2, (min)+2 >). More formally, we can declare that when #Y = 2
(and #Y= 10), SATEMB(Y, X) = SATEMB(Y, X) and SATEMB(X,Y) =
SATEMB(X,Y). That is to say all complementary set-class pairs (larger
than #2) saturate the same interval classes (#2 scs) to the same degree and
the complements of the interval classes (#10 scs) saturate complementary

Forte# (3-) 1 2 3 4 5 6 7 8 9 10 11 12
SATV;3,(5-1) <-0 -0 -1 40 +0 +1 +0 +0 +0 +0 +0 +0 >
SATV3p(5-1) <+3 +4 +2 -3 -5 2 -4 6 -3 4 -3 -1>

Forte# (3-) 1 2 3 4 5 6 7 8 9 10 11 12
SATVzu(7-1) <0 -0 -1 -3 40 -3 +3 +0 +0 +0 +0 +0 >
SATV3p(7-1) <+5 +7 +6 +4 -7 +3 -4 -10 -5 -4 -7 -2 >

Figure 26. SATV3s of complementary SCs 5-1 [01234] and
7-1 [0123456]
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set class pairs (larger than #2) to the same degree. This is true of no other
complementary sc cardinalities.

SATSIMr: A Similarity Index to Compare Scs Using SATVn

In order to compare two set classes using the expanded SATVn, we
will use a generalized version of SATSIM(X, Y) that is capable of com-
paring SAT Vns, where n represents either a single cardinality or a range
of cardinalities that are smaller than both #X and #Y. Any SATSIMn(X, Y)
that uses all applicable SATVr values (from n = 2 to the smaller of n =
#X-1 and n = #Y-1) will be referred to as TSATSIM(X, Y) (the “total” sat-
uration vector similarity index).

Figure 28 shows all significant SATVn vectors for 6-z37 [012348].
Figure 29 shows all possible SATVn vectors for 6-z4 [012456]. As one
can see from a quick glance at the respective SATV2s, the two hexa-
chords are SATV2 Z-related (and also ICV Z-related, since there are no
SATV2 Z-relations among same-sized scs that are not also ICV Z-rela-
tions). Therefore, SATSIM2(6-z37, 6-z4) = 0.00. For all other SATVns
(where n > 2), however, the two scs appear rather different. In fact, there
are no ICV or SATV2 Z-related scs that are also SATVn>2 Z-related.
Even the two all-interval tetrachords (4-z15 [0146] and 4-z29 [0137])
have different SATV3 vectors. Figure 30 shows the SATV3 vectors of
6-237 and 6-z4 and provides a SATSIM3 comparison of the two. SAT-
SIM3 is calculated precisely the same as SATSIM2, described earlier.
Like SATV2(X), the values in SATV3(X) (and any SATVn(X)) add up to
constant cardinalities for constant n and #X values. The list of SATVn
cardinalities is given in Figure 31.

Rather than rigorously examining SATSIM?2, SATSIM3, SATSIM4,
etc., as separate similarity indices and providing value group compar-
isons and demonstrations of each, I will instead discuss TSATSIM—the
total subset saturation similarity index. As mentioned above, TSATSIM
is an amalgam of all possible and non-trivial SATSIMn relations. A pos-
sible SATSIMn(X, Y) relation is one in which n < #X and n < #Y (i.e., we
must be examining subsets of at least the cardinality of the smaller pcset
being compared). A non-trivial relation is one in which n < #X and n <
#Y. A SATSIMn(X, Y) relation where n = #X or #Y is considered trivial
because the smaller sc will be maximally saturated with itself and mini-
mally saturated with all other scs of its cardinality.

We can now work through a TSATSIM comparison using the same
ICV Z-related pair of hexachords (6-z37 and 6-z4). Because of its rather
cumbersome length, this vector comparison will be demonstrated only
once, and not in as much detail as the other ones. Since these two scs are
ICV (and SATV2) Z-related, the SATSIM2(6-237 and 6-z4) comparison
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SATV;(6-237) < -1 2 42 42 42 41 40 42 +1 40 +2 -1 >
< 43 #44 4 4 6 -5 6-10 -3 -4 -4 +1 >

SATV;(6-24) < 2 42 2 2 42 42 42 42 +0 40 40 +0 >
< 42 4 +4 +4 6 4 4-10 -4 -4 6 2 >

Diff. SATV3(6-z4, 6-z37) 1,1 2,2 22 22 0,0 1,1 22 00 1,1 00 22 1,1

. Diff. SATV3(6-24, 6-237) = 28

#SATV3(6-24) = 70; #SATV;(6-237) = 70 (see figure 31 below)

SATSIM;(6-z4, 6-237) = 28 / 140 = 0.20
Figure 30. SATSIM3(6-z4, 6-z37)

0 1 2 3 4 5 6 7 8 9 10 11 12
0[O0 0O 0O 0 O O O 0 0 0 0 0 O
110 0 0 0 O O O 0 0 0 0 0 O
20 0 6 12 18 21 28 21 18 12 6 0 O
3]0 0 0 12 29 42 70 74 77 61 27 0 O
4/ 0 0 O O 29 45 83 114 164 142 87 0 O
5§50 0 O O O 38 80 107 185 208 160 O O
6/ 0 0 0O O O O 50 73 145 213 178 0 O
7,0 0 0 0 O O O 38 8 134 160 O O
80 0 0 0 O O O 0 29 50 87 0 O
90 0 O O O O O 0 0 12 27 0 O

10/0 0 0 0 0 O O 0 0 0 6 0 O
11,0 0 0 0 0 0 O 0 0 0 0 0 O
12/0 0 0 0 0O O O 0 0 0 0 0 O

Figure 31. Cardinalities of Saturation Vectors (SATV,) for all
cardinalities of supersets (columns) and subsets (rows).

(=}

=56~ 0.00. As noted above, the SATSIM?3 comparison =%= 0.20. The
0

SATSIM4 comparison = —14@ = 0.24; and the SATSIMS comparison =
24 = 0.15. The TSATSIM value is calculated by dividing the sum of the
numerators by the sum of the denominators. Therefore:

0+28+40+24 _ 92 _
TSATSIM(6-237, 6-24) = 56 120+ 166 + 160 = 522 = 0-18

Depending on how one wanted to weight this comparison, one could also
derive a total subset saturation index by averaging the individual SAT-
SIMn values. This would give equal weight to each SATSIM~n compari-
son rather than slanting the TSATSIM comparison toward the SATSIM~n
comparison(s) where n is closest to 6 (i.e., the comparisons with the great-
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est number of elements). This second way of deriving the comparison
follows:

Average of all non-trivial SATSIMn(6-z37, 6-z4) =

0.00+0.20+0.24+0.15 _ 15
4

This value is lower than that TSATSIM value that we first calculated
because the SATV2 Z-relation is now weighted as one quarter of the total
comparison, whereas it only amounted to a little more than ten percent in
the earlier index. One can certainly make a case for calculating the index
either way. I call the first method TSATSIM(X, Y) and the second method
AvgSATSIMn(X, Y). The value-group matrix for TSATSIM(X, Y) is given
in Figure 32 and the sc-specific summary of values appears in Appendix
D; the value-group matrix for AvgSATSIMn(X, Y) is given in Figure 33,
with the sc-specific summary of values in Appendix E.

The range of TSATSIM values is flatter than the range of SATV2 val-
ues. There are fewer possible low numbers, largely because of the
decreased probability of similar embedding patterns of #3 and larger sub-
set classes. The highest TSATSIM values are not as high as any of the
other indices we have examined because of the very large SATVn cardi-
nalities when n > 3. Dividing by the combined cardinality of the vectors
creates a remarkably large denominator, which invariably leads to a rel-
atively low dissimilarity level.

Both TSATSIM and AvgSATSIMr have more limitations than SAT-
SIM2. Neither can compare dyad classes to any other set class because
both use SATV2 through SATV((#X < #Y)-1) as data. When either #X or
#Y = 2, TSATSIM or AvgSATSIMn would have an impossible range of
values to compare. Also, when the smaller of the two scs, X or Y, is a tri-
chord, TSATSIM and AvgSATSIMn are the same as SATSIM?2, and there-
fore yield the complementary equivalences that are not present in other
(larger) TSATSIM and AvgSATSIMn comparisons. This means that when
comparing a pcset larger than a hexachord to a trichord, the larger the dif-
ference, the smaller the average TSATSIM or AvgSATSIMn comparison
would be. This is the opposite of what happens when two scs that are both
larger than a trichord are compared using those indices. In both cases, the
larger the difference, the higher the average comparison value.*® Despite
these admitted quirks, TSATSIM and AvgSATSIMn are both useful
indices in cases where an analyst cares to use a saturation-based index,
but also wants to differentiate between Z-related and complementary set
classes.

TSATSIM and AvgSATSIMn both differentiate Z-related and com-
plementary scs (as before, all values of 0.000 in the value-group matrices
are italicized when maximal similarity occurs trivially—i.e., when the
two sets being compared are members of the same sc). Interestingly,
there are two special cases of TSATSIM and AvgSATSIMr equivalence.
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These are between the set-class pairs 5-21[01458] / 6-20[014589] and
5-33[02468] / 6-35[02468a]. Not surprisingly, these two set-class pairs
are also maximally similar using the SATSIM? index.

PSATVn and its Associated Similarity Index

Naturally, it is possible to create one-part proportional vectors from
the generalized SATVn. Constructing such vectors and associated simi-
larity indices is accomplished in precisely the same manner shown in the
sections above that cover the interval-class PSATV and PSATSIM. Be-
cause the mechanics are identical, I will withhold further discussion of
them in this article.

Conclusions

Much atonal analysis has relied—directly or indirectly—on data from
functions and measures such as Lewin’s EMB and COV and Forte’s K
and Kh. These tools all answer the question “is element x embedded in or
does it embed some other element y?” with either a yes or no answer (K
and Kh) or with a number that tells one how many x are embedded in or
embed y (EMB and COV). While such information is undoubtedly use-
ful, I hope it is enriched by the frames of reference that saturation-based
tools provide.

Saturation-based data, by the nature of their design, make a priori
adjustments for cardinality. This forms the primary methodological dif-
ference between earlier similarity indices and the methods for comparing
sets introduced in this article. While the fundamental concern in creating
most new similarity indices has been how one might construct a measure
that better adjusts for cardinality, my primary focus has been on creating
data that are themselves more cardinality neutral.

Accordingly, SATSIMn(X, Y), PSATSIM(X, Y ), TSATSIM(X, Y), and
AvgSATSIMn(X, Y), are all based upon Robert Morris’s ASIM(X, Y), a
relatively simple and straightforward method for comparing two interval-
class vectors. Certainly, these new indices are not the only algorithms by
which saturation values can be measured. Systems based upon standard
deviation, such as those designed by Isaacson and Hermann, present but
two of many other possibilities.® In fact, saturation vectors can be used
in any vector-based measure of resemblance, and I hope they will prove
helpful in relating sets (of equal or unequal size), regardless of the tech-
nique one uses in drawing the comparisons.
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NOTES

1. Howard Hanson employed such vector equivalence in his groundbreaking book,
Harmonic Materials of Modern Music (Hanson 1960).

2. Summaries of many such relations and their methodological foundations can be
found in Isaacson 1990, Hermann 1993, and Castrén 1994.

3. Following Lewin’s convention (Lewin 1979-80a), the set class of pcset X will be
denoted as /X/.

4. Following Morris’s convention (Morris 1987), #/X/ denotes the cardinality of
(number of elements in) sc X.

5. We will, for now, assume that canonical forms of pcset X include only transposi-
tions and inversions of X (T,(X) and T,I(X)).

6. Because the use of set class is inherent to the notion of “abstract subset,”
AS(/X/, 1Y/) is functionally the same as AS(X, Y). If X C Y, /X/ is an abstract subset
of /Y/. AS(/X/, /Y/) is functionally equivalent to Morris’s KI relation (1990, 277).

7. Lewin 1977, 1979-80a, and 1987. In his 197980 article, Lewin uses the form
EMB(/X/, Y), but comments that EMB(/X/, /Y/) provides the same information
(433). Consistent with my definition of AS, I prefer the latter because it deals
entirely with set classes. In his 1987 book Generalized Musical Intervals and
Transformations, Lewin more completely describes the differences between
EMB(X, /Y/), EMB(/X/, Y), and EMB(/X/, /Y/) (106).

8. This abbreviation is adopted from Castrén (1994, 3) who, in turn, adopted it from
Lewin (1987, 106-7). In this context, n is used as a variable representing cardi-
nality.

9. Even though there is only one interval present in a set of cardinality 2, a dyad (or
dyad class) is not the same as an interval. An interval represents a distance be-
tween elements; a dyad is a set with two members. Despite this important distinc-
tion, one might think of the interval-class vector as a #2 subset-class vector—
a listing of the number and type of #2 subsets embedded within a pcset. While
such a vector would be identical in appearance to the ICV, conceptualizing the ele-
ments as subsets rather than intervals will allow us to generalize outwards and pro-
duce other subset-class vectors (e.g., a trichord-class vector, tetrachord-class vec-
tor, etc.).

10. One could also define the ICV using Lewin’s function COV(/X/, /Y/). This func-
tion, also presented in Lewin 1979-80a (434), returns the number of distinct forms
of /Y/ that cover—or include—a member of /X/. Where #X = 2 (that is, when X is
a dyad), COV(/X/, /Y/) = EMB(/X/, /Y/). COV and EMB will also return the same
value in all cases where pcset X is inversionally symmetrical. When pcset X is not
inversionally symmetrical, these two functions return different values. Morris
1987 (90) provides an example where these two functions serve different pur-
poses. Since we will be dealing with abstract inclusion of all pcset classes in the
course of this study, EMB(/X/, /Y/) will serve as a more useful model than
COV(/X/, IY).

11. The function SATEMB can also be considered as a special case of the member-
ship function (u) used in “fuzzy” set theory. Where inclusion in classical (“crisp”)
set theory deals exclusively with whether or not element x is included in set A,
fuzzy set theory allows a statement such as element x (or sc /X/) is only partially
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a member of set A. While SATEMB does not model partial membership, it does
model partial “saturation,” that is, the degree to which /X/ is maximally and/or
minimally embedded in pcset A, given what is possible in any pcset of #A.

12. It does not matter whether we discuss specific sets or set classes since the interval-
class vectors (and therefore saturation vectors) of a set are those for the set class
to which it belongs.

13. Morris’s SG(n) vectors provide a number of alternate means of determining equiv-
alence. His first three set groups include the most common means of grouping
pesets: under transposition alone, transposition and inversion, T, I, and multipli-
cation by 5 (Morris 1982).

14. Cf. Morris 1987, 128-35; Perle 1996; and Headlam 1996, 14-22.

15. Buchler 2000, 55.

16. Morris 1990, 179.

17. Buchler 2000, 56.

18. Ericksson 1986, 96-100.

19. This, too, is explained in greater detail in Buchler 2000.

20. For those readers who are not comfortable reading logical symbols: statements on
the left in parentheses are conditions; the right-pointing arrows indicate what hap-
pens if the condition is true; and ~ indicates negation. So, the second line of the
derivation would read “If it is not true that ¢ mod p equals 0, then s is assigned the
quantity to the right of the equal sign.

21. For example, when calculating the minimum number of ic5 in a pcset with fewer
than six elements the first part of the equation yields a negative number, which
indicates that the minimal number of ic5 in a set of that cardinality is zero.

22. The collection of mutliple-cyclic set classes also appears in Ericksson 1986 as
“maxgroup 2” (2/4/6-cycle sets) and “maxgroup 3” (3/6-cycle sets), though
Ericksson does not discuss their cyclic properties (Ericksson 1986, 97-99).

23. More formally, the difference values max(c, {) — min(c, {) and max(d, i) — min(d, i)
are the same for all i where ¢ and d are inverses, mod 12.

24. Ericksson 1986, 96.

25. Of course, this is to say nothing of the innumerable possibilities for orchestration
into p-space and the structures that might exist on a much larger plane.

26. Kh is described in Forte 1973, 96-100. ZC is described in Morris 1982, 103-9;
1987, 74; 1990, 180; and 1997, 276.

27. The words “positive” and “negative” are in quotes because the values are not actu-
ally positive or negative. The sign indicates whether the ICV value is being com-
pared to a smaller or larger (min(c, i) or max(c, i)) value. +0 and -0 are opposite
ICV(c, i) extremes: the first indicates minimal saturation of ic i in cardinality c;
the second indicates maximal saturation of ic i in cardinality c.

28. This could easily be transformed into a similarity index by subtracting SATSIM(X,
Y) values from 1.

29. Morris 1979-80, 450-1.

30. Buchler 1997, 51-5; and 2000, 71-4.

31. It is worth noting again that this final cardinality adjustment is similar to the con-
struction of Morris’s ASIM index (Morris 1979-80, 450-1).

32. One could argue that this is only a semantic difference in the case of maximally
similar SATSIM relations (i.e., SATSIM(X, Y) = 0). While similarity measures
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33.

normally have no transitivity features, there is transitivity among maximally
similar SATSIM relations. If SATSIM(X, Y) = 0 and SATSIM(Y, Z) = 0, then
SATSIM(X, Z) = 0. Maximal SATSIM similarity therefore meets the criteria for
equivalence; that is, it is reflexive, symmetrical, and transitive.
This is, in essence, an equivalence group of SATV Z-relations.

34. The SATVj vector is not different for sets X and Y in the first SATSIM group in

35.

Figure 13 because the empty set/aggregate and the one-member/eleven-member
sc both maximize and minimize all possible interval classes for their cardinalities.
This is because there is only one set class that belongs to each of those cardinali-
ties (#0/#12 and #1/#11).

SATSIM groups 2 through 6, shown in Figure 13, are all segments of Ki subcom-
plexes about 10-3, 10-6, 10-2, and/or 10-4 (see Kaplan 1990). The set classes in
SATSIM group 1 would (almost trivially) be the progenitors/end-points of all Ki
subcomplexes had Kaplan elected to extend the boundaries of Ki beyond #2 and
#10 sets.

36. There are only 111 distinct SATV,s among the 4096 possible pcsets; by contrast,

37.

38.

39.

40.

41.

42.

there are 224 different set classes (T,/T,I equivalence classes) among the 4096
possible pcsets (including the empty set).

This relationship would be further simplified by allowing T"M/MI equivalence
into our canon. These two pcset pairs would fold into a single pair since 5/7-4 is
M/MI related to 5/7-29 and 6-2 is M/MI related to 6-33.

Castrén defines a value group as follows: “The value group #X/#Y contains the
values that a given similarity index returns to the sc pairs in the comparison group
#XM#Y” (Castrén, 5). A comparison group #X/#Y “contains all sc pairs {X,Y} such
that X belongs to #X and Y belongs to #Y” (Castrén, 5).

When #X = #Y, the value 0.000 in the upper left corner is italicized if it represents
only the trivial case of one sc compared with itself. If the upper left number is an
unitalicized 0.000, there is some SATSIM Z-relation in the value group.

This observation can now be refined as follows: the primary determinant of aver-
age SATSIM values in any value group is the difference in cardinality between the
two set classes. Thus, if | #W — #X | > | #Y — #Z |, SATSIM(W, X) will, on average,
yield a larger value than SATSIM(Y, Z). If, however, the difference between the
cardinalities of W and X and Y and Z is the same, the secondary determinant of
average SATSIM values is the size of the set classes being compared. If | #W —
#X | = |#Y - #Z ] and (#W + #X) > (#Y + #Z), SATSIM(W, X) will, on average, yield
a smaller value than SATSIM(Y, Z). This generalization does not always hold true;
for example, the average SATSIM(X, Y) value where #X = 2 and #Y = 3 is smaller
than the average SATSIM(X, Y) value where #X = 3 and #Y = 4. The difference
between these two averages, however, is small (0.027) and does not undermine the
above claim.

However, the average SATSIM(X, Y) comparison where #X or #Y = 2 or 10 is
larger than the average SATSIM(X, Y) comparison where #X = #Y = 2 or 10.
SATSIM considers #2/#10 sets to be so distinct because they are maximally satu-
rated with one ic and minimally saturated with all the others.

E.g., those from the same Ki subcomplex (Kaplan 1990) or ic maxpoint structure
(Ericksson 1986). With some cycles, there is more than one cyclic sc of the same
cardinality (e.g., 6-cycle scs). However, such cases always fall within different
maxpoint structures/Ki subcomplexes/categories of multiple-cyclic scs.
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43. Unlike SATYV, the cardinality of PSATYV is derived like the ICV:

6
#PSATV = ) (PSATV(X),)
=

44. These figures have been rounded from the 8-bit real numbers generated by com-
puter when calculating the measurement values.

45. Recall that 6-32 and 5/7-33 form one of the special PSATV Z-relations.

46. One can also construct saturation-based n-class % vectors of the sort used by Cas-
trén 1994 in his relations. See Buchler 1997, 68-72.

47. Cf. Lewin’s discussion of TCH and RICH (transposition and retrograde inversion
chains) in Lewin 1987, 180-88.

48. These difficulties are not unique to TSATSIM and AvgSATSIMr. Rather, they
occur in every so-called “total” similarity index (the term is Castrén’s), including
Rahn’s ATMEMB, Lewin’s REL (when the TEST group includes all scs smaller
than the sets being compared), and Castrén’s RECREL.

49. Isaacson 1990 and Hermann 1993.
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APPENDIX A
Statistical summary of SATSIM2 relations for each cardinality pair
#2/#10 through #6 sc compared to every other #2/#10 through #6 sc
(SATSIM2 value group #2/#10 . . . #6:#2/#10 . . . #6)

Prime form Forte Average Lowest Highest

[01] 2-1 0.474 0.056 0.647
[02] 2-2 0.481 0.111 0.706
[03] 2-3 0.485 0.111 0.704
[04] 2-4 0.511 0.125 0.735
[05] 2-5 0.474 0.056 0.647
[061] 2-6 0.480 0.111 0.676
#2 Averages: 0.484 0.095 0.686
[012] 3-1 0.390 0.056 0.575
[013] 3-2 0.334 0.121 0.576
[014] 3-3 0.338 0.133 0.675
[024] 3-6 0.401 0.100 0.576
[015] 3-4 0.325 0.033 0.675
[025] 3-7 0.334 0.121 0.576
[016] 3-5 0.358 0.061 0.625
[026] 3-8 0.379 0.067 0.600
[036] 3-10 0.442 0.111 0.567
[027] 3-9 0.390 0.056 0.575
[037] 3-11 0.338 0.133 0.675
[048] 3-12 0.462 0.133 0.700
#3 Averages: 0.374 0.094 0.616
[0123] 4-1 0.374 0.051 0.556
[0124] 4-2 0.321 0.111 0.556
[0134] 4-3 0.290 0.077 0.609
[0125] 4-4 0.275 0.077 0.587
[0135] 4-11 0.283 0.077 0.556
[0235] 4-10 0.274 0.077 0.542
[0145] 4-7 0.340 0.111 0.565
[0126] 4-5 0.288 0.077 0.583
[0136] 4-13 0.242 0.077 0.583
[0236] 4-12 0.266 0.103 0.583
[0146] 4-z15 0.251 0.103 0.500
[0246] 4-21 0.441 0.087 0.590
[0156] 4-8 0.321 0.033 0.609
[0127] 4-6 0.301 0.051 0.609
[0137] 4-229 0.251 0.103 0.500
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Appendix A (continued)

[0237] 4-14 0.275 0.077 0.587
[0147] 4-18 0.262 0.103 0.583
[0247] 4-22 0.321 0.111 0.556
[0347] 4-17 0.317 0.103 0.587
[0157] 4-16 0.288 0.077 0.583
[0257] 4-23 0.374 0.051 0.556
[0167] 4-9 0.365 0.051 0.609
[0148] 4-19 0.377 0.103 0.583
[0248] 4-24 0.439 0.087 0.590
[0158] 4-20 0.340 0.111 0.565
[0258] 4-27 0.266 0.103 0.583
[0358] 4-26 0.290 0.077 0.609
[0268] 4-25 0.432 0.067 0.587
[0369] 4-28 0.445 0.125 0.567
#4 Averages: 0.321 0.085 0.575
[01234] 5-1 0.370 0.051 0.593
[01235] 5-2 0.298 0.077 0.571
[01245] 5-3 0.267 0.077 0.593
[01236] 5-4 0.257 0.020 0.593
[01246] 59 0.269 0.077 0.519
[01346] 5-10 0.264 0.082 0.593
[02346] 5-8 0.283 0.095 0.630
[01256] 5-6 0.256 0.077 0.592
[01356] 5-212 0.220 0.041 0.630
[01237] 5-5 0.256 0.082 0.593
[01247] 5-236 0.220 0.041 0.630
[01347] 5-16 0.264 0.095 0.592
[02347] 5-11 0.231 0.041 0.630
[01257] 5-14 0.256 0.082 0.593
[01357] 5-24 0.269 0.077 0.519
[02357] 5-23 0.298 0.077 0.571
[01457] 5-z18 0.220 0.041 0.612
[01267] 5-7 0.346 0.041 0.593
[01367] 5-19 0.261 0.095 0.667
[01248] 5-13 0.279 0.095 0.519
[01348] 5-z17 0.272 0.082 0.612
[01258] 5-238 0.220 0.041 0.612
[01358] 5-27 0.267 0.077 0.593
[02358] 5-25 0.264 0.082 0.593
[01458] 5-21 0.343 0.095 0.667
[02458] 5-26 0.280 0.095 0.519
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[03458]
[01268]
[01368]
[02368]
[01468]
[02468]
[01568]
[01478]
[01369]
[01469]
[02469]
[02479]
#5 Averages:

[012345]
[012346]
[012356]
[012456]
[012347]
[012357]
[012457]
[013457]
[023457]
[012367]
[012467]
[013467]
[012567]
[012348]
[012358]
[012458]
[013458]
[023458]
[012368]
[012468]
[013468]
[023468]
[012568]
[013568]
[023568]
[014568]
[012378]
[012478]
[013478]
[012578]

5-237
5-15
5-29
5-28
5-30
5-33
5-20
5-22
5-31
5-32
5-34
5-35

6-1
6-2
6-z3
6-z4
6-236

6-z11
6-z10
6-8
6-5
6-212
6-z13
6-26
6-z37
6-240
6-15
6-14
6-z39
6-z41
6-22
6-z24
6-21
6-z43
6-225
6-223
6-16
6-238
6-z17
6-z19
6-18

0.272
0.292
0.257
0.280
0.279
0.524
0.256
0.285
0.364
0.264
0.283
0.370
0.283

0.336
0.286
0.277
0.279
0.277
0.260
0.253
0.254
0.266
0.273
0.257
0.280
0.300
0.279
0.253
0.268
0.275
0.254
0.257
0.289
0.254
0.288
0.250
0.277
0.288
0.268
0.300
0.250
0.270
0.273

0.082
0.143
0.020
0.095
0.095
0.103
0.077
0.095
0.154
0.095
0.095
0.051
0.077

0.071
0.020
0.071
0.071
0.071
0.041
0.061
0.071
0.041
0.071
0.061
0.071
0.071
0.071
0.061
0.071
0.061
0.071
0.061
0.071
0.071
0.071
0.061
0.071
0.071
0.071
0.071
0.061
0.041
0.071

0.612
0.704
0.593
0.593
0.519
0.653
0.592
0.630
0.667
0.592
0.630
0.593
0.600

0.653
0.647
0.706
0.647
0.706
0.706
0.706
0.647
0.647
0.676
0.706
0.676
0.643
0.647
0.706
0.647
0.676
0.647
0.706
0.647
0.647
0.647
0.618
0.706
0.706
0.647
0.643
0.618
0.647
0.676
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Appendix A (continued)

[013578] 6-226 0.279 0.071 0.647
[012678] 6-7 0.354 0.041 0.647
[012369] 6-242 0.280 0.071 0.676
[012469] 6-z46 0.254 0.071 0.647
[013469] 6-27 0.323 0.071 0.735
[023469] 6-z45 0.288 0.071 0.706
[012569] 6-z44 0.270 0.041 0.647
[013569] 6-228 0.281 0.071 0.618
[012479] 6-z47 0.277 0.071 0.706
[013479] 6-249 0.281 0.071 0.618
[012579] 6-z48 0.279 0.071 0.647
[013579] 6-34 0.288 0.071 0.647
[023579] 6-33 0.286 0.020 0.647
[014579] 6-31 0.268 0.071 0.647
[024579] 6-32 0.336 0.071 0.653
[013679] 6-30 0.317 0.071 0.735
[023679] 6-229 0.280 0.071 0.676
[014679] 6-z50 0.280 0.071 0.676
[014589] 6-20 0.371 0.082 0.706
[02468a] 6-35 0.527 0.087 0.675
#6 Averages: 0.286 0.065 0.667
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APPENDIX B
Statistical summary of PSATSIM2 relations for each cardinality pair
#2/#10 through #6 sc compared to every other #2/#10 through #6 sc
(PSATSIM?2 value group #2/#10 . . . #6:#2/#10 . . . #6)

Prime form Forte Average Lowest Highest

[01] 2-1 0.413 0.083 0.667
[02] 22 0.420 0.056 0.633
[03] 2-3 0.419 0.167 0.667
[04] 2-4 0.472 0.153 0.656
[05] 2-5 0.413 0.083 0.667
[06] 2-6 0.424 0.139 0.633
#2 Averages: 0.427 0.113 0.654
[012] 3-1 0.378 0.069 0.583
[013] 32 0.285 0.111 0.583
[014] 3-3 0.316 0.083 0.611
[024] 3-6 0417 0.056 0.611
[015] 3-4 0.314 0.139 0.611
[025] 3-7 0.285 0.111 0.583
[016] 3-5 0.352 0.056 0.556
[026] 3-8 0.386 0.083 0.661
[036] 3-10 0.453 0.125 0.600
[027] 39 0.378 0.069 0.583
[037] 3-11 0.316 0.083 0.611
[048] 3-12 0.472 0.153 0.656
#3 Averages: 0.363 0.095 0.604
[0123] 4-1 0.367 0.056 0.597
[0124] 4-2 0.317 0.097 0.569
[0134] 4-3 0.293 0.083 0.583
[0125] 4-4 0.269 0.097 0.597
[0135] 4-11 0.276 0.097 0.569
[0235] 4-10 0.271 0.097 0.583
[0145] 4-7 0.340 0.097 0.597
[0126] 4-5 0.274 0.097 0.528
[0136] 4-13 0.235 0.083 0.556
[0236] 4-12 0.264 0.097 0.500
[0146] 4-z15 0.240 0.097 0.458
[0246] 4-21 0.432 0.111 0.606
[0156] 4-8 0.316 0.111 0.583
[0127] 4-6 0.285 0.106 0.583
[0137] 4-229 0.240 0.097 0.458
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Appendix B (continued)

[0237] 4-14 0.269 0.097 0.597
[0147] 4-18 0.265 0.097 0.556
[0247] 4-22 0.317 0.097 0.569
[0347] 4-17 0.323 0.097 0.583
[0157] 4-16 0.274 0.097 0.528
[0257] 4-23 0.367 0.056 0.597
[0167] 4-9 0.375 0.056 0.611
[0148] 4-19 0.380 0.097 0.586
[0248] 4-24 0.431 0.111 0.583
[0158] 4-20 0.340 0.097 0.597
[0258] 4-27 0.264 0.097 0.500
[0358] 4-26 0.293 0.083 0.583
[0268] 4-25 0.437 0.083 0.633
[0369] 4-28 0.453 0.125 0.600
#4 Averages: 0.317 0.094 0.569
[01234] 5-1 0.370 0.056 0.625
[01235] 5-2 0.306 0.081 0.625
[01245] 5-3 0.276 0.083 0.611
[01236] 5-4 0.258 0.078 0.583
[01246] 5-9 0.268 0.083 0.514
[01346] 5-10 0.262 0.078 0.583
[02346] 5-8 0.286 0.083 0.597
[01256] 5-6 0.261 0.083 0.569
[01356] 5-z12 0.227 0.078 0.583
[01237] 5-5 0.257 0.083 0.583
[01247] 5-236 0.227 0.078 0.583
[01347] 5-16 0.266 0.083 0.569
[02347] 5-11 0.245 0.083 0.611
[01257] 5-14 0.257 0.083 0.583
[01357] 5-24 0.268 0.083 0.514
[02357] 5-23 0.306 0.081 0.625
[01457] 5-z18 0.231 0.083 0.569
[01267] 5-7 0.367 0.031 0.625
[01367] 5-19 0.290 0.097 0.625
[01248] 5-13 0.278 0.083 0.528
[01348] 5-z17 0.288 0.092 0.597
[01258] 5-238 0.231 0.083 0.569
[01358] 5-27 0.276 0.083 0.611
[02358] 5-25 0.262 0.078 0.583
[01458] 5-21 0.365 0.050 0.611
[02458] 5-26 0.279 0.083 0.528
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[03458]
[01268]
[01368]
[02368]
[01468]
[02468]
[01568]
[01478]
[01369]
[01469]
[02469]
[02479]
#5 Averages:

[012345]
[012346]
[012356]
[012456]
[012347]
[012357]
[012457]
[013457]
[023457]
[012367]
[012467]
[013467]
[012567]
[012348]
[012358]
[012458]
[013458]
[023458]
[012368]
[012468]
[013468]
[023468]
[012568]
[013568]
[023568]
[014568]
[012378]
[012478]
[013478]
[012578]

5-z37
5-15
5-29
5-28
5-30
5-33
5-20
5-22
5-31
5-32
5-34
5-35

6-1
6-2
6-23
6-z4
6-236

6-z11
6-z10

6-5
6-212
6-z13
6-26
6-237
6-240
6-15
6-14
6-239
6-z41
6-22
6-224
6-21
6-z43
6-225
6-223
6-16
6-238
6-z17
6-219
6-18

0.288
0.313
0.258
0.298
0.278
0.536
0.261
0.295
0.372
0.266
0.286
0.370
0.290

0.344
0.293
0.264
0.253
0.264
0.255
0.245
0.236
0.281
0.275
0.252
0.278
0.310
0.253
0.245
0.254
0.279
0.236
0.252
0.282
0.236
0.285
0.248
0.264
0.273
0.253
0.310
0.248
0.274
0.275

0.092
0.139
0.078
0.139
0.083
0.111
0.083
0.097
0.097
0.083
0.083
0.056
0.084

0.064
0.061
0.061
0.067
0.061
0.061
0.061
0.067
0.083
0.061
0.061
0.061
0.067
0.067
0.061
0.061
0.083
0.067
0.061
0.067
0.067
0.067
0.069
0.061
0.061
0.061
0.067
0.069
0.061
0.061

0.597
0.639
0.583
0.556
0.528
0.689
0.569
0.611
0.625
0.569
0.597
0.625
0.589

0.689
0.600
0.661
0.586
0.661
0.600
0.661
0.586
0.689
0.633
0.628
0.633
0.633
0.586
0.661
0.572
0.661
0.586
0.628
0.572
0.586
0.572
0.558
0.661
0.628
0.572
0.633
0.558
0.633
0.633
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Appendix B (continued)

[013578] 6-226 0.253 0.067 0.586
[012678] 6-7 0.374 0.031 0.656
[012369] 6-z42 0.278 0.061 0.633
[012469] 6-z46 0.236 0.067 0.586
[013469] 6-27 0.304 0.061 0.633
[023469] 6-z45 0.273 0.061 0.628
[012569] 6-z44 0.274 0.061 0.633
[013569] 6-228 0.269 0.069 0.558
[012479] 6-z47 0.264 0.061 0.661
[013479] 6-z49 0.269 0.069 0.558
[012579] 6-z48 0.253 0.067 0.586
[013579] 6-34 0.285 0.067 0.572
[023579] 6-33 0.293 0.061 0.600
[014579] 6-31 0.254 0.061 0.572
[024579] 6-32 0.344 0.064 0.689
[013679] 6-30 0.316 0.083 0.656
[023679] 6-229 0.278 0.061 0.633
[014679] 6-z50 0.278 0.061 0.633
[014589] 6-20 0.382 0.050 0.661
[02468a] 6-35 0.536 0.111 0.689
#6 Averages: 0.281 0.065 0.620
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APPENDIX C

Min(#Y, X) and max(#Y, X) values for all cardinalities of superset (#Y)
and all possible subset classes (X) where #X < #Y (when #X = #Y, min(#Y,
X) = 0 and max(#Y, X) = 1, except for #0, #1, #11 and #12 scs).

#Y scX Forte#(X) min#Y,X) max#y,X)
0 [ 0-0 1 1 5 [06] 2-6 0
5 [012] 3-1 0
1 [0] 1-0 1 1 5 [013] 32 0
5 [014] 33 0
2 [0] 1-0 2 2 5 [015] 3-4 0
5 [016] 3-5 0
3 [0] 1-0 3 3 5 [024] 3-6 0
3 [01] 2-1 0 2 5 [025] 3-7 0
3 [02] 2-2 0 2 5 [026] 3-8 0
3 [03] 2-3 0 2 5 [027] 39 0
3 [04] 2-4 0 3 5 [036] 3-10 0
3 [05] 2-5 0 2 5 [037] 3-11 0
3 [06] 2-6 0 1 5 [048] 3-12 0
5 [0123] 4-1 0
4 [0] 1-0 4 4 5 [0124] 4-2 0
4 [01] 2-1 0 3 5 [0134] 4-3 0
4 [02] 2-2 0 3 5 [0125] 4-4 0
4 [03] 2-3 0 4 5 [0126] 4-5 0
4 [04] 2-4 0 3 5 [0127] 4-6 0
4 [05] 2-5 0 3 5 [0145] 4-7 0
4 [06] 2-6 0 2 5 [0156] 4-8 0
4 [012] 3-1 0 2 5 [0167] 49 0
4 [013] 3-2 0 2 5 [0235] 4-10 0
4  [014] 33 0 2 5 [0135] 4-11 0
4 [015] 3-4 0 2 5 [0236] 4-12 0
4 [016] 3-5 0 4 5  [0136] 4-13 0
4 [024] 3-6 0 2 5 [0237] 4-14 0
4 [025] 3-7 0 2 5 [0146] 4-15 0
4 [026] 3-8 0 4 5 [0157] 4-16 0
4 [027] 39 0 2 5 [0347] 4-17 0
4 [036] 3-10 0 4 5 [0147] 4-18 0
4 [037] 3-11 0 2 5 [0148] 4-19 0
4 [048] 3-12 0 1 5 [0158] 4-20 0
S [0246] 4-21 0
5 [0] 1-0 5 5 5 [0247] 4-22 0
5 [o1] 2-1 0 4 5 [0257] 4-23 0
5 [02] 2-2 0 4 5 [0248] 4-24 0
5 [03] 2-3 0 4 5 [0268] 4-25 0
5 [04] 2-4 1 4 5 [0358] 4-26 0
5 [05] 2-5 0 4 5 [0258] 4-27 0
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Appendix C (continued)

[0369]
[0137]

[0]
[01]
[02]
[03]
[04]
[05]
[06]
[012])
[013]
[014]
[015]
[016]
[024]
[025]
[026]
[027]
[036]
[037]
[048]
[0123]
[0124]
[0134]
[0125]
[0126]
[0127]
[0145]
[0156]
[0167]
[0235]
[0135]
[0236]
[0136]
[0237]
[0146]
[0157]
[0347]
[0147]
[0148)
[0158]
[0246)
[0247]
[0257]
[0248]
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428
429

1-0
2-1
22
23
2-4
25
2-6
3-1
3.2
33
3.4
3.5
3.6
3.7
3.8
3.9
3-10
311
312
4-1
42
4.3
4-4
4.5
4.6
4.7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
421
422
4.23
4-24
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[0268]

[0358]

[0258]

[0369]

[0137]

[01234]
[01235]
[01245]
[01236]
{01237]
[01256]
[01267]
[02346]
[01246]
[01346]
[02347]
[01356]
[01248]
[01257]
[01268]
[01347]
[01348]
[01457]
[01367]
[01568]
[01458]
[01478]
[02357)
[01357)
[02358]
[02458]
[01358]
[02368]
[01368]
[01468]
[01369]
[01469]
[02468]
[02469]
[02479]
[01247]
[03458]
[01258]

(0]
[o1]

4-25
4-26
4-27
4-28
4-29
5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38

1-0
2-1
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[02]
[03]
[04]
[05]
[06]
[012]
[013]
[014]
[015]
[016]
[024]
[025]
[026]
[027]
[036]
[037]
[048]
[0123]
[0124]
[0134]
[0125]
[0126]
[0127]
[0145]
[0156]
[0167]
[0235]
[0135]
[0236]
[0136]
[0237]
[0146]
[0157]
[0347]
[0147]
[0148]
[0158]
[0246]
[0247]
[0257]
[0248]
[0268]
[0358]
[0258]
[0369]
[0137]
[01234]
[01235]

2-2
2-3
2-4
2-5
2-6
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12

4.2
4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
422
4.23
4-24
4-25
4-26
4-27
4-28
4-29
5-1

5-2
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[01245]
[01236]
[01237]
[01256]
[01267]
[02346]
[01246]
[01346]
(02347]
[01356]
[01248]
[01257]
[01268]
[01347]
[01348]
[01457]
[01367]
[01568]
[01458]
[01478]
[02357]
[01357]
(02358]
(02458]
[01358]
[02368]
[01368]
[01468]
[01369]
[01469]
[02468]
[02469]
[02479]
[01247]
[03458]
[01258]
[012345]
[012346]
[012356]
[012456]
[012367]
[012567]
[012678]
[023457]
[012357]
[013457]
(012457]
[012467]

5-3

5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
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Appendix C (continued)

[013467]
[013458]
[012458]
[014568]
[012478]
[012578]
[013478]
[014589]
[023468]
[012468]
[023568]
[013468]
[013568]
[013578]
[013469]
[013569]
[023679]
[013679]
[014579]
[024579]
{023579]
[013579]
[02468a]
[012347]
[012348]
[012378]
[023458]
[012358]
[012368]
[012369]
[012568]
[012569]
[023469]
[012469]
[012479]
[012579]
[013479]
[014679]

[0]

[01]
[02]
(03]
[04]
[05]
[06]
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6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-47
6-48
6-49
6-50

1-0
2-1
2-2
2-3
2-4
2-5
2-6
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[012]
[013]
[014]
[015]
[016]
[024]
[025]
[026]
[027]
{0361
[037]
[048]
[0123]
[0124]
[0134]
[0125]
[0126]
[0127]
[0145]
[0156]
[0167]
[0235]
[0135]
[0236]
[0136]
[0237]
[0146]
[0157]
[0347]
[0147]
[0148]
[0158]
(0246]
[0247]
[0257]
[0248]
[0268]
[0358]
[0258]
[0369]
[0137]
[01234]
[01235]
[01245]
[01236]
[01237]

32
33
3-4
3.5
3-6
37
3-8
3-9
3-10
311
3-12
4-1
42
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
421
422
4-23
4-24
425
4-26
4-27
4-28
4-29
5-1
5-2
5-3
5-4
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[01256]
[01267]
[02346]
[01246]
[01346]
[02347]
[01356]
[01248]
[01257]
[01268]
[01347)
[01348]
[01457)
[01367)
[01568)
[01458]
[01478]
[02357)
[01357]
[02358]
[02458]
[01358]
[02368]
[01368]
[01468]
[01369]
[01469]
[02468]
[02469]
[02479]
[01247)
[03458]
[01258]
[012345]
[012346]
[012356]
[012456]
[012367]
[012567]
[012678]
[023457]
[012357]
[013457]
[012457]
[012467]
(013467
[013458]
[012458]

5-6

5-8

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

6-9

6-10
6-11
6-12
6-13
6-14
6-15
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[014568]
[012478]
[012578]
[013478]
[014589]
[023468]
[012468]
[023568]
[013468]
[013568]
[013578]
[013469]
[013569]
[023679]
[013679]
[014579]
[024579]
[023579]
[013579]
[02468a]
[012347]
[012348]
[012378]
[023458]
[012358]
[012368]
[012369]
[012568]
[012569]
[023469]
(012469]
[012479]
[012579]
[013479]
[014679]
[0123456]
[0123457]
[0123458]
(0123467
[0123567]
[0123478]
[0123678]
[0234568]
[0123468]
[0123469]
{0134568]
[0123479]
[0124568]

6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-47
6-48
6-49
6-50
7-1

7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
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Appendix C (continued)

[0123578]
[0124678]
[0123569]
[0124569]
[0145679]
[0123679]
[0125679]
[0124589]
[0125689]
[0234579]
[0123579]
[0234679]
[0134579]
(0124579
[0135679]
[0124679]
(0124689]
[0134679]
[0134689]
[012468a]
[013468a]
[013568a]
[0123568]
[0134578]
[0124578]

[0]
fo1]
[02]
[03]
[04]
[05]
[06]
[012]
[013]
[014]
[015]
[016]
[024]
[025]
[026]
[027]
(036]
(037]
(048]
[0123]
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7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38

1-0
2-1
2-2
2-3
2-4
2-5
2-6
3-1
32
33
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
4-1
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[0124]
[0134]
[0125]
[0126]
[0127]
[0145]
{0156]
[0167]
[0235]
[0135]
[0236]
[0136]
[0237]
[0146]
[0157]
[0347]
[0147]
[0148]
[0158]
[0246)
[0247)
[0257]
[0248]
[0268]
[0358]
[0258]
[0369]
[0137]
[01234]
[01235]
[01245]
[01236]
[01237)]
[01256]
[01267)
[02346]
[01246]
[01346]
(02347
[01356]
[01248]
[01257]
[01268]
[01347]
[01348]
[01457]

42
4.3

4-4

4.5

46

4-7

4.8

49

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
421
422
423
424
4.25
426
427
428
429

5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
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[01367]
[01568]
[01458]
[01478]
[02357]
[01357]
[02358]
[02458]
[01358]
[02368]
[01368]
[01468]
[01369]
[01469]
[02468]
[02469]
[02479]
[01247]
[03458]
[01258]
[012345]
[012346]
[012356]
[012456]
[012367]
[012567]
[012678]
[023457]
[012357]
[013457]
[012457]
[012467]
[013467]
[013458]
[012458]
[014568]
[012478]
[012578]
[013478]
[014589]
[023468]
[012468]
[023568]
[013468]
[013568]
[013578]
[013469]
[013569]

5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
6-1

6-2

6-3

6-4

6-6

6-7

6-8

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
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[023679]
[013679]
[014579]
[024579]
[023579]
[013579]
[02468a]
[012347]
[012348]
[012378]
[023458]
[012358]
[012368]
[012369]
[012568]
[012569]
[023469]
[012469]
[012479]
[012579]
[013479]
[014679]
[0123456]
[0123457]
[0123458]
[0123467]
[0123567]
[0123478]
[0123678]
[0234568]
[0123468]
[0123469]
[0134568]
[0123479]
[0124568]
[0123578]
[0124678]
[0123569]
[0124569]
[0145679]
[0123679]
[0125679]
[0124589]
[0125689]
[0234579]
[0123579]
[0234679]
[0134579]

6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-47
6-48
6-49
6-50
7-1

7-2

7-3

7-4

7-5

7-7

7-8

7-9

7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
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Appendix C (continued)

[0124579]

[0135679]

[0124679]

[0124689]

[0134679]

[0134689]

[012468a]

[013468a)]

[013568a]

[0123568]

[0134578]

[0124578]

[01234567]
[01234568]
[01234569]
[01234578]
[01234678]
[01235678]
[01234589]
[01234789]
[01236789]
[02345679]
[01234579]
[01345679]
[01234679]
[01245679]
[01234689]
[01235789]
[01345689]
[01235689]
[01245689]
[01245789]
[0123468a}
[0123568a]
[0123578a]
[0124568a]
[0124678a]
[0134578a]
[0124578a]
[0134679a]
[01235679]

[0]

[01]
[02]
[03]
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7-27
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38
8-1

8-2

8-3

8-4

8-5

8-6

8-7

8-8

8-9

8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28
8-29

1-0
2-1
2-2
2-3
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10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

[04]
[05]
[06]
[012]
[013]
[014]
[015]
[016]
[024]
[025]
[026]
[027]
[036]
[037]
[048]
[0123]
[0124]
[0134]
[0125]
[0126]
[0127]
[0145]
[0156]
[0167]
[0235]
[0135]
[0236]
[0136]
[0237]
[0146]
{0157]
[0347]
[0147]
[0148]
[0158]
[0246)
[0247]
[0257]
[0248]
[0268]
[0358]
[0258]
{03691
[0137]
[01234]
[01235]

2-4
2-5
2-6
31
3.2
3.3
3-4
35
3-6
37
3-8
39
3-10
311
312
4-1
42
4-3
44
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
421
422
423
4-24
425
4-26
4-27
4-28
4-29
5-1
5-2

W O O



10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

[01245]
[01236]
[01237]
[01256]
[01267]
[02346]
[01246]
[01346]
[02347]
[01356]
[01248]
[01257]
[01268]
[01347]
[01348]
[01457]
[01367]
[01568]
[01458]
[01478]
[02357]
[01357]
[02358]
[02458]
[01358]
[02368]
[01368]
[01468]
[01369]
[01469]
[02468]
[02469]
[02479]
[01247]
[03458]
[01258]
[012345]
[012346]
[012356]
[012456]
[012367]
[012567]
[012678]
[023457]
[012357]
[013457]
[012457]
[012467]

5-3
5-4
5-5
5-6
5-7
5-8
59
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
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10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

[013467]
[013458]
[012458]
[014568]
[012478]
[012578]
[013478]
[014589]
[023468]
[012468]
[023568]
[013468]
[013568]
[013578]
[013469]
[013569]
[023679]
[013679]
[014579]
[024579]
[023579]
[013579]
[02468a]
[012347]
[012348]
[012378]
[023458]
[012358]
[012368]
[012369]
[012568]
[012569]
[023469]
[012469]
[012479]
[012579]
[013479]
[014679]
[0123456]
[0123457]
[0123458]
[0123467]
[0123567]
[0123478]
[0123678]
[0234568]
[0123468]
[0123469]

6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-47
6-48
6-49
6-50
7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

7-10
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10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

Appendix C (continued)

[0134568]
[0123479]
[0124568]
[0123578]
[0124678]
[0123569]
[0124569]
[0145679]
[0123679]
[0125679]
[0124589]
[0125689]
[0234579]
[0123579]
[0234679]
[0134579]
[0124579]
[0135679]
[0124679]
[0124689]
[0134679]
[0134689]
[012468a)
[013468a]
[013568a]
[0123568]
[0134578]
[0124578]
[01234567]
[01234568]
[01234569]
[01234578)
[01234678]
[01235678)
[01234589)
[01234789]
[01236789)
[02345679)
[01234579]
[01345679]
[01234679)
[01245679)
[01234689]
[01235789]
[01345689]
[01235689]
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7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-217
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38
8-1

8-2

8-3

8-4

8-5

8-6

8-7

8-8

8-9

8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
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10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

[01245689]
[01245789]
[0123468a]
[0123568a]
[0123578a)
[0124568a]
[0124678a]
[0134578a]
[0124578a]
[0134679a]
[01235679]
[012345678]
[012345679]
[012345689]
[012345789]
[012346789]
[01234568a]
[01234578a]
[01234678a]
[01235678a]
[01234679a]
[01235679a]
[01245689a]

[0]
[o1]
[02]
(03]
[04]
[05]
[06]
[012]
[013]
[014]
[015]
[016]
[024]
[025]
[026]
[027]
[036]
[037]
(048]
[0123]
[0124]
[0134]

8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28
8-29
9-1

9-2

9-3

9-4

9-6
9-7
9-8
9-9
9-10
9-11
9-12

1-0
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11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

[0125]
[0126]
[0127]
[0145]
[0156)
[0167]
[0235)
[0135]
[0236]
[0136]
[0237]
[0146]
[0157]
[0347]
[0147]
[0148]
[0158]
[0246]
[0247]
[0257]
[0248]
[0268]
[0358]
[0258]
[0369]
[0137]
[01234]
[01235]
[01245]
[01236]
[01237]
[01256]
[01267]
[02346]
[01246]
[01346]
[02347)
[01356]
[01248]
[01257]
[01268]
[01347]
[01348]
[01457]
[01367]
[01568]
[01458]
[01478]

44
4.5

46

4-7

4-8

49

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
420
421
422
423
4.24
4.25
426
4.27
428
4-29
5-1

53
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
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14
14
14
14
14
14

14
14
14

14
14

14

14
14
14
14
7

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

[02357]
[01357]
[02358]
[02458)
[01358]
[02368]
[01368]
[01468]
[01369]
[01469]
[02468]
[02469]
[02479]
[01247]
[03458]
[01258]
[012345]
[012346]
[012356]
[012456]
[012367]
[012567]
[012678]
[023457]
[012357]
[013457]
[012457]
[012467]
[013467]
[013458]
[012458]
[014568]
[012478]
[012578]
[013478]
[014589]
[023468]
[012468]
[023568]
[013468]
[013568]
[013578]
[013469]
[013569]
[023679]
[013679]
[014579]
[024579]

5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32

14
14
14
14
14
14
14
14
14
14

14

14

12
12

12

12
12
12
12

12
12
12
12
12
12

12
12

12
12

12

12
6
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14
14
14
14
14
14
14
14
14
14

14

14

12
12

12

12
12
12
12

12
12
12
12
12
12

12
12

12
12

12

12
6



11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

Appendix C (continued)

[023579]
[013579]
[02468a]
[012347]
[012348]
[012378]
[023458]
[012358]
[012368]
[012369]
[012568]
[012569]
[023469]
[012469]
[012479]
[012579]
[013479]
[014679]
[0123456)
[0123457]
[0123458]
[0123467]
[0123567]
[0123478]
[0123678]
[0234568]
[0123468]
[0123469]
[0134568]
[0123479]
[0124568]
[0123578]
[0124678]
[0123569]
[0124569]
[0145679]
[0123679]
[0125679]
[0124589]
[0125689]
[0234579]
[0123579]
[0234679]
[0134579]
[0124579]
[0135679]
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6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-47
6-48
6-49
6-50
7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28

12
12
1
12
6
6
12
12
12
6
12
12
6
12
12
6
6
6
5
10
10
10
10
10
10
5
10
10
10
5
10
10
5
10
5
10
10
10
10
5
10
10
10
10
10
10

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

[0124679]
[0124689]
[0134679]
[0134689]
[012468a]
[013468a]
[013568a]
[0123568]
[0134578]
[0124578]
[01234567]
[01234568]
[01234569]
[01234578]
[01234678]
[01235678]
[01234589]
[01234789]
[01236789]
[02345679]
[01234579]
[01345679]
[01234679]
[01245679]
[01234689]
[01235789]
[01345689]
[01235689]
[01245689]
[01245789]
[0123468a]
[0123568a]
[0123578a]
[0124568a]
[0124678a]
[0134578a]
[0124578a]
[0134679a]
[01235679]
[012345678]
[012345679]
[012345689]
[012345789]
[012346789]
[01234568a]
[01234578a]

7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
89
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28
8-29
9-1
9-2
9-3
9-4
9-5
9-6
9-7
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11
11
11
11
11
11
11
11
11
11
11
11

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

[01234678a)
[01235678a]
[01234679a]
[01235679a)
[01245689a]
[0123456789]
[012345678a]
[012345679a]
[012345689a]
[012345789a]
[012346789a]
[0123456789a]

[0]
[01]
[02]
[03]
[04]
[05]
[06]
[012]
[013]
[014]
[015]
[016]
[024]
[025]
[026]
[027]
[036]
[037]
[048]
[0123]
[0124]
[0134]
[0125]
[0126]
[0127]
[0145]
[0156]
[0167]
[0235]
[0135]
[0236]
[0136]
[0237]
[0146]
[0157]

9-8

9-9

9-10
9-11
9-12
10-1
10-2
10-3
10-4
10-5
10-6
11-1

1-0
2-1
22
2-3
2-4
25
2-6
3-1
32
3-3
34
35
3-6
3.7
3-8
3-9
3-10
3-11
312
4-1
42
43
44
45
4.6
4.7
4.8
4.9
4-10
4-11
4-12
4-13
4-14
415
4-16
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12
12
12
12
12
12

12
24
24
24
24
12
24
24
12
12
24

12
24
12
24
24
12
12
12

12
24
24
24
24
24
24
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12
12
12
12
12
12

12
24
24
24
24
12
24
24
12
12
24

12
24
12
24
24
12
12
12

12
24
24
24
24
24
24

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

[0347]

[0147]

[0148]

[0158]

[0246]

[0247]

[0257]

[0248]

[0268]

[0358]

[0258]

[0369]

[0137]

[01234]
[01235]
[01245]
[01236]
[01237]
[01256]
[01267]
[02346]
[01246]
[01346]
[02347]
[01356]
[01248]
[01257]
[01268]
[01347]
[01348]
[01457]
[01367]
[01568]
[01458]
[01478]
[02357]
[01357]
[02358]
[02458]
[01358]
[02368]
[01368]
[01468]
[01369]
[01469]
[02468]
[02469]
[02479]

4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

59

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35

12
24
24
12
12
24
12
12

12
24

24
12
24

24
24
24
24
12
24
24
24
12
24
24
12
24
12
24
24
24
24
12
24
24
24
24
24
24
24
24
24
24
12
12
12
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12
24
24
12
12
24
12
12

12
24

24
12
24
24
24
24
24
24
12
24
24
24
12
24
24
12
24
12
24
24
24
24
12
24
24
24
24
24
24
24
24
24
24
12
12
12



12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

Appendix C (continued)

[01247]

[03458]

[01258]

[012345]
[012346]
[012356]
[012456]
[012367]
[012567]
[012678]
[023457]
[012357]
[013457]
[012457]
[012467]
[013467]
[013458]
[012458]
[014568]
[012478]
[012578]
[013478]
[014589]
[023468]
[012468]
[023568]
[013468]
[013568]
[013578]
[013469]
[013569]
[023679]
[013679]
[014579]
[024579]
[023579]
[013579]
[02468a]
[012347]
[012348]
[012378]
[023458]
[012358]
[012368]
[012369]
[012568]
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5-36
5-37
5-38
6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43

24
12
24
12
24
24
12
24
12
6

12
24
24
24
24
12
24
24
24
24
24
24
4

24
24
12
24
24
12
24
12
12
12
24
12
24
24
2

24
12
12
24
24
24
12
24

24
12
24
12
24
24
12
24
12

12
24
24
24
24
12
24
24
24
24
24
24

24
24
12
24
24
12
24
12
12
12
24
12
24
24

24
12
12
24
24
24
12
24

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

[012569]
[023469]
[012469]
[012479]
[012579]
[013479]
[014679]
[0123456)
[0123457)
[0123458)
[0123467)
[0123567]
[0123478)
[0123678]
[0234568]
[0123468)
[0123469]
[0134568]
[0123479]
[0124568]
[0123578]
[0124678]
[0123569]
[0124569]
[0145679]
[0123679]
[0125679]
[0124589]
[0125689]
[0234579)
[0123579]
[0234679)]
[0134579]
[0124579]
[0135679]
[0124679]
[0124689]
[0134679]
[0134689]
[012468a]
[013468a]
[013568a]
[0123568]
[0134578]
[0124578]
(01234567

6-44
6-45
6-46
6-47
6-48
6-49
6-50
7-1

7-2

7-3

7-4

7-5

7-6

77

7-8

7-9

7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38
8-1

24
12
24
24
12
12
12
12
24
24
24
24
24
24
12
24
24
24
12
24
24
12
24
12
24
24
24
24
12
24
24
24
24
24
24
24
24
24
24
12
12
12
24
12
24
12

24
12
24
24
12
12
12
12
24
24
24
24
24
24
12
24
24
24
12
24
24
12
24
12
24
24
24
24
12
24
24
24
24
24
24
24
24
24
24
12
12
12
24
12
24
12



12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

[01234568]
[01234569]
[01234578]
[01234678]
[01235678]
[01234589]
[01234789]
[01236789]
[02345679]
[01234579]
[01345679]
[01234679]
[01245679]
[01234689]
[01235789]
[01345689]
[01235689]
[01245689]
[01245789]
[0123468a]
[0123568a]
[0123578a]
[0124568a]
[0124678a]

8-2
8-3
8-4
8-5
8-6
8-7
8-8
89
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25

24
12
24
24
12
12
12

12
24
24
24
24
24
24
12
24
24
12
12
24
12
12
6

24
12
24
24
12
12
12

12
24
24
24
24
24
24
12
24
24
12
12
24
12
12
6

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

[0134578a]
[0124578a)
[0134679a)
[01235679]
[012345678]
[012345679]
[012345689]
[012345789]
[012346789]
[01234568a]
[01234578a]
[01234678a]
[01235678a]
[01234679a]
[01235679a]
[01245689a]
[0123456789]
[012345678a]
[012345679a]
[012345689a]
[012345789a]
[012346789a]

8-26
8-27
8-28
8-29
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
10-1
10-2
10-3
10-4
10-5
10-6

[0123456789a] 11-1
[0123456789ab] 12-1

12
24

24
12
24
24
24
24
12
24
24
12
12
24

12
12
12
12
12

12
1
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APPENDIX D

Statistical summary of TSATSIM relations for each #3 through #10
sc compared to every other #3 through #10 sc (TSATSIM value group
#3 ... #10:#3 ... #10)

Prime form Forte Average Lowest Highest
[012] 3-1 0.381 0.056 0.575
[013] 32 0.327 0.121 0.576
[014] 3-3 0.330 0.133 0.675
[024] 3-6 0.385 0.100 0.576
[015] 3-4 0.313 0.033 0.675
[025] 3-7 0.327 0.121 0.576
[016] 3-5 0.355 0.061 0.625
[026] 3-8 0.363 0.067 0.600
[036] 3-10 0.443 0.111 0.567
[027] 3-9 0.381 0.056 0.575
[037] 3-11 0.330 0.133 0.675
[048] 3-12 0.444 0.133 0.700
#3 Averages: 0.365 0.094 0.616
[0123] 4-1 0.374 0.064 0.567
[0124] 4-2 0.337 0.100 0.512
[0134] 4-3 0.335 0.128 0.563
[0125] 4-4 0.310 0.109 0.542
[0135] 4-11 0.321 0.128 0.537
[0235] 4-10 0.336 0.128 0.613
[0145] 4-7 0.343 0.127 0.533
[0126] 4-5 0.306 0.085 0.567
[0136] 4-13 0.306 0.100 0.575
[0236] 4-12 0.305 0.109 0.525
[0146] 4-z15 0.294 0.085 0.507
[0246] 4-21 0.404 0.076 0.567
[0156] 4-8 0.342 0.033 0.549
[0127] 4-6 0.340 0.118 0.567
[0137] 4-729 0.294 0.085 0.507
[0237] 4-14 0.310 0.109 0.542
[0147] 4-18 0.298 0.100 0.542
[0247] 4-22 0.337 0.100 0.512
[0347] 4-17 0.338 0.100 0.525
[0157] 4-16 0.306 0.085 0.567
[0257) 4-23 0.374 0.064 0.567
[0167] 4-9 0.380 0.100 0.613
[0148] 4-19 0.344 0.090 0.567
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[0248]
[0158]
[0258]
[0358]
[0268]
[0369]
#4 Averages:

[01234]
[01235]
[01245]
[01236]
[01246]
[01346]
[02346]
[01256]
[01356]
[01237]
[01247]
[01347]
[02347]
[01257]
[01357]
[02357]
[01457]
[01267]
[01367]
[01248]
[01348]
[01258]
[01358]
[02358]
[01458]
[02458]
[03458]
[01268]
[01368]
[02368]
[01468]
[02468]
[01568]
[01478]
[01369]
[01469]

4-24
4-20
4-27
4-26
4-25
4-28

5-1
5-2
5-3
5-4
59
5-10
5-8
5-6
5-z12
5-5
5-236
5-16
5-11
5-14
5-24
5-23
5-z18
5-7
5-19
5-13
5-217
5-z38
5-27
5-25
5-21
5-26
5-237
5-15
5-29
5-28
5-30
5-33
5-20
5-22
5-31
5-32

0.402
0.343
0.305
0.335
0.404
0.407
0.339

0.355
0.311
0.305
0.293
0.304
0.305
0.319
0.305
0.295
0.303
0.290
0.308
0.289
0.303
0.304
0.311
0.284
0.347
0.313
0.315
0.314
0.284
0.305
0.305
0.357
0.307
0.314
0.331
0.293
0.315
0.315
0.422
0.305
0.322
0.330
0.308

0.069
0.127
0.109
0.128
0.067
0.164
0.100

0.061
0.109
0.109
0.100
0.111
0.100
0.118
0.118
0.127
0.118
0.130
0.100
0.128
0.118
0.111
0.109
0.114
0.061
0.130
0.111
0.109
0.114
0.109
0.100
0.091
0.111
0.109
0.131
0.100
0.130
0.111
0.091
0.118
0.100
0.128
0.100

0.567
0.533
0.525
0.563
0.549
0.599
0.552

0.575
0.588
0.601
0.557
0.513
0.554
0.566
0.522
0.545
0.545
0.545
0.533
0.618
0.545
0.513
0.588
0.504
0.601
0.551
0.518
0.592
0.504
0.601
0.554
0.601
0.505
0.592
0.601
0.557
0.520
0.518
0.636
0.522
0.583
0.636
0.533

333



Appendix D (continued)

[02469] 5-34 0.319 0.118 0.566
[02479] 5-35 0.355 0.061 0.575
#5 Averages: 0.315 0.108 0.560
[012345] 6-1 0.323 0.083 0.599
[012346] 6-2 0.295 0.100 0.575
[012356] 6-23 0.288 0.100 0.625
[012456] 6-z4 0.290 0.107 0.600
[012347] 6-236 0.284 0.107 0.625
[012357] 6-9 0.279 0.100 0.575
[012457] 6-z11 0.274 0.100 0.550
[013457] 6-z10 0.277 0.107 0.525
[023457] 6-8 0.288 0.115 0.599
[012367] 6-5 0.282 0.092 0.625
[012467] 6-z12 0.285 0.084 0.575
[013467] 6-z13 0.305 0.100 0.625
[012567)] 6-26 0.301 0.107 0.625
[012348] 6-237 0.295 0.107 0.600
[012358] 6-z40 0.274 0.100 0.550
[012458] 6-15 0.275 0.100 0.500
[013458] 6-14 0.280 0.115 0.608
[023458] 6-239 0.279 0.100 0.525
[012368] 6-241 0.287 0.100 0.575
[012468] 6-22 0.291 0.084 0.550
[013468] 6-224 0.279 0.100 0.525
[023468] 6-21 0.296 0.084 0.558
[012568] 6-z43 0.282 0.100 0.525
[013568] 6-225 0.288 0.100 0.625
[023568] 6-z23 0313 0.100 0.650
[014568] 6-16 0.272 0.100 0.500
[012378] 6-238 0.301 0.107 0.625
[012478] 6-217 0.280 0.084 0.525
[013478] 6-z19 0.280 0.100 0.547
[012578] 6-18 0.282 0.092 0.625
[013578] 6-226 0.290 0.107 0.600
[012678] 6-7 0.339 0.062 0.625
[012369] 6-z42 0.308 0.100 0.625
[012469] 6-z46 0.277 0.107 0.525
[013469] 6-27 0.318 0.080 0.700
[023469] 6-245 0.312 0.107 0.650
[012569] 6-244 0.280 0.100 0.547
[013569] 6-228 0.310 0.100 0.600
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[012479]
[013479]
[012579]
[013579]
[023579]
[014579]
[024579]
[013679]
[023679]
[014679]
[014589]
[02468a]
#6 Averages:

[0123456]
[0123457]
[0123467]
[0123567]
[0123458]
[0123468]
[0123568]
[0124568]
[0134568]
[0234568]
[0123478]
[0123578]
[0124578]
[0134578]
[0123678]
[0124678]
[0123469]
[0123569]
[0124569]
[0123479]
[0123579]
[0124579]
[0134579]
[0234579]
[0123679]
[0124679]
[0134679]
[0234679]
[0125679]
[0135679]

6-z47
6-z49
6-z48
6-34
6-33
6-31
6-32
6-30
6-z29
6-250
6-20
6-35

7-1
7-2
7-4
7-5
7-3

7-z36
7-13
7-11
7-8
7-6
7-14
7-238
7-z37
7-7
7-15
7-10
7-16
7-z17
7-z12
7-24
7-27
7-26
7-23
7-19
7-29
7-31
7-25
7-20
7-28

0.284
0.307
0.295
0.296
0.295
0.275
0.323
0.330
0.308
0.305
0.336
0.392
0.296

0.346
0.309
0.296
0.300
0.296
0.306
0.293
0.304
0.292
0.314
0.299
0.300
0.290
0.307
0.337
0.332
0.306
0.307
0.307
0.296
0.306
0.296
0.306
0.309
0.320
0.296
0.352
0.306
0.299
0.325

0.107
0.100
0.107
0.084
0.100
0.100
0.083
0.100
0.100
0.100
0.090
0.069
0.098

0.061
0.121
0.133
0.139
0.135
0.118
0.144
0.118
0.144
0.135
0.140
0.139
0.129
0.130
0.061
0.149
0.129
0.129
0.130
0.144
0.118
0.135
0.118
0.121
0.133
0.133
0.028
0.129
0.140
0.149

0.625
0.600
0.600
0.558
0.575
0.500
0.599
0.700
0.625
0.625
0.600
0.675
0.590

0.573
0.575
0.515
0.515
0.590
0.528
0.507
0.500
0.591
0.557
0.504
0.515
0.500
0.574
0.576
0.566
0.515
0.519
0.574
0.502
0.528
0.590
0514
0.575
0.563
0.515
0.636
0.515
0.504
0.521
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Appendix D (continued)

[0145679] 7-218 0.290 0.129 0.500
[0124589] 7-21 0.332 0.120 0.575
[0124689] 7-30 0.304 0.118 0.500
[0134689] 7-32 0.307 0.129 0.519
[0125689] 7-22 0.307 0.125 0.561
[012468a] 7-33 0.383 0.133 0.636
[013468a] 7-34 0314 0.135 0.557
[013568a] 7-35 0.346 0.061 0.573
#7 Averages: 0.311 0.123 0.544
[01234567] 8-1 0.370 0.067 0.585
[01234568] 8-2 0.339 0.133 0.566
[01234578] 8-4 0.326 0.152 0.553
[01234678] 8-5 0.337 0.133 0.567
[01235678] 8-6 0.342 0.133 0.556
[01234569] 8-3 0.338 0.133 0.566
[01234579] 8-11 0.327 0.146 0.550
[01234679] 8-13 0.337 0.128 0.531
[01235679] 8-z29 0.337 0.095 0.510
[01245679] 8-14 0.326 0.152 0.553
[01345679] 8-12 0.337 0.128 0.504
[02345679] 8-10 0.332 0.146 0.558
[01234589] 8-7 0.352 0.140 0.571
[01234689] 8-z15 0.337 0.095 0.510
[01235689] 8-18 0.331 0.134 0.534
[01245689] 8-19 0.378 0.119 0.567
[01345689] 8-17 0.351 0.146 0.580
[01234789] 8-8 0.347 0.033 0.538
[01235789] 8-16 0.337 0.133 0.567
[01245789] 8-20 0.352 0.140 0.571
[01236789] 8-9 0.384 0.089 0.567
[0123468a] 8-21 0.397 0.100 0.613
[0123568a] 8-22 0.339 0.133 0.566
[0124568a] 8-24 0.395 0.133 0.567
[0123578a] 8-23 0.370 0.067 0.585
[0124578a] 8-27 0.337 0.128 0.504
[0134578a] 8-26 0.338 0.133 0.566
[0124678a] 8-25 0.406 0.067 0.613
[0134679a] 8-28 0.387 0.028 0.569
#8 Averages: 0.351 0.116 0.558
[012345678] 9-1 0.396 0.142 0.557
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[012345679]
[012345689]
[012345789]
[012346789]
[01234568a]
[01234578a]
[01234678a]
[01235678a]
[01234679a]
[01235679a]
[01245689a]
#9 Averages:

[0123456789]
[012345678a}
[012345679a]
[012345689a]
[012345789a]
[012346789a]
#10 Averages:

9-2
93
9-4

9-6
9-7
9-8
9-9
9-10
9-11
9-12

10-1
10-2
10-3
10-4
10-5
10-6

0.372
0.360
0.364
0.396
0.402
0.372
0.409
0.396
0.404
0.360
0.437
0.389

0414
0.420
0.420
0.420
0.414
0.455
0.424

0.167
0.167
0.167
0.167
0.164
0.167
0.167
0.142
0.171
0.167
0.119
0.159

0.056
0.111
0.111
0.156
0.056
0.111
0.100

0.557
0.539
0.557
0.548
0.554
0.557
0.577
0.557
0.568
0.539
0.575
0.557

0.566
0.590
0.601
0.587
0.566
0.618
0.588
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APPENDIX E
Statistical summary of AvgSATSIMn relations for each #3 through
#10 sc compared to every other #3 through #10 sc (AvgSATSIMn value
group #3 . . . #10:#3 . . . #10)

Prime form Forte Average Lowest Highest

[012] 3-1 0.381 0.056 0.575
[013] 32 0.327 0.121 0.576
[014] 33 0.330 0.133 0.675
[024] 3-6 0.385 0.100 0.576
[015] 34 0.313 0.033 0.675
[025] 3-7 0.327 0.121 0.576
[016] 3-5 0.355 0.061 0.625
[026] 3-8 0.363 0.067 0.600
[036] 3-10 0.443 0.111 0.567
[027] 3-9 0.381 0.056 0.575
[037] 3-11 0.330 0.133 0.675
[048] 3-12 0.444 0.133 0.700
#3 Averages: 0.365 0.094 0.616
[0123] 4-1 0.371 0.061 0.556
[0124] 4-2 0.328 0.112 0.500
[0134] 4-3 0.319 0.125 0.530
[0125] 4-4 0.296 0.102 0.541
[0135] 4-11 0.305 0.125 0.539
[0235] 4-10 0.316 0.125 0.557
[0145] 4-7 0.338 0.125 0.533
[0126] 4-5 0.297 0.090 0.567
[0136] 4-13 0.285 0.101 0.550
[0236] 4-12 0.290 0.115 0.542
[0146] 4-215 0.277 0.069 0.467
[0246] 4-21 0.408 0.079 0.567
[0156] 4-8 0.334 0.033 0.552
[0127] 4-6 0.328 0.103 0.557
[0137] 4-229 0.277 0.069 0.467
[0237] 4-14 0.296 0.102 0.541
[0147] 4-18 0.285 0.101 0.542
[0247] 4-22 0.328 0.112 0.500
[0347)] 4-17 0.328 0.101 0.521
[0157] 4-16 0.297 0.090 0.567
[0257] 4-23 0.371 0.061 0.556
[0167] 4-9 0.374 0.089 0.594
[0148] 4-19 0.348 0.094 0.567
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[0248]
[0158]
[0258]
[0358]
[0268]
[0369]
#4 Averages:

[01234]
[01235]
[01245]
[01236]
[01246]
[01346]
[02346]
[01256)
[01356]
[01237]
[01247]
[01347]
[02347]
[01257]
[01357]
[02357]
[01457]
[01267]
[01367]
[01248]
[01348]
[01258]
[01358]
[02358]
[01458]
[02458]
[03458]
[01268]
[01368]
[02368]
[01468]
[02468]
[01568]
[01478]
[01369]
[01469]

4-24
4-20
4-27
4-26
4-25
4-28

5-1
5-2
5-3
5-4
5-9
5-10

5-6
5-z12
5-5
5-z36
5-16
5-11
5-14
5-24
5-23
5-z18
5-7
5-19
5-13
5-z17
5-z38
5-27
5-25
5-21
5-26
5-z37
5-15
5-29
5-28
5-30
5-33
5-20
5-22
5-31
5-32

0.406
0.338
0.290
0.319
0.405
0.415
0.330

0.356
0.305
0.292
0.283
0.290
0.295
0.307
0.291
0.278
0.290
0.272
0.296
0.272
0.290
0.290
0.305
0.267
0.345
0.301
0.301
0.301
0.267
0.292
0.295
0.352
0.296
0.301
0.320
0.283
0.304
0.301
0.441
0.291
0.310
0.336
0.296

0.074
0.125
0.115
0.125
0.067
0.139
0.098

0.061
0.105
0.102
0.085
0.108
0.101
0.115
0.109
0.116
0.112
0.122
0.106
0.113
0.112
0.108
0.105
0.099
0.059
0.124
0.108
0.092
0.099
0.102
0.101
0.094
0.108
0.092
0.140
0.085
0.124
0.108
0.094
0.109
0.101
0.126
0.106

0.567
0.533
0.542
0.530
0.531
0.584
0.541

0.575
0.568
0.598
0.542
0.514
0.538
0.590
0.521
0.516
0.535
0.516
0.513
0.622
0.535
0.514
0.568
0.506
0.609
0.543
0.518
0.590
0.506
0.598
0.538
0.621
0.494
0.590
0.636
0.542
0.524
0.518
0.636
0.521
0.609
0.636
0.513
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Appendix E (continued)

[02469] 5-34 0.307 0.115 0.590
[02479] 5-35 0.356 0.061 0.575
#5 Averages: 0.305 0.103 0.557
[012345] 6-1 0.326 0.082 0.618
[012346] 6-2 0.293 0.085 0.575
[012356] 6-23 0.287 0.095 0.625
[012456] 6-z4 0.288 0.102 0.600
[012347] 6-236 0.284 0.100 0.625
[012357] 6-9 0.275 0.094 0.575
[012457] 6-z11 0.271 0.089 0.554
[013457] 6-z10 0.272 0.100 0.534
[023457] 6-8 0.283 0.108 0.615
[012367] 6-5 0.281 0.088 0.625
[012467] 6-z12 0.281 0.082 0.575
[013467] 6-213 0.302 0.096 0.625
[012567] 6-26 0.302 0.090 0.625
[012348] 6-237 0.292 0.100 0.600
[012358] 6-z40 0.271 0.089 0.554
[012458] 6-15 0.273 0.094 0.519
[013458] 6-14 0.277 0.108 0.632
[023458] 6-239 0.274 0.094 0.528
[012368] 6-z41 0.283 0.096 0.575
[012468] 6-22 0.289 0.082 0.561
[013468] 6-224 0.274 0.094 0.528
[023468] 6-21 0.293 0.082 0.578
[012568] 6-z43 0.276 0.096 0.530
[013568] 6-225 0.287 0.095 0.625
[023568] 6-223 0.311 0.096 0.650
[014568] 6-16 0.270 0.094 0.527
[012378] 6-238 0.302 0.090 0.625
[012478] 6-217 0.274 0.082 0.525
[013478] 6-z19 0.277 0.083 0.573
[012578] 6-18 0.281 0.088 0.625
[013578] 6-226 0.288 0.102 0.600
[012678] 6-7 0.344 0.059 0.625
[012369] 6-z42 0.303 0.093 0.625
[012469] 6-z46 0.272 0.100 0.534
[013469] 6-27 0.321 0.094 0.700
[023469] 6-245 0.309 0.100 0.650
[012569] 6-z44 0.277 0.083 0.573
[013569] 6-228 0.304 0.093 0.600
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[012479]
[013479]
[012579]
[013579]
[023579]
[014579]
[024579]
[013679]
[023679]
[014679]
[014589]
[02468a]
#6 Averages:

[0123456]
[0123457]
[0123467]
[0123567]
[0123458]
[0123468]
[0123568]
[0124568]
[0134568]
[0234568]
[0123478]
[0123578]
[0124578]
[0134578]
[0123678]
[0124678]
[0123469]
[0123569]
[0124569]
[0123479]
[0123579]
[0124579]
[0134579]
[0234579]
[0123679]
[0124679]
[0134679]
[0234679]
[0125679]
[0135679]

6-z47
6-z49
6-748
6-34
6-33
6-31
6-32
6-30
6-229
6-250
6-20
6-35

7-2
7-4

7-3
7-9
7-236
7-13
7-11
7-8
7-6
7-14
7-238
7-z37
7-7
7-15
7-10
7-16
7-217
7-z12
7-24
7-27
7-26
7-23
7-19
7-29
7-31
7-25
7-20
7-28

0.284
0.303
0.292
0.293
0.293
0.273
0.326
0.330
0.303
0.302
0.344
0.419
0.295

0.349
0.304
0.285
0.288
0.286
0.292
0.275
0.293
0.276
0.303
0.286
0.288
0.272
0.296
0.337
0.320
0.295
0.294
0.296
0.277
0.292
0.286
0.295
0.304
0.305
0.285
0.351
0.295
0.286
0.309

0.100
0.096
0.100
0.082
0.085
0.094
0.082
0.096
0.093
0.096
0.094
0.074
0.092

0.061
0.121
0.125
0.129
0.117
0.113
0.125
0.113
0.133
0.130
0.137
0.129
0.108
0.113
0.061
0.148
0.121
0.121
0.113
0.129
0.113
0.117
0.113
0.121
0.130
0.125
0.054
0.121
0.137
0.139

0.625
0.600
0.600
0.578
0.575
0.519
0.618
0.700
0.625
0.625
0.637
0.675
0.596

0.579
0.584
0.515
0.531
0.602
0.523
0.522
0.504
0.612
0.568
0.509
0.531
0.517
0.595
0.576
0.598
0.516
0.520
0.595
0.523
0.523
0.602
0.506
0.584
0.558
0.515
0.636
0.516
0.509
0.523
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Appendix E (continued)

[0145679] 7-z18 0.272 0.108 0.517
[0124589] 7-21 0.332 0.094 0.596
[0124689] 7-30 0.293 0.113 0.504
[0134689] 7-32 0.294 0.121 0.520
[0125689] 7-22 0.299 0.119 0.577
[012468a] 7-33 0.406 0.109 0.636
[013468a] 7-34 0.303 0.130 0.568
[013568a] 7-35 0.349 0.061 0.579
#7 Averages: 0.302 0.115 0.552
[01234567] 8-1 0.364 0.067 0.575
[01234568] 8-2 0.325 0.132 0.561
[01234578] 8-4 0.304 0.144 0.558
[01234678] 8-5 0.316 0.133 0.567
[01235678] 8-6 0.325 0.133 0.556
[01234569] 8-3 0.319 0.117 0.567
[01234579] 8-11 0.306 0.137 0.558
[01234679] 8-13 0.305 0.123 0.527
[01235679] 8-z29 0.305 0.083 0.482
[01245679] 8-14 0.304 0.144 0.558
[01345679] 8-12 0.310 0.123 0.518
[02345679] 8-10 0.313 0.137 0.559
[01234589] 8-7 0.340 0.134 0.564
[01234689] 8-z15 0.305 0.083 0.482
[01235689] 8-18 0.305 0.129 0.535
[01245689] 8-19 0.369 0.104 0.5717
[01345689] 8-17 0.334 0.138 0.583
[01234789] 8-8 0.335 0.033 0.542
[01235789] 8-16 0.316 0.133 0.567
[01245789] 8-20 0.340 0.134 0.564
[01236789] 8-9 0.376 0.080 0.558
[0123468a] 8-21 0.397 0.100 0.594
[0123568a] 8-22 0.325 0.132 0.561
[0124568a} 8-24 0.396 0.133 0.567
[0123578a] 8-23 0.364 0.067 0.575
[0124578a] 8-27 0.310 0.123 0518
[0134578a] 8-26 0.319 0.117 0.567
[0124678a] 8-25 0.404 0.067 0.563
[0134679a] 8-28 0.396 0.054 0.567
#8 Averages: 0.335 0.112 0.554
[012345678] 9-1 0.386 0.125 0.546
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[012345679]
[012345689]
[012345789]
[012346789]
[01234568a}
[01234578a]
[01234678a]
[01235678a]
[01234679a]
[01235679a]
[01245689a]
#9 Averages:

[0123456789]
[012345678a]
[012345679a]
[012345689a]
[012345789a]
[012346789a]
#10 Averages:

9-2
9-3
9-4
9-5
9-6
9-7

9-9

9-10
9-11
9-12

10-1
10-2
10-3
10-4
10-5
10-6

0.352
0.343
0.340
0.376
0.390
0.352
0.389
0.386
0.406
0.343
0.434
0.375

0.425
0.434
0.433
0.435
0.425
0.464
0.436

0.167
0.167
0.166
0.141
0.153
0.167
0.167
0.125
0.134
0.167
0.127
0.151

0.056
0.111
0.111
0.132
0.056
0.111
0.096

0.566
0.566
0.582
0.569
0.558
0.566
0.583
0.546
0.539
0.566
0.595
0.565

0.593
0.637
0.636
0.601
0.593
0.632
0.615
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