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Abstract

This paper considers a model of contests in which players have general
preferences over the allocation of a valuable prize. We examine the im-
pact of identity-dependent externalities, represented by a network of payoff
spillovers, on competitive behavior in Tullock (1980) contests. The model
defines a novel network contest game for which we establish existence and
sufficient conditions for uniqueness of Nash equilibria, for any weighted
(undirected) network with heterogeneous links. Our uniqueness result pro-
vides a novel adaptation and extension of well-known results for network
games with linear best reply functions to the network contest game, which
features non-linear best replies. We also provide specific characterizations
and illustrations of equilibria for more tractable cases involving networks
with homogenous links and networks with heterogeneous links, but homoge-
nous node strengths. Variations in the network structure and the nature of
the externalities have intuitive consequences for equilibrium investment. In
general, the presence of positive externalities introduces free-riding incen-
tives, whereas negative externalities intensify competition, especially among
highly connected agents.
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1 Introduction

Consider the scenario in which a group of agents competes for a valuable resource

by lobbying a decision-making authority. Such competitive environments are com-

mon in many social and organizational settings. For example, a collection of local

community councils might lobby a city planning commission charged with select-

ing the location for a new public facility. Employees in an organization may engage

in influence activities in hopes of convincing a supervisor to appoint them as the

project leader on a lucrative new account. Similarly, faculty members in different

departments across a university may exert costly efforts in order to sway a dean’s

decision to allocate a new hiring line or some other indivisible resource. In these

and other similar examples, the competition between agents can be modeled as a

type of imperfectly-discriminating contest, in which agents who invest more have

a higher probability of “winning” than those who invest less.

The scenarios described above also highlight another common feature of com-

petitive environments. While agents prefer to win the contest, they generally also

care about how (or to whom) the prize is allocated when they do not win. For

instance, each local community council would likely prefer to see the new public

facility located in a neighboring community than in a community located on the

other side of the city. An employee who is not appointed as a new project leader

may be happier if her close colleague or friend is selected than if the appointee

is her professional rival within the firm. Collaborations between faculty members

across different departments, or even within the same unit, may influence their

preferences over how a dean allocates a valuable hiring line or funding for a new

initiative. Each of these examples serves to illustrate that agents in contests may

have very general preferences over how the prize is allocated.

In this paper, we develop and analyze a model of contests that accommodates

these kinds of more general preferences over outcomes. Motivated by the examples

given above, we take as our starting point the standard Tullock (1980) model of

imperfectly-discriminating contests. The conventional assumption in this model

is that agents who lose are indifferent to the identity of the winner. We relax

this assumption by introducing identity-dependent externalities (see, e.g., Jehiel,

Moldovanu and Stacchetti, 1996), represented by a network of spillovers that stem

from the allocation of the prize. In particular, each link gij in a weighted network

graph G summarizes the payoff externalities imposed on player i when the contest

is won by player j. We assume that G is symmetric (i.e., the network is undirected)
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and that the externalities are all of a magnitude bounded by the value of the

prize, such that winning the contest remains the most preferred outcome for every

agent. The addition of this network-dependent component to the payoff functions

transforms the game into a particular kind of network game, which we henceforth

refer to as a network contest game. Our main objective is to understand how the

network structure and the nature of the identity-dependent externalities affect the

investment decisions (i.e., lobbying activity) of the competing agents.

For instance, when deciding how aggressively to lobby the city planning com-

mission, communities that are more centrally situated—such that many other

communities are easily accessible—face stronger incentives to reduce or even with-

draw their participation. Instead, they can free-ride on the lobbying investments

of their neighboring communities. This is particularly true if their neighbors are,

themselves, less well-connected and face weaker free-riding incentives. When the

allocation of the public facility generates stronger positive externalities for neigh-

boring communities, those free-riding incentives are amplified, further reducing

the investment incentives for well-connected communities.

Similarly, a network of rivalries and friendships in an organizational unit will

generally affect the pattern of influence activities by employees competing for a

promotion or other valuable resource. In general, negative externalities increase

the stakes of competition because losing when a principal rival wins can be espe-

cially harmful. If agents have many rivals, these incentives will tend to increase

equilibrium investment. Yet, even for an employee with few rivals, if all of the

players other than her rival face weak incentives for investment, there may be

equilibria in which localized competition between rivals emerges endogenously.

For the general model, we focus on several key questions concerning equilib-

rium investments. For instance, does a Nash equilibrium always exist? Under what

conditions on the primitives of the model is there a unique equilibrium? How do

the relative strengths of the identity-dependent externalities, or the density of the

underlying network structure impact the agents’ equilibrium investments? Prior

literature provides an answer to many of these questions for a large class of net-

work games, which are characterized by linear best response functions (e.g., see

Bramoullé, Kranton and D’Amours, 2014). However, the network contest game de-

veloped in this paper possesses non-linear best replies and, therefore, falls outside

of this well-studied class of network games.1 Nevertheless, we demonstrate that

1There are several other papers that examine network games with non-linear best reply
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several key insights provided by the prior literature—in particular by Bramoullé,

Kranton and D’Amours (2014)—can be suitably adapted to the network contest

game.

It is a well-known result that in the standard Tullock (1980) contest game

without externalities, there exists a unique Nash equilibrium. Moreover, the equi-

librium is in pure strategies, and it is symmetric. Our first main result (Theorem 1)

establishes the existence of a Nash equilibrium in the network contest game (also

in pure strategies) for a very general class of networks. Our second main result

(Theorem 2) provides sufficient conditions for there to be a unique Nash equilib-

rium. In contrast with the standard model, uniqueness is not always guaranteed

in a network contest game. To understand this difference, consider the effect of

the externalities on agents’ investment incentives, as we briefly described above.

Positive externalities introduce incentives for agents to free-ride on the invest-

ments of their (positively linked) neighbors in the network, while negative exter-

nalities tend to increase the stakes of winning and losing. Furthermore, because

these spillovers are embedded within a more complex network of externalities, the

likelihood with which any agent benefits from their positive links, or is harmed by

their negative links, is endogenous to the investment decisions made by all of the

agents in the contest. We show that when the impact of the externalities on these

incentives is sufficiently strong, in a sense that depends on the underlying network

structure, there may be multiple equilibria. Conversely, provided the strength of

the externalities is not too large, uniqueness is guaranteed.

The main difference between our model and the class of network games ex-

amined by Bramoullé, Kranton and D’Amours (2014) is that the best response

functions in our network contest games are non-linear. As such, their main re-

sults cannot be directly applied to our setting. Nevertheless, we follow a parallel

approach, exploiting the fact that every network contest game is a best-response po-

tential game (Voorneveld, 2000), to derive a set of sufficient conditions for unique-

ness that builds on the same key insights in Bramoullé, Kranton and D’Amours

(2014). Formally, a game is a best-response potential game if there exists a best-

response potential function, P, that generates the same best replies as the network

contest game. Then, we can derive sufficient conditions for uniqueness by deriving

conditions that ensure strict concavity of P.

functions, mostly using techniques based on variational inequalities, such as Melo (2018), Parise
and Ozdaglar (2019), Zenou and Zhou (2022), and Allouch (2015). However, these approaches
likewise do not apply to our setting.
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One of the key conditions for our Theorem 2 relates the strength of the exter-

nalities to the magnitude of the lowest eigenvalue, λminpGq, of the network graph,

G. This condition also plays a crucial role in the approach of Bramoullé, Kranton

and D’Amours (2014) for network games with linear best replies. As discussed

in Bramoullé, Kranton and D’Amours (2014), the lowest eigenvalue captures the

“two-sidedness” or “bipartiteness” of the network graph. When the lowest eigen-

value (which is negative) is sufficiently large in magnitude, the amplification of

agents’ interactions can lead to multiple equilibria.

These insights can be most clearly demonstrated by means of an example.

While our main results apply to more general weighted networks that allow for con-

siderable heterogeneity (with positive and negative links, all of different weights),

we assume for the purposes of this illustration that all (non-zero) links are ho-

mogenous in sign and weight.

An illustrative example. Consider a contest between six agents arranged on a

circle network with homogenous link weights, as in Figure 1a. The graph depicts

only the non-zero links, all of which are equal to one. We introduce α P r0, 1q

as a parameter that governs the strength of the externalities. Together with the

network graph G that corresponds to Figure 1a, this implies that each agent

i directly connected to the winning agent j (i.e., the ones on either side of j)

experiences a positive payoff spillover equal to α.

Each agent i chooses an investment xi ě 0, with linear cost cpxiq “ xi. Let

Pipxq denote the probability that player i wins the contest when the investment

profile is x, according to the Tullock (1980) lottery contest formulation. Each

agent has the same valuation for the prize, normalized to be V “ 1. Thus, the

expected payoff for i, as a function of x, α, and G is equal to πipxq “ Pipxq´xi`
ř

j αgijPjpxq.

As we show in Proposition 3, for every α P r0, 1q, there exists a symmetric

equilibrium in every regular network with homogenous links.2 For the example

given here, the symmetric equilibrium investment is x˚ “ p5 ´ 2αq{36. Thus,

consistent with the intuition described above, as the strength of the externality

(α) increases, free-riding incentives lower the equilibrium investment relative to the

standard contest without externalities. However, this is not the only effect of an

increase in α. In particular, when α is at least 0.5, there exists a pair of specialized

2When non-zero links are homogenous, a network is regular if every player has the same
number of non-zero links; i.e., if the corresponding adjacency matrix is regular.
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gij “ 1

(a) A circle network

gij “ 1

(b) A bipartite network

Figure 1. An illustration—the circle network and the bipartite network, each with n “ 6
agents and positive externalities (all of the links shown have the same weight,
gij “ 1). The bipartite network (λminpGq “ ´3) is more “two-sided” than the
circle network (λminpGq “ ´2).

equilibria, in each of which three players (who form a maximal independent set in

the network) are active, while the other three players choose not to invest because

they can free-ride on their (two) active neighbors. With six agents in the contest,

there are two such configurations, corresponding to the two specialized equilibria.

To illustrate the role played by the lowest eigenvalue, we compare the circle

network to another regular network structure with six agents; the (complete)

bipartite network, shown in 1b. The bipartite network consists of two separate

sets of agents. The agents on one side of the graph are connected to every agent

on the other side of the graph but are not connected to each other. Thus, each

agent has one additional neighbor compared with the circle network. Moreover,

the lowest eigenvalue is λmin “ ´2 for the circle network and λmin “ ´3 for

the bipartite network. What are the impacts of these differences between the

networks? First, the symmetric equilibrium investment is systematically lower

in the bipartite network, with x˚ “ p5 ´ 3αq{36. Second, since the externalities

are amplified more by the two-sided nature of the bipartite network, there are

specialized equilibria at lower values of α than in the circle network. Specifically,

a specialized equilibrium—with the set of agents on one side of the network active

and those on the other side inactive—exists for any α ě 1{3.

Outline of the paper. In the next section, we introduce the general theoretical

model. Our main theoretical results, presented in Section 3, are those establish-

ing existence (Theorem 1) and sufficient conditions for uniqueness (Theorem 2)
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of Nash equilibrium in the network contest game. Regarding the latter, while

Bramoullé, Kranton and D’Amours (2014) exploit the theory of potential games

(Monderer and Shapley, 1996) to derive their results, our formulation does not

admit an exact potential function. Instead, we establish that the network contest

game is a best-response potential game (Voorneveld, 2000), which allows us to take

a different, but analogous approach. The uniqueness theorem can be broken into

two cases. On the one hand, when all externalities are negative (or zero), the

lowest-eigenvalue condition is sufficient on its own. On the other hand, if there

are any strictly positive externality flows, we provide, via direct argument, two

other conditions that, when satisfied together with the lowest-eigenvalue condi-

tion, are sufficient for there to be a unique equilibrium. In this respect, our two

main theorems establish new results extending both the well-developed literature

on contest theory and the growing body of work studying strategic behavior in

network games.

In addition to the fully general results, we provide closed-form characteriza-

tions and illustrations of equilibria for two more tractable settings. The first (see

Section 4) is the setting presented in the illustrative example above, in which any

non-zero links are homogenous. That is, all externality flows are identical in sign

and magnitude.3 For this case, we examine two broad classes of network struc-

tures: regular networks and (a subclass of) core-periphery networks, to highlight

key characteristics of the relationship between externalities, network properties,

and equilibrium behavior.

For regular networks, there exists a symmetric equilibrium in every network

contest game. Moreover, comparative statics with respect to the size of the exter-

nality and the density of the network are consistent with the intuition highlighted

by the motivating examples given above. For instance, positive externalities in-

troduce incentives for players to free-ride on their neighbors’ investments, leading

to lower equilibrium investment. Conversely, negative externalities drive up the

effective value of winning the contest, intensifying competition and increasing

equilibrium investment. Each of these effects is amplified as the network becomes

more densely connected, as captured by an increase in the common degree for

regular networks. When externalities are negative, or else positive but sufficiently

small, the symmetric equilibrium is unique. Nevertheless, as demonstrated by the

3In a companion paper, we report the results of a controlled laboratory experiment designed
to test several key comparative statics in network contest games with homogenous links; see
Boosey and Brown (2022).
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illustrative example, when externalities are positive and sufficiently strong, there

may also exist a specialized equilibrium, in which some subset of the players choose

to be inactive (invest nothing) in the contest.

Similarly, semi-symmetric equilibria in our subclass of core-periphery networks

can also take the form of a specialized equilibrium, with some players choosing

to be inactive, when there are sufficiently strong, positive externalities. In par-

ticular, highly connected core players, facing stronger free-riding incentives than

peripheral players, will choose to invest nothing in equilibrium if they are con-

nected to sufficiently many peripheral players and the (positive) externalities are

sufficiently strong. In contrast, when the prize allocation generates strong nega-

tive externalities, the core players—who are more exposed by the structure of the

network—substantially increase their equilibrium investment compared to that of

the peripheral players.

The second more tractable setting we examine allows for some heterogeneity

across links but retains homogeneity with respect to node strength (see Section 5).

That is, links may have different weights in the network, but for each player, the

sum of the weights on all of their links (their node strength) is the same. We

provide several examples to distinguish this setting from the homogenous-links

case. For instance, in a network with both small positive externalities and strong

negative externalities (through one fierce rival), we demonstrate that there may be

both a symmetric equilibrium with full participation and asymmetric equilibria in

which competition is localized and isolated to one of the rivalries. We also relate

our model to a network contest game between competing alliances.

Finally, to provide some illustration of the model’s generality, we introduce two

examples (using similar network structures as for the other two sections) in which

there are both heterogeneous links and heterogeneous node strengths (Section 6).

We provide a brief overview of the related literature in Section 7 and conclude in

Section 8.

2 The Model

Consider the environment with a set of players N “ t1, . . . , nu and a weighted

network G, where gij P R represents the weight on a link between two agents i

and j. We assume the network is undirected, such that gij “ gji and adopt the

convention that gii “ 0 for all i P N .

Each individual competes in a contest by choosing a level of investment (or
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effort) xi ě 0. All players have the same linear cost of effort function, cpxiq “ xi.

Let x´i denote the vector of investments chosen by all individuals other than i

and suppose the probability of player i winning the contest is given by the Tullock

(1980) lottery contest success function. That is,

Pipxi,x´iq “

$

&

%

1
n
, if

řn
h“1 xh “ 0,

xi
řn

h“1 xh
, otherwise.

[1]

The winner of the contest receives a prize V ą 0. We assume, without loss of

generality, that the value of the prize is normalized to V “ 1. In the standard

contest setting, player i’s payoff from winning is V “ 1, while the payoff from

losing is zero, regardless of who among the other players wins the contest. In such

a setting, it is a well-known result (see, e.g., Szidarovszky and Okuguchi, 1997)

that the unique equilibrium is symmetric, given by xi “ x̄ for all i “ 1, . . . , n,

where

x̄ “
n´ 1

n2
[2]

The main innovation in our model is that there are identity-dependent externalities

generated by the allocation of the prize that, together with the network, lead to

different possible payoffs for player i when she does not win the contest.

In particular, if a player does not win the contest, her payoff depends on

whether or not she is linked to the winner, and if so, on the weight of the link

between them. The allocation of the prize to a player i imposes an externality gij

on each other agent j. As is natural, if gij “ 0, then no externality is imposed on

player j. We make the following assumption on the magnitude of the externalities.

Assumption 1. All externality flows are strictly smaller (in magnitude) than the

value of the prize, V “ 1.

Assumption 1 has the appealing feature that it ensures a player never prefers

to lose the contest than to win it, holding fixed her level of investment.4 In order

to facilitate Assumption 1, it will be convenient to normalize the link weights

such that externalities are given by αgij, where α P r0, 1q and gij P r´1, 1s for all

i, j P N . For instance, suppose the true link weights are given by hij P p´1, 1q. Let

4Strictly speaking, we could allow negative externalities that are larger in magnitude than
the prize, and require only that positive externalities are no greater than V .
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α “ maxti,ju|hij| and define the normalized link weights by gij “ hij{α, provided

α ‰ 0.5 Throughout the paper, we therefore assume from the outset that gij P

r´1, 1s for all i, j P N , and that the externality imposed on player j when player

i wins the contest is given by the term αgij with α P r0, 1q.6 It follows that the

expected payoff to player i from a profile of investments pxi,x´iq can be written

as

πipxi,x´i;α,Gq “ Pipxi,x´iq ´ xi ` α
n
ÿ

j“1

gijPjpxj,x´jq. [3]

Hereafter, we refer to the game described above as a network contest game, repre-

sented in normal form as Γ “ pXi, πiq
n
i“1 where Xi “ R` represents the strategy

set for player i, and πip¨q is the payoff function defined in [3].

3 Equilibrium Analysis

3.1 Existence and Uniqueness

Existence of equilibrium.—For a given profile x, we denote the set of active agents

(those for whom xi ą 0) by A and the set of inactive agents by N ´ A. We

start our analysis by noting that any strategy profile with only one active agent

cannot be a Nash equilibrium. Indeed, for a strategy profile x with xj ą 0 and

x´j “ 0, player j’s best response function is empty. Similarly, given α ă 1, it

is also straightforward to show that x “ 0 is not an equilibrium. Thus, we can

restrict attention to strategy profiles with at least two active agents.

Consider player i and fix a profile x´i with at least one strictly positive invest-

ment. The expected payoff for player i in equation [3] can be rewritten as

πipxi,x´i; Gq “
xi

řn
h“1 xh

´ xi ` α
n
ÿ

j“1

gij
xj

řn
h“1 xh

for all xi ě 0 and all x´i ‰ 0. Note that B2πi{Bx
2
i ă 0 so that the payoff functions

are strictly concave. Thus, player i’s best response to x´i ‰ 0 is a well-defined,

5Note that α “ 0 can only occur if all link weights are zero, i.e., only if the network is the
empty network. Thus, when α “ 0, simply let gij “ hij “ 0.

6This normalization also implies that maxti,ju|gij | “ 1. That is, the strongest link weight is
equal to 1 in magnitude. Assumption 1 is then guaranteed by noting that α ă 1.
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single-valued function given by

fipx´i;α,Gq “ max

$

&

%

0,

«

ÿ

h‰i

xhp1´ αgihq

ff0.5

´
ÿ

h‰i

xh

,

.

-

. [4]

As in the standard contest game, the best response functions are non-linear. As

such, the main analysis of uniqueness and stability for network games developed

in Bramoullé, Kranton and D’Amours (2014) cannot be directly applied. More-

over, the payoff functions do not satisfy the assumptions on the objective function

required to apply the variational inequalities approach followed by Parise and

Ozdaglar (2019) and Melo (2018) for network games with non-linear best replies.7

When α “ 0, the best response functions are, as expected, the same as those

for the standard contest game, for which existence and uniqueness are well estab-

lished. For α ‰ 0, the issue is not quite as straightforward. To prove the existence

of a pure strategy Nash equilibrium, we rely on results from Reny (1999) and Bagh

and Jofre (2006), to deal with the fact that payoff functions are discontinuous at

x “ 0.

Theorem 1 (Existence). The network contest game possesses a pure strategy Nash

equilibrium.

Here, we highlight the main idea behind the proof of Theorem 1, which is

detailed along with all of the other proofs in Appendix A. In particular, existence

follows from Theorem 3.1 in Reny (1999). In order to apply Reny’s theorem, we

establish that the network contest game is compact, quasi-concave, and better-

reply secure. For the last property, we show that the game is payoff secure and

weakly reciprocal upper semicontinuous (wrusc), which is a condition introduced

by Bagh and Jofre (2006) who prove that payoff security and wrusc imply better-

reply security.

Next, we provide a characterization of equilibrium profiles. The following

lemma provides a straightforward characterization of the set of Nash equilibria for

the network contest game with network G and α P r0, 1q.8

Lemma 1. An investment profile x with active agents A is a Nash equilibrium if

and only if |A| ě 2 and

7They each consider games in which the objective function depends on xi and a neighborhood
aggregate,

ř

h gihxh, but does not depend otherwise on xj if gij “ 0. In our setting, the payoff
of an agent i depends on each xj through the CSF, even if gij “ 0.

8As it follows directly from the best response functions, we omit the proof.
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(i) for all i P A,

ÿ

jPA

p1´ αgijqxj ´ xi “

˜

ÿ

jPA

xj

¸2

[5]

(ii) for all i P N ´ A,

ÿ

jPA

p1´ αgijqxj ď

˜

ÿ

jPA

xj

¸2

[6]

Lemma 1 is particularly useful when it comes to constructing closed-form ex-

pressions for equilibria in certain special cases of the more general environment.

We introduce several of these in Sections 4–6.

Uniqueness of equilibrium.—We turn next to the question of uniqueness. Since

the game does not admit linear best replies, we cannot directly apply the results

from Bramoullé, Kranton and D’Amours (2014) in order to characterize a sufficient

condition for uniqueness. However, using a similar approach, combined with direct

argument, we are able to provide a related characterization of sufficient conditions

under which the network contest game possesses a unique equilibrium.

To facilitate the exposition, we provide a general description of our approach.

First, we show that while the contest game with network externalities is not an

exact potential game, it is a best-response (or best-reply) potential game (Voorn-

eveld, 2000). That is, there exists a function P (called a BR-potential) with the

same best replies as the network contest game. Thus, the set of Nash equilibria in

the game coincides with those strategy profiles that maximize the BR-potential,

P.

Second, we partition the domain X of the BR-potential P into two subsets:

XH , consisting of strategy profiles x such that
ř

h xh ě 0.5, and XL, consisting

of strategy profiles x such that
ř

h xh ă 0.5. For XH , the BR-potential P is

strictly concave in x as long as rI ` αGs is positive definite, which is true if and

only if α ă 1{|λminpGq|, where λminpGq is the lowest eigenvalue of G. This is

the familiar sufficient condition provided by Bramoullé, Kranton and D’Amours

(2014) for uniqueness in network games with linear best replies.

When all links are negative (gij ď 0 for all i, j), we show directly that any

equilibrium profile x˚ is in XH , in which case the condition above is alone sufficient

for uniqueness. However, when there is at least one strictly positive link (gij ą 0

for some i, j), we must also consider profiles x P XL. The difference is that for

XL, the BR-potential P need not be strictly concave in x, even if α ă 1{|λminpGq|.
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That is, the condition that rI` αGs is positive definite does not assure that P is

strictly concave over XL. Nevertheless, we show directly that if there exists a Nash

equilibrium in XL, we must have either α ą 0.5 (if the Nash equilibrium involves

at least one inactive agent) or α ą 0.5rpn ´ 2q{∆pGqs, where ∆pGq ” maxi di

is the maximum node strength in the graph (if the Nash equilibrium involves all

agents being active).

Before stating the result, we first introduce the definition of a best-response

potential game (Voorneveld, 2000) and the BR-potential function, P.

Definition 1. A game Γ “ pXi, πiq
n
i“1 with strategy space X “ X1 ˆ ¨ ¨ ¨ ˆ Xn

and payoff functions πi : X Ñ R for players i P N “ t1, . . . , nu is called a Best-

Response potential game (BR-potential game) if there exists a function P : X Ñ R
such that

arg max
xiPXi

Ppxi,x´iq “ arg max
xiPXi

πipxi,x´iq [7]

for any i P N and any x´i P X´i. The function P is called a BR-potential for Γ.

Next, we construct a BR-potential for the network contest game. Note that,

for any x P X, we let |Apxq| denote the number of nonzero entries in the vector x

(i.e., the number of active agents under profile x). In addition, let Xtot “
ř

h xh

be the sum of investments for the profile x.

Lemma 2. The following function, P, is a BR-potential for the network contest

game.

Ppx1, . . . , xnq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ř

jăk

p1´ αgjkqxjxk ´
1
3
pXtotq

3 if |Apxq| ě 2,

´1
3
xj

„

max
i‰j
p1´ αgijq

2

if Apxq “ tju

´1
3
n´1
n

if |Apxq| “ 0.

[8]

The proof involves showing that the best responses coincide with those of the

game, and closely follows the approach used by Ewerhart (2017) for the stan-

dard contest game without externalities.9 Then, by Proposition 2.2 of Voorneveld

(2000), a strategy profile x is a Nash equilibrium of the game if and only if it

maximizes the BR-potential, P. Therefore, if there exists a unique maximizer for

9Moreover, setting α “ 0 yields the same BR-potential he constructs.
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P, it is also the unique Nash equilibrium of the network contest game. We can

now state our uniqueness result.

Theorem 2 (Uniqueness). Consider the network contest game with network G

and externality α P r0, 1q.

(i) If all links are negative, gij ď 0 for all i, j, then there is a unique Nash

equilibrium if α ă 1{|λminpGq|; i.e., if α is less than the magnitude of the

lowest eigenvalue of G. Furthermore, when this condition holds, the unique

equilibrium involves total investment
ř

h xh ě 0.5.

(ii) If there is at least one strictly positive link, gij ą 0 for some i, j, then the

following three conditions are when jointly satisfied, sufficient for there to

exist a unique Nash equilibrium;

(U1) α ď 0.5;

(U2) α ď 0.5 pn´2q
∆pGq

; and

(U3) α ă 1
|λminpGq|

.

Furthermore, whenever these conditions are satisfied, the unique equilibrium

involves total investment
ř

h xh ě 0.5.

It is worth noting that, depending on the network, one of the three conditions

in Theorem 2, part (ii) will always imply the other two. For instance, if ∆pGq ”

maxi di ď n´2, then condition (U1) implies condition (U2). Otherwise, condition

(U2) implies condition (U1). Similarly, if in addition to ∆pGq ď n ´ 2 we have

|λminpGq| ě 2, then condition (U3) is sufficient on its own. In particular then,

for many networks, the condition derived by Bramoullé, Kranton and D’Amours

(2014) for network games with linear best replies (our condition (U3)) is also

sufficient for the network contest game.

It is also straightforward to show that these conditions are in general sufficient,

but not necessary for uniqueness. Consider the complete network with gij “ 1 for

all i ‰ j and suppose α P p0.5, 1q. The lowest eigenvalue of G is λminpGq “ ´1,

so that condition (U3) is always satisfied. However, conditions (U1) and (U2) are

(by assumption) not satisfied. Nevertheless, there exists a unique equilibrium for

all values of α P r0, 1q; a result we establish in Section 4 as Proposition 2.
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3.2 Specialized equilibria

In the next two sections of the paper, we provide results and examples charac-

terizing the equilibria for various classes of networks, in order to highlight the

interaction between properties of the network structure and the strength of the

externalities in determining equilibrium investments. In several cases, we identify

equilibria with a particular structure. To ease the exposition, it is convenient to

define these equilibria, which we refer to as specialized equilibria, before introduc-

ing the different classes of networks.

Definition 2. A specialized equilibrium is a Nash equilibrium x˚ in which the set

of active players A forms a maximal independent set. That is, for any two players

i, j P A, gij “ 0, while for every k P N ´ A, gkj ‰ 0 for some j P A.

For a given network G and any set of active agents A, let diA “
ř

jPA gij denote

the node strength of agent i P N derived solely from links to active agents. Then,

define dN´A,A “ miniPN´A d
i
A. Note that dN´A,A may be negative or positive.

Finally, let nA “ |A| denote the number of active agents in A.

Proposition 1. Consider the game with network G and α P r0, 1q.

(i) There exists a specialized equilibrium, x˚, with active agents A and inactive

agents N ´ A, if and only if the subset of active players A is a maximal

independent set, dN´A,A ą 1, and α ě 1
dN´A,A

.

(ii) In any specialized equilibrium, x˚i “ x̄A for all i P A, where x̄A “
nA´1
n2
A

.

When αdiA is sufficiently large, an inactive player i is content to forgo competing

for the prize because she can free-ride off her active neighbors and enjoy the

(net) expected positive externalities that accrue if one of her neighbors wins. The

greater the node strength that accrues from the active neighbors, the lower the

externality can be for the inactive player to opt out of the competition, but diA

must always be strictly greater than one for all inactive players in order for a

specialized equilibrium to exist (since α ă 1). Moreover, since αgij ă 1 for all

links pi, jq P NˆN , it must also be the case that every inactive agent be positively

linked with at least two active agents.

4 Equilibria with Homogenous Links

In this section, we examine the special case of networks with homogenous links—

network structures in which all of the (non-zero) links have identical weights. In
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light of the model setup, it is without loss of generality to consider just two classes

of networks: (i) a Positive externality network, with gij P t0, 1u for all i, j; and

(ii) a Negative externality network, with gij P t0,´1u for all i, j. Our first result

characterizes the full set of equilibria for the case in which the network is complete

(with homogenous links).

Proposition 2. Consider the game in which G is a complete network, such that

gij “ ḡ for all i ‰ j, where either ḡ “ 1 or ḡ “ ´1. For any α P r0, 1q, there

exists a unique Nash equilibrium, in which all players are active and choose the

symmetric investment level

x̄α “
pn´ 1qp1´ αḡq

n2
.

Since the proof is straightforward, we instead highlight the underlying intu-

ition. In a complete network with homogenous links, every non-winning agent

is always impacted (symmetrically) by the winning agent, rendering the exter-

nalities identity-independent. As a result, the game can be reformulated as a

standard contest without externalities but with a modified prize value equal to

the difference between the payoff from winning and the payoff from losing, which

is V ´ αḡ “ 1 ´ αḡ (given the normalization). Uniqueness then follows from the

reformulation of the game as a standard contest (for which there is always a unique

equilibrium).

The comparative statics with respect to α have a natural interpretation. When

the externality flows are all positive (αḡ ą 0), the effective prize in the contest is

reduced (by more as α increases), lowering the equilibrium investment relative to

a contest without externalities. Conversely, when the externality flows are all neg-

ative (αḡ ă 0), the effective prize is increased (by more as α increases), thereby

increasing the equilibrium investment as players face stronger free-riding incen-

tives. Despite this being a special case in which the network structure eliminates

the identity-dependent component of the model, the basic intuition extends nat-

urally to symmetric equilibria in the class of regular networks with homogenous

links, which we discuss next.

4.1 Regular Networks with Homogenous Links

For a given network G, we define the associated adjacency matrix AG by the

entries, aij “ 1 if gij ‰ 0 and aij “ 0 otherwise. Thus, an adjacency matrix is
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complete if aij “ 1 for all i ‰ j and aii “ 0 for all i P N . An adjacency matrix is

regular of degree d if
ř

j aij “ d for all i P N .

For the case of homogenous links, the adjacency matrix for a Positive external-

ity network G with ḡ “ 1 is simply A “ G. Similarly, for a Negative externality

network G with ḡ “ ´1, the associated adjacency matrix is simply A “ ´G.

Thus, as long as links are homogenous, we refer to the network graph G as regular

of degree d if
ř

j|gij| “ d for all i P N .

The next result establishes existence of a symmetric equilibrium in any regular

network G with homogenous links, for any α P r0, 1q.

Proposition 3. Consider the network contest game in which the network G has

homogenous links, such that gij P t0, ḡu where either ḡ “ 1 or ḡ “ ´1.

Suppose G is regular of degree d P t0, . . . , n´1u. Then for any α P r0, 1q, there

exists a symmetric, pure strategy Nash equilibrium, x˚ “ px˚, . . . , x˚q, where

x˚ “
n´ 1´ αḡd

n2
. [9]

Note that, as should be expected, when α “ 0 or d “ 0 (which is the case when

G is the empty network), we obtain x˚ “ x̄, which corresponds to the standard

contest with no externalities. Furthermore, when d “ n ´ 1, G is the complete

network and we obtain x˚ “ x̄α.

In addition, comparative statics with respect to α and d have natural and in-

tuitive interpretations. For positive externalities (ḡ “ 1), free-riding incentives

reduce the equilibrium investment compared to a standard contest without exter-

nalities. For negative externalities (ḡ “ ´1), the effective value of winning the

contest increases so that competition intensifies, pushing equilibrium investment

higher than in the standard contest. For both positive and negative externalities,

these effects are amplified as α (the strength of the externality) increases, and as

d increases, which corresponds to an increase in network density (from the empty

network when d “ 0, to the complete network when d “ n´ 1).

When externalities are negative (ḡ “ ´1), the symmetric equilibrium is also

unique (by Theorem 2 and α ă 1). However, unlike the complete network, for

positive externalities, the symmetric equilibrium in Proposition 3 may not be the

only equilibrium. Combining Proposition 1 with Proposition 3, it follows that for

regular networks with homogenous links, there may exist both a symmetric equi-

librium and a specialized equilibrium. More concretely, whenever the graph has a
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x˚ “ 5´2α
36

x˚

x˚

x˚

x˚

x˚

(a) Symmetric equilibria, α P r0, 1q

0

0 0

2
9

2
9

2
9

2
9

2
9

2
9

0

0

0

(b) Specialized equilibria, α P r0.5, 1q

Figure 2. Equilibria in the circle network with n “ 6 agents. Panel (a): A symmetric
equilibrium with all agents active exists for any α P r0, 1q. Panel (b): When
α ě 0.5, there are two specialized equilibria, each characterized by a maximal
independent set of three agents, with each active agent investing x̄A “ 2{9.

maximal independent set A with α ě 1{dN´A,A, there exists a specialized equilib-

rium.10 Moreover, in many cases, there may exist multiple specialized equilibria

corresponding to different maximal independent sets of agents. This potential for

a multiplicity of equilibria is highlighted by the following two examples, previously

introduced for the illustrative example in the Introduction.

Example 1 (A circle network with n “ 6). In the circle network, the players are

arranged around a circle and linked to the two agents on either side. Suppose

the externalities are positive, such that ḡ “ 1. Thus, the circle network is regular

of degree d “ 2. By Proposition 3, there exists a symmetric equilibrium for any

α P r0, 1q, in which all agents are active and each invests x˚ “ 5´2α
36

; see panel

(a) in Figure 2. Moreover, for n “ 6, there are two maximal independent sets, as

shown in Figure 2, panel (b). For each of these, nA “ 3, so that each active agent

invests x̄A “ 2{9. Furthermore, since every inactive player is linked to two active

players, dN´A,A “ 2. Thus, the specialized equilibria exist if and only if α ě 0.5.

Example 2 (A bipartite network with n “ 6). G is a bipartite graph if the nodes

(agents) can be partitioned into two disjoint sets A and B, with gij “ 0 for all

i, j P A and gkl “ 0 for all k, l P B. Figure 3 illustrates a complete bipartite

graph with n “ 6 agents. Suppose externalities are positive, such that ḡ “ 1.

Then the network is regular of degree d “ 3. By Proposition 3, there exists a

10Note that in some cases, such a maximal independent set may not exist. For instance,
consider the circle network with n “ 5 agents. In this network, every maximal independent set
is of order at most one, meaning that there is always at least one inactive agent who is connected
to only one active agent, i.e., dN´A,A ď 1. In this case, a specialized equilibrium does not exist
for any α ă 1.

18



x˚ x˚ “ 5´3α
36 x˚

x˚ x˚ x˚

(a) Symmetric equilibria, α P r0, 1q

2{9 2{9 2{9

0 0 0

0 0 0

2{9 2{9 2{9

(b) Specialized equilibria, α P r1{3, 1q

Figure 3. Equilibria in the complete bipartite network with n “ 6 agents. Panel (a): A
symmetric equilibrium with all agents active exists for any α P r0, 1q. Panel
(b): When α ě 1{3, there are two specialized equilibria, each characterized by
a maximal independent set of three agents, with each active agent investing
x̄A “ 2{9.

symmetric equilibrium for any α P r0, 1q, in which all agents are active and each

invests x˚ “ 5´3α
36

; see panel (a) in Figure 3. Moreover, the three agents on the

top and the three agents on the bottom represent the two maximal independent

sets (as well as the two elements of the partition); see panel (b) in Figure 3. Given

nA “ 3 , each active agent invests x̄A “ 2{9. Since the graph is a complete

bipartite graph, each inactive agent in a specialized profile is linked to all of the

active agents, so that dN´A,A “ 3. Thus, the specialized equilibria shown exist if

and only if α ě 1{3.

Although the prior examples illustrate specialized equilibria in the context of

regular networks, specialized equilibria may also arise in other classes of networks.

To underscore this point, consider the example of a line network with n “ 5 agents

and homogenous links, which is not regular.11

Example 3 (A line network). Suppose externalities are positive (ḡ “ 1). In the

line network, whenever n is odd, there is a specialized equilibrium associated with

the maximal independent set consisting of the endpoints of the line and every

second node in between (see Figure 4). Every inactive agent is connected to two

active agents, so that dN´A,A “ 2. Thus, the specialized equilibrium exists if and

only if α ě 0.5.

11Note that, for a line network with an even number of agents (n even), if the set of active
agents forms a maximal independent set, there is always at least one inactive agent who is linked
to just one active agent. Thus, by Proposition 1, there does not exist a specialized equilibrium
for the line if n is even.
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2{9 0 2{9 0 2{9

Figure 4. A specialized equilibrium for the line network with n “ 5 agents exists if and
only if α ě 0.5. The center agent and the agents at the endpoints of the line
form a maximal independent set. Each active agent invests x̄A “ 2{9.

Further examples of specialized equilibria also arise in the context of another

commonly studied class of networks; those that exhibit a core-periphery structure.

4.2 Core-Periphery Networks with Homogenous Links

The class of core-periphery networks is comprised of networks consisting of two

types of agents—a set of highly connected core players, and a set of less connected

periphery players. While this class of networks is very broadly defined, we restrict

attention to a subset of the class that includes many of the most commonly studied

core-periphery structures.

In particular, we define a subclass of core-periphery structures referred to as

core-to-periphery networks.

Definition 3. In a core-to-periphery network,

(i) there are nc ě 1 core players,

(ii) all core players are connected to each other, creating a dense, or completely

connected core,

(iii) each core player is connected to m ě 1 periphery players,

(iv) and each periphery player is connected to a single core player and no other

periphery players.

Thus, there are n “ ncp1`mq total players, comprised of ncm periphery players,

all with degree dp “ 1, and nc core players, each with degree dc “ pnc ´ 1q `m.

The conditions laid out in Definition 3 are satisfied by, for instance, the star

network, which has a single core player (nc “ 1) connected to m periphery players.

For all such core-to-periphery networks, we characterize the semi-symmetric equi-

librium in which all players of the same type choose identical levels of investment.

We denote the investment levels by xc and xp for core and periphery players,

respectively.
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Proposition 4. Consider the game defined by α P r0, 1q and the network G, for

which links are homogenous, such that gij P t0, ḡu (where ḡ is either 1 or ´1).

Suppose G is a core-to-periphery network with nc core players, each connected

to m peripheral players. Then there exists a semi-symmetric, pure strategy Nash

equilibrium in which every core player chooses the same investment x˚c , and every

peripheral player chooses the same investment x˚p, where

(i) if αḡ ă 1
m

, then x˚c “ r1´ αḡms∆ and x˚p “ r1` αḡpnc ´ 2qs∆ , where

∆ “
ncr1`m` αḡmpnc ´ 3qs ´ r1` αḡpnc ´ 1´ αḡmqs

n2
cr1`m` αḡmpnc ´ 3qs2

ě 0.

(ii) if αḡ ě 1
m

, then x˚c “ 0 and x˚p “
ncm´1
pncmq2

.

Note that when α “ 0, the equilibrium investments reduce to the standard

contest equilibrium,

x˚c “ x˚p “
ncp1`mq ´ 1

n2
cp1`mq

2
“
n´ 1

n2
.

For negative externalities and sufficiently small, positive externalities (αḡ ă 1{m),

the semi-symmetric equilibrium is interior; that is, both sets of agents are active.

In addition, the semi-symmetric equilibrium investment for core players is de-

creasing in the externality (and strictly decreasing until they become inactive). In

contrast, for periphery players, equilibrium investment is non-monotonic in αḡ.

Moreover, for αḡ ă 0, we have x˚c ą x˚p . Intuitively, the core players are

structurally more exposed to the negative externality than are the less connected

periphery players (who are linked only to a single core agent, by assumption).

Accordingly, for αḡ ą 0, free-riding incentives are also stronger for core players

than for periphery players, so that x˚c ă x˚p in the semi-symmetric equilibrium

with positive externalities.

When the positive externality becomes sufficiently large (αḡ ě 1{m), the semi-

symmetric equilibrium is a specialized equilibrium. Free-riding incentives for the

core players are sufficiently strong that they choose to be inactive in the con-

test. When this is the case, only the periphery players are active, and since they

are not connected to each other, they form a maximal independent set and their

equilibrium investment coincides with the equilibrium for a standard contest be-

tween ncm players (i.e., the total number of periphery players). Thus, for the
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Figure 5. Semi-symmetric equilibria in the star network.

subclass of core-to-periphery network structures, strong positive externalities lead

to polarization of competition in the semi-symmetric equilibrium.

The following examples serve to illustrate the semi-symmetric equilibria in two

common core-to-periphery network structures.

Example 4 (A star network). In a star network, there is a single core player,

such that nc “ 1, and m peripheral players connected to the core (see Figure 5a

where the core player is distinguished by the hollow node). For m “ 5, the semi-

symmetric equilibrium involves full participation when αḡ ă 1
5
, with

x˚c “
5p1´ 5αḡqp1´ αḡq2

4p3´ 5αḡq2
and x˚p “

5p1´ αḡq3

4p3´ 5αḡq2
.

When αḡ ě 1
5
, the semi-symmetric equilibrium is a specialized equilibrium with

A equal to the set of peripheral players, with x˚c “ 0 and x˚p “
4
25

. Figure 5 shows

the two cases on the network grap,h in panel (a), and in a graph that plots the

equilibrium investment against αḡ for both player types, in panel (b).

Example 5. [A core-periphery network with nc “ 2] In the CP2 network (see

Figure 6a), there are nc “ 2 core players (distinguished by hollow nodes), each

connected to 2 peripheral players. Thus, the semi-symmetric equilibrium involves

full participation when αḡ ă 1
2
, with

x˚c “
p1´ 2αḡqp5p1´ αḡq ` 2α2q

4p3´ 2αḡq2
and x˚p “

5p1´ αḡq ` 2α2

4p3´ 2αḡq2
,

and is the specialized equilibrium with x˚c “ 0 and x˚p “
3
16

whenever αḡ ě 1
2
.
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Figure 6. Semi-symmetric equilibria in the CP2 network.

These equilibria are again illustrated on the network graph and plotted against

αḡ in panels (a) and (b) of Figure 6.

5 Equilibria with Homogenous Node Strengths

In this section, we relax the assumption that links are homogenous. Nevertheless,

we retain some homogeneity by restricting attention to networks in which each

player has the same total node strength, di “
ř

j gij “ k. While it is more difficult

to establish general properties of equilibria with the additional heterogeneity, we

introduce several illustrations to highlight equilibrium characteristics in this more

general setting.

5.1 Complete adjacency networks

We focus initially on networks G for which the adjacency matrix AG is complete.

That is, every possible link is non-zero (excluding self-loops); formally, for every

i, j with i ‰ j, we have gij ‰ 0.

The following example demonstrates that the introduction of link heterogeneity

can result in multiple equilibria even when the underlying adjacency matrix is

complete and the links balance out perfectly, such that every agent’s node strength

is di “ 0.

Example 6. Suppose n “ 6 and that for each agent i, there are two other players

for whom gij “ 1{3, two other players for whom gij “ 1{6, and one player (the

rival) for whom gij “ ´1. The network is depicted in Figure 7. It follows that

di “ 0 for all i P N . In the resulting network contest game, there is a symmetric
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gij “ 1{6

gij “ ´1

gij “ 1{3

Figure 7. Complete Adjacency matrix, with Homogenous node strength, di “ 0, for all
i P N . Link weights around the outer ring are gij “ 1{3, solid (blue) interior link
weights are gij “ 1{6, while the dashed (red) interior link weights are gij “ ´1.

equilibrium in which all players choose the same equilibrium investment as in a

standard contest, x̄ “ pn´ 1q{n2.

However, this need not be the unique equilibrium. For the given network G, the

lowest eigenvalue is λminpGq “ ´
?

5. Notice then that for any α ě 1{|λminpGq| “

1{
?

5, the sufficient condition (U3) of Theorem 2 is violated. In particular, the

following constitutes an equilibrium, provided α ě 2{3: let A “ t1, 4u be the set

of active players, noting that g1,4 “ ´1. That is, the two active players are mutual

rivals. Each inactive player is linked to the two active players—one with positive

weight 1{3 and the other with positive weight 1{6.

By Lemma 1, the equilibrium investment for the two active players is x˚i “

p1`αq{4, and thus, the inactive players, N ´A, will choose to invest zero so long

as
ˆ

2´ αp1{3` 1{6q

˙

1` α

4
ď

ˆ

1` α

2

˙2

which reduces to α ě 2{3. Similar equilibria can be constructed in which the two

active players are A “ t2, 5u or A “ t3, 6u.

Thus, in addition to the symmetric equilibrium in which all agents are active,

there exists an asymmetric equilibrium for each pair of mutual rivals, in which

competition is entirely localized to the selected pair.

Building on the intuition provided by Example 6, similar characteristics of

equilibria emerge for homogenous non-zero node strengths. Suppose di “ k ‰ 0
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for all i P N . It is straightforward to show that there always exists a symmetric

equilibrium, in which each player invests

x̄k “
pn´ 1qp1´ αkq

n2
.

For α sufficiently small, Theorem 2 guarantees that this will be the unique equi-

librium. However, for sufficiently large α, there may exist asymmetric equilibria

in which some players are inactive.

Example 7. Consider the example network depicted in Panel (a) of Figure 8.

Each player has one “enemy” (with gij “ ´0.5), one strong “ally” (with gij “ `1),

and three moderate allies (with gij “ `0.5). Thus, di “ `2 for all agents. In

addition to the fully symmetric equilibrium, there is an equilibrium in which two

rivals compete, with all other players remaining inactive, provided α is sufficiently

large. For example, let A “ t1, 2u and note that, by Lemma 1, x1 “ x2 “

p1` 0.5αq{4 and xj “ 0 for j P t3, 4, 5, 6u is an equilibrium investment as long as

α ě 2{3.12

The network shown in Panel (b) of Figure 8, is the “negative” of the one shown

in Panel (a), with each player connected to one “ally” (with gij “ `0.5), one strong

“enemy” (with gij “ ´1), and three moderate enemies (with gij “ ´0.5). Thus,

di “ ´2 for all players. Unlike for Panel (a), for the network in Panel (b) of

Figure 8, the fully symmetric equilibrium is the unique Nash equilibrium of the

resulting network contest game.

5.1.1 Application—A Model of Competing Alliances

Here, we consider an “alliance and enmities” environment in which the set of

players, N , is partitioned into two disjoint sets, N1 and N2, consisting of n1 and n2

individuals, respectively. The network G is such that gij “ ḡ ą 0 if pi, jq P N1ˆN1

or pi, jq P N2ˆN2; with gij “ ´ḡ otherwise. In this application, with two factions

of players, a positive link weight indicates that two individuals are allies while a

negative link weight indicates they are enemies. We posit the existence of a fully

interior, semi-symmetric equilibrium in which each individual exerts the same

effort level as each of their allies (those in the same subset of N), but where effort

levels may differ between enemies (i.e., between the two factions).

12In fact, there is one such equilibrium for each pair of “enemies” in the network.
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Figure 8. Complete Adjacency matrix, with Homogenous node strength, di “ k, for all
i P N . Panel (a): k “ 2. Link weights around the outer ring alternate between
gij “ ´0.5 and gij “ `1, while all interior link weights are gij “ `0.5.
Panel (b): k “ ´2. Link weights around the outer ring alternate between
gij “ `0.5 and gij “ ´1, while all interior link weights are gij “ ´0.5.

Let x1 and x2 denote the effort level for individuals in N1 and N2, respectively.

Then, the equilibrium conditions described in Lemma 1 yield the following rela-

tionship: r1` αḡp2n1 ´ 1qsx1 “ r1` αḡp2n2 ´ 1qsx2. Notice that if n1 “ n2 (i.e.,

alliances of equal size), the preceding condition implies that x1 “ x2 and the equi-

librium is fully symmetric. Conversely, when the number of members in competing

alliances differs, the equilibrium investment levels of individuals in each alliance

no longer coincide. In general, we obtain the following equilibrium predictions:

x1 “ r1` αḡp2n2 ´ 1qs

„

pn1 ` n2 ´ 1qp1´ αḡq2 ` 4n1n2αḡ

rpn1 ` n2qp1´ αḡq ` 4n1n2αḡs
2



x2 “ r1` αḡp2n1 ´ 1qs

„

pn1 ` n2 ´ 1qp1´ αḡq2 ` 4n1n2αḡ

rpn1 ` n2qp1´ αḡq ` 4n1n2αḡs
2



Example 8. Suppose n “ 6 and each pair of agents are either allies with gij “

ḡ ą 0 or enemies with gij “ ´ḡ. The equilibrium investment levels of individuals

in each subset of N depend on the fraction of agents that are in their alliance. The

graphs in Figure 9 illustrate the equilibrium investment level of an individual in

each alliance for various combinations of alliance sizes. The effective externality

(αḡ) is restricted to r0, 1q since negative externalities are captured by the fact

that gij “ ´ḡ for enemies. As the sizes of the two alliances diverge, so too do

the equilibrium investments for the members of each alliance, with the difference
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Figure 9. Equilibrium investment levels for individuals in competing alliances.

increasing in the effective externality, αḡ. Intuitively, this divergence is driven

primarily by a sharper increase in equilibrium investment by agents in the smaller

alliance, whereas the agents in the larger alliance are less sensitive to the effective

externality.

To further examine the impact of differing alliance sizes on equilibrium in-

vestment levels, suppose we normalize n “ 100 and think of n1 as denoting the

percentage of agents in N1. Then, we can express the equilibrium effort level of

any agent i P N1 as follows:

x1 “ r1` αḡp199´ 2n1qs

„

99p1´ αḡq2 ` 4n1p100´ n1qαḡ

r100p1´ αḡq ` 4n1p100´ n1qαḡs
2



The graphs in Figure 10 illustrate, for various effective externality values, how

the individual investment, aggregate investment by all members of the alliance

N1, and the probability that a member of the alliance N1 wins the contest change

with respect to the percentage of agents in the alliance.

As the effective externality grows in magnitude—that is, the strength of al-

liances and enmities alike increases—population imbalances become less pivotal

for the outcome of the contest. For instance, when the effective externality is

αḡ “ 0.5, the equilibrium probability of some player from N1 winning the con-

test is very close to 0.5 whether the N1 alliance includes 10% of the population

of agents, or 90% of the population of agents. Only more extreme imbalances

between the groups can generate a clear advantage for one group over another. In

contrast, when the effective externality is relatively weak, asymmetry in the size

of the groups has a greater impact on the equilibrium probability with which the

winning agent comes from each group.
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Figure 10. The impact of alliance size on equilibrium investment, aggregate equilibrium
investment within-alliance, and probability of alliance member winning the
contest.

5.2 Incomplete Adjacency Networks

We now consider networks G for which the adjacency matrix AG is incomplete.

That is, networks in which there are some pairs of agents i, j with i ‰ j such that

gij “ 0. Specifically, we consider a circle network and complete bipartite network

where link weights can take one of two values, w1 and w2. Node strengths are

di “ w1`w2 for all i P N in the circle network and di “ 2w1`w2 in the bipartite

network. Figure 11 shows the graphs of these networks.

On the circle network, the network contest game has a symmetric equilibrium

in which all players are active and invest x˚ “ 5´αpw1`w2q

36
. This equilibrium exists

for any α P r0, 1q since 5 ą αpw1 ` w2q for any w1, w2 P r´1, 1s. Additionally,

there are two specialized equilibria which exist for suitable combinations of α,

w1, and w2. The network has two maximal independent sets M1 “ t1, 3, 5u and

M2 “ t2, 4, 6u. In a specialized equilibrium, all agents in one maximal independent

set are active and invest x̄A “ 2{9, while all agents in the other set are inactive.

Since each inactive agents is connected to two active players, who invest the same

amount, these specialized equilibria exist if and only if αdi “ αpw1 ` w2q ě 1.

The network contest game on the complete bipartite network also has both an

interior, symmetric equilibrium, and two specialized equilibria. In the symmetric
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Figure 11. Networks with homogeneous node strength and heterogeneous link weights.
Link weights are either gij “ w1 (blue) or gij “ w2 (red). Panel (a): Circle
Network with node strengths of di “ w1`w2 for all i P N . Panel (b): Bipartite
network with node strengths of di “ 2w1 ` w2, for all i P N .

equilibrium, which exists for any α, each player invests x˚ “ 5´2αw1´αw2

36
. As in

the circle network, the agents who are active in a specialized equilibrium on the

complete bipartite network are all members of the same maximal independent set,

M1 “ t1, 2, 3u or M2 “ t4, 5, 6u. In a specialized equilibrium, each active agent

invests x̄A “ 2{9. Since each inactive agent is connected to three active players,

who all invest the same amount, the specialized equilibria exist if and only if

αdi “ αp2w1 ` w2q ě 1.

Overall, these results are not too dissimilar from those presented earlier for

the fully homogeneous circle network (Example 1) and fully homogeneous bipar-

tite network (Example 2). However, introducing link weight heterogeneity, while

maintaining node strength homogeneity, appears to have two main effects. First,

the predictions for symmetric equilibrium investment levels now depend separately

on the weight of each link connecting an individual to one of their neighbors. A

change in either link weight will shift the predicted investment level by an amount

proportional to the change in weight of the link. Second, while the threshold con-

ditions for existence of a specialized equilibrium still depend on the node strength

of inactive agents, their node strength now depends separately on the weights of

the links connecting them to active agents. Changes in the weight of any link

between an active and inactive agent will affect the threshold value of α for which

specialized equilibria exist.
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Figure 12. Networks with heterogeneous link weights and node strengths. Link weights
are either gij “ w1 (blue) or gij “ w2 (red). Panel (a): Circle Network with
node strengths of d1 “ d4 “ 2w1 and d2 “ d3 “ d5 “ d6 “ w1 ` w2. Panel
(b): CP2 network with node strengths of d1 “ d2 “ d3 “ d4 “ w1 and
d5 “ d6 “ 2w1 ` w2.

6 Equilibria with Heterogeneous Links and Node Strengths

While our general results presented in Section 3 hold for any network structure,

deriving closed-form solutions and general properties for network contest games on

fully heterogeneous networks is not straightforward due to the inherent complex-

ity of such an environment. To provide some intuition regarding how predictions

change in this most general environment, this section examines a selection of net-

works with n “ 6 agents in which both links and node strengths are heterogeneous.

To maintain some tractability (and simplicity), we assume that link weights take

one of two values, w1 or w2, in all networks.

We examine two networks which are heterogeneous versions of network struc-

tures considered in previous sections. First, we consider a circle network with

heterogeneous node strengths of d1 “ d4 “ 2w1 and d2 “ d3 “ d5 “ d6 “ w1 `w2.

Panel (a) of Figure 12 depicts the graph of this network. Note that, while the basic

structure remains the same, this version of the circle network no longer satisfies

our definition of regular networks since di “
ř

j |gij| is not the same for all i P N .

The second network is a heterogeneous version of the CP2 network, which was

introduced in Example 5, with node strengths of d1 “ d2 “ d3 “ d4 “ w1 and

d5 “ d6 “ 2w1 ` w2. Panel (b) of Figure 12 shows the graph of this network.

In contrast with other versions of the circle network previously considered,

which maintain node strength homogeneity, the interior equilibrium of the network

contest game on this heterogeneous circle network is not symmetric. Rather, the
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interior equilibrium is semi-symmetric with individuals of the same node strength

investing at the same level. The semi-symmetric equilibrium investment levels

for each agent in this network are described below. Note that it is necessarily

the case that 1 ´ αw1 ą 0, and therefore, this equilibrium exists if and only if

1´ 2αw1 ` αw2 ą 0 and 2α2w2
1 ´ 8αw1 ` αw2 ` 5 ą 0 hold.

x˚1 “ x˚4 “ p1´ 2αw1 ` αw2q

„

2α2w2
1 ´ 8αw1 ` αw2 ` 5

4p3´ 4αw1 ` αw2q
2



x˚2 “ x˚3 “ x˚5 “ x˚6 “ p1´ αw1q

„

2α2w2
1 ´ 8αw1 ` αw2 ` 5

4p3´ 4αw1 ` αw2q
2

 [10]

The heterogeneous circle network also has two specialized equilibria in which

the set of active agents corresponds to one of the two maximal independent sets of

agents, M1 “ t1, 3, 5u and M2 “ t2, 4, 6u. In a specialized equilibrium, all agents in

one maximal independent invest x̄A “ 2{9, while those in the other set are inactive.

Since node weights are heterogeneous even within a maximal independent set,

there are now two conditions that must be satisfied for a specialized equilibrium

to exist. In the specialized profile where A “ M1, the equilibrium conditions for

inactive agents are αw1 ` αw2 ě 1 (agents 2 and 6) and 2αw1 ě 1 (agent 4). The

specialized equilibrium exists if and only if both conditions are satisfied; that is,

if and only if mintαw1 ` αw2, 2αw2u ě 1. This same condition is required for

existence of the other specialized equilibrium, where A “ M2, since d2 “ d3 “

d5 “ d6 and d1 “ d4.

In the heterogeneous CP2 network, as in the homogeneous version of this net-

work, the fully interior equilibrium is semi-symmetric with equilibrium investment

levels being the same within type (core or periphery) and differing across types.

The semi-symmetric equilibrium for the heterogeneous CP2 network is described

below.

x˚1 “ x˚2 “ x˚3 “ x˚4 “ p1´ 2αw1q

„

2α2w2
1 ´ 8αw1 ` 3αw2 ` 5

4p4αw1 ´ 2αw2 ´ 3q2



x˚5 “ x˚6 “ r1´ αpw1 ´ w2qs

„

2α2w2
1 ´ 8αw1 ` 3αw2 ` 5

4p4αw1 ´ 2αw2 ´ 3q2

 [11]

There is also a specialized equilibrium in which only peripheral players are active

and each invests x̄A “ 3{16, while the two core players drop out of the contest.

This equilibrium exists if and only if 2αw1 ě 1. That is, the existence of the

specialized equilibrium requires that the effective externality obtained by core
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players, from their connections with peripheral players, is sufficiently high.

These results suggest two main implications for the structure of equilibria in

fully heterogeneous networks. First, the symmetry of interior equilibria is con-

tingent on node strength symmetry. When node strengths are heterogeneous,

interior equilibria become semi-symmetric with investment levels depending on an

individual’s node strength. This is true even when we maintain regularity in the

sense that each individual has the same number of neighbors, as in the hetero-

geneous circle network considered in this section. The CP2 network, which has

heterogeneous node strengths even with homogeneous link weights, confirms that

asymmetry is driven by heterogeneity in node strengths rather than link weights.

Second, the heterogeneous circle network results demonstrate that, when there

is heterogeneity in node strengths within the set of agents that comprise a maximal

independent set, the existence of specialized equilibria now depends separately on

the equilibrium conditions of each inactive agent. In particular, the pivotal agent

is the one who is least structurally exposed to positive (effective) externalities.

Agents with higher node strengths would be content to exit the contest at lower

levels of α, but are forced to remain active by the unwillingness of this pivotal

agent to drop out. Further, in a network with multiple maximal independent sets

and node strengths such that the threshold value of α for the pivotal agent in

each set differs, there will be a different range of α for which each specialized

equilibrium exists.

7 Related Literature

Our study contributes to and draws together two separate literatures. The first

of these explores the implications of identity-dependent externalities for strategic

behavior in competitive environments. The second is the relatively more recent

literature studying games played on networks. In addition, our work naturally

relates to the vast body of research on contests.

Jehiel, Moldovanu and Stacchetti (1996) first introduced the notion of identity-

dependent externalities (or IDEs) in the related context of winner-pay auctions, as

a way of capturing the consequences of the allocation for bidders in post-auction

interactions. They and others have noted that such externalities may arise with

the sale of a nuclear weapon or location of environmentally hazardous enterprises

(Jehiel, Moldovanu and Stacchetti, 1996), the assignment of exclusive licensing

agreements (Brocas, 2003), competition for access to cost-reducing process inno-
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vations, or the allocation of talent across teams (Das Varma, 2002). Prior liter-

ature on IDEs has mostly considered optimal selling procedures in the presence

of identity-dependent externalities.13 Other related work has focused on strategic

non-participation in auctions, especially with negative externalities (see, e.g., Je-

hiel and Moldovanu, 1996; Brocas, 2003) and explored the notion of type-dependent

externalities (Brocas, 2013a, 2014), according to which the externality flows are

correlated with the players’ private valuations and not just their identities.

In all-pay contest environments, there are only a handful of related studies,

including Konrad (2006) and Klose and Kovenock (2015), both of which charac-

terize equilibria in the context of (perfectly-discriminating) all-pay auctions. There

are, similarly, relatively few studies that consider externalities in the context of

imperfectly-discriminating all-pay contests. One exception is Linster (1993), which

analyzes the equilibrium of a generalized Tullock contest in which the players care

about who wins the prize if they do not. Another exception is Esteban and Ray

(1999), which explores the relationship between equilibrium conflict and the distri-

bution of preferences over outcomes in a lottery contest between interest groups.14

While both of these studies incorporate the notion of identity-dependent exter-

nalities into a Tullock-style contest, neither draws a formal connection between

these externalities and the underlying network structure that governs them. In

contrast, a key contribution of our study is to bring together the literature on

identity-dependent externalities and the relatively more recent developments in

the theory of network games.

Typically, the network games literature examines games with linear best replies

(see, e.g., the linear-quadratic utility functions in Ballester, Calvó-Armengol and

Zenou, 2006; Bramoullé and Kranton, 2007; Bramoullé, Kranton and D’Amours,

2014). Among those that consider games with non-linear best replies, Allouch

(2015) studies the private provision of local (network-based) public goods, and

Melo (2018), Parise and Ozdaglar (2019), and Zenou and Zhou (2022) apply tech-

13For instance, Jehiel, Moldovanu and Stacchetti (1996, 1999) characterize the revenue-
maximizing auctions for alternative information structures (including the case where externality
flows are private information), Jehiel and Moldovanu (2000) study efficient auction design with
externalities, while Das Varma (2002) characterizes the revenue and efficiency rankings of the
standard sealed-bid and open ascending bid auction formats. See Jehiel and Moldovanu (2006)
for a summary of the literature on standard, winner-pay auctions with identity-dependent exter-
nalities. In addition, Lu (2006) and Brocas (2013b) extend the analysis of the optimal auction
to include the possibility of externalities between the seller and the bidders, whereas Aseff and
Chade (2008) derive the optimal mechanism for a seller with multiple identical units.

14A crucial aspect of their model is the introduction of a “metric” over the different groups,
which allows for spatial preferences over the preferred outcomes of other interest groups.
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niques based on variational inequalities (VI) to establish existence and unique-

ness.15 To the best of our knowledge, the only other study to forge the connection

between network games and externalities in a lottery contest game is König et al.

(2017). They develop a stylized model of conflict to capture the impact of in-

formal networks of alliances and enmities on conflict expenditures and outcomes,

then apply their model to study empirically the Second Congo War.16 In their

model, agents (or groups) compete for a divisible prize in which any group’s share

of the prize depends on the group’s relative operational performance, which takes

the form of a generalized Tullock CSF. However, in contrast with our model, there

are no allocation-based spillovers in their setting.17

8 Conclusion

In this paper, we introduce and analyze a model of contests with identity-dependent

externalities that are governed by a network. Our theoretical results simulta-

neously broaden the scope of traditional contest theory and extend the network

games literature to a setting in which players have non-linear best replies. The fully

general model allows for heterogeneous externalities, both positive and negative—

stemming from the allocation of the prize—that impact the payoffs of all players

directly connected to the winner of the contest. We establish the existence of Nash

equilibria and characterize sufficient conditions for uniqueness, leveraging the fact

that our network contest game can be formulated as a best-response potential

game.

Moreover, we illustrate the properties of equilibria and derive intuitive compar-

ative statics for the tractable case in which links are homogenous. For two broad

classes of networks (regular and core-to-periphery), we provide closed-form results

and show that the comparative statics align with the intuition from our motivat-

15Our model also entails non-linear best replies. However, as noted above, the VI approaches
adopted by Melo (2018) and Parise and Ozdaglar (2019) rely on an assumption that the objective
function for each agent depends only on her own action and a neighborhood aggregate, which
is not satisfied in our contest game due to the dependence of the contest success function on all
players’ actions.

16There is also a related, though distinct literature on conflict networks (see, e.g., Goyal and
Vigier, 2014; Franke and Öztürk, 2015; Matros and Rietzke, 2018; Kovenock and Roberson, 2018;
Xu, Zenou and Zhou, 2019) and the formation of conflict networks (Hiller, 2017; Jackson and
Nei, 2015). In contrast with both our model and the model in König et al. (2017), these studies
typically focus on environments where the network is used to describe the structure of conflict
between agents who participate in multiple battles.

17Instead, the effort investments of other groups in König et al. (2017) feed directly into each
group’s operational performance through the underlying network of alliances and enmities.
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ing examples. Introducing additional heterogeneity across links while maintaining

homogenous node strengths illustrates that many of the characteristics of equilib-

ria in similar network structures are similar to the homogenous case. Likewise,

relatively more tractable examples for the fully heterogeneous case illustrate the

breadth of the model.

Our framework can serve as a basis for studying a wide range of competitive

situations, whether between firms or other organizations, individuals connected

in a social network, or lobbyists with preferences over a multi-dimensional policy

space. From a methodological perspective, we provide a novel approach—using

the fact that the network contest game is a BR-potential game—to derive sufficient

conditions for the uniqueness of Nash equilibria. This approach could potentially

be applied to other network games in which best response functions are non-linear

and alternative methods cannot directly be applied.

There are also several ways in which our research may be extended. Our the-

oretical framework is very general, however, we do not allow for externalities to

be asymmetric between pairs of agents. That is, in all of the networks, we assume

that gij “ gji for every i, j. Nevertheless, relaxing this assumption may prove to be

intractable unless accompanied by some additional structure. Another potential

extension to the model might be to allow for payoff externalities to travel beyond

the winner’s immediate neighborhood, but with diluted impact proportional to

the distance traveled. This would place some restrictions on the admissible link

weights in the underlying network. Finally, the intuitive comparative statics re-

sults we obtain for the more tractable cases examined in Section 4, where links

are homogenous, can be examined empirically using a controlled laboratory ex-

periment. In a separate paper (Boosey and Brown, 2022), we take up exactly

this task, reporting the results of an experiment in which we systematically varied

both the network and the size (and sign) of the externalities.

A Proofs

A.1 Proof of Theorem 1

We prove existence by applying Theorem 3.1 in Reny (1999). For completeness,

we restate the theorem using our own notation.

Theorem (Theorem 3.1, Reny (1999)). If Γ “ pXi, πiq
n
i“1 is compact, quasicon-

cave, and better-reply secure, then it possesses a pure strategy Nash equilibrium.
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Let Γ “ pXi, πiq
n
i“1 denote the normal-form of the network contest game. Note

that while Xi “ R` for each i P N , we can, without loss of generality, restrict the

agents’ strategies to compact subsets of R`. To see why, note that since α ă 1,

Pi ď 1, and
ř

h gih ď n ´ 1, all strategies xi ą 1 ` pn ´ 1q “ n are strictly

dominated by xi “ 0. Thus, we can restrict the strategy sets to pXi “ r0, ns, which

is compact. Next, we note that each agent i’s payoff function is concave, and thus

also quasiconcave, in xi. It remains to show that Γ is better reply secure. To do

so, we first introduce some relevant definitions and another result by Bagh and

Jofre (2006) that extends on Reny (1999).

Definition 4. In the game Γ “ pXi, πiq
n
i“1, player i can secure a payoff of γ P R

at x P X if there exists yi P Xi such that πipyi,x
1
´iq ě γ for all x1´i in some open

neighborhood of x´i.

Definition 5. A game Γ “ pXi, πiq
n
i“1 is payoff secure if for every x P X and

every ε ą 0, each player i can secure a payoff of πipxq ´ ε at x.

Let Λ “ tpx, πq P X ˆ Rn | πipxq “ πi, @ iu denote the graph of the vector of

payoff functions for the game and let Λ denote the closure of Λ in XˆRn. Finally,

define the frontier of Λ to be the set of points in Λ but not in Λ, denoted by

FrΛ “ Λ zΛ. The following definition is from Bagh and Jofre (2006).

Definition 6. A game Γ “ pXi, πiq
n
i“1 is weakly reciprocally upper semicontinu-

ous (wrusc) if, for any px, πq P FrΛ, there is a player i and pxi P Xi such that

πippxi,x´iq ą πi.

Having defined payoff security and wrusc, we then appeal to the following

result from Bagh and Jofre (2006).

Proposition 5 (Proposition 1, Bagh and Jofre (2006)). If the game Γ “ pXi, πiq
n
i“1

is payoff secure and wrusc, then it is better reply secure.

To prove that Γ is payoff secure and wrusc, we follow a similar approach to

Bagh and Jofre (2006) in their Example 3, which considers (a generalized form of)

the standard contest game with Tullock (1980) contest success function.

(i) First, we show that the game is payoff secure. Note that payoffs are con-

tinuous except at x “ 0, where they are given by

πip0q “
1` αdi
n
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where di “
ř

h gih is player i’s weighted degree (or node strength) in the network.

Then note that for x̃i ą 0, we have πipx̃i,0q “ 1 ´ x̃i, which is higher than πip0q

if x̃i ă pn´ 1´ αdiq{n. Since di ď n´ 1 and α ă 1, the right hand side is strictly

positive, so that such a x̃i ą 0 can be found. Then, since πip¨q is continuous at

px̃i,0q, there is a neighborhood V of x´i “ 0 such that πipx̃i,x
1
´iq ą πip0,0q for

all x1´i P V . Thus, the game is payoff secure at the point x “ 0. Payoff security

at all other x is straightforward.

(ii) Second, we show that the game is wrusc. In this game (as in the standard

contest game), the only points in FrΛ must be points of the form p0, πq where

πi “ lim
xkÑ0

πipx
kq for all i. Note that

n
ÿ

i“1

πipx
k
q “

n
ÿ

i“1

Pipx
k
q ´

n
ÿ

i“1

xi ` α
n
ÿ

i“1

n
ÿ

j“1

gijPjpx
k
q

“ 1´
n
ÿ

i“1

xi ` α
n
ÿ

i“1

diPipx
k
q

ď 1´
n
ÿ

i“1

xi ` αpn´ 1q

where the inequality follows from the fact that di ď n´1 for all i and
řn
i“1 Pipx

kq “

1. As such, lim
xkÑ0

řn
i“1 πipx

kq ď 1`αpn´1q and thus, there exists some i for whom

πi ď
1` αpn´ 1q

n
.

Notice that lim
xiÑ0

πipxi,0q “ 1. Thus, there exists pxi ą 0 such that πippxi,0q ą πi,

because α ă 1 ensures that p1 ` αpn ´ 1qq{n ă 1. It follows that the game is

wrusc.

Together, payoff security and wrusc imply better reply security, and applying

Theorem 3.1 from Reny (1999), there exists a pure strategy Nash equilibrium.

A.2 Proof of Lemma 2

We proceed by cases. Fix a player i.

Case 1. Suppose x´i has at least two strictly positive components. Then, for any
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xi, Apxi,x´iq ě 2. It follows from [8] that

BP

Bxi
“

ÿ

h‰i

p1´ αgihqxh ´X
2
tot

B2P

Bx2
i

“ ´2Xtot ă 0.

It follows that xi P arg max Ppxi,x´iq if and only if

xi
`

ÿ

h‰i

p1´ αgihqxh ´X
2
tot

˘

“ 0

which implies

xi “ max

"

0,

d

ÿ

h‰i

p1´ αgihqxh ´
ÿ

h‰i

xh

*

,

which is exactly the best response function fipx´i, α,Gq derived in [4].

Case 2. Next, suppose xj ą 0 is the only positive component of x´i. From [8],

xi ą 0 ñ Ppxi,x´iq “ xixjp1´ αgijq ´
1

3
pxi ` xjq

3

whereas

xi “ 0 ñ Ppxi,x´iq “ ´
1

3
xj
“

max
h‰j

p1´ αghjq
‰2
.

Taking the limit as xi approaches zero from above, we have limxiÑ0 Ppxi,x´iq “

´1
3
x3
j , which is strictly greater than Pp0,x´iq if and only if

xj ă max
`

1´ αgij
˘

.

Multiplying through by xj, player i’s best response is interior at some xi ą 0 if

and only if

x2
j ă max

`

1´ αgij
˘

xj,

and is xi “ 0 otherwise, which again coincides with the best response function in

[4].

Case 3. Finally, suppose x´i “ 0. If xi ą 0, then

Ppxi,0q “ ´
1

3
xi
“

max
h‰i
p1´ αgihq

‰2
,
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which approaches zero (from below) as xi approaches zero from above. In contrast,

xi “ 0 implies Pp0q “ ´1
3
pn´1q
n

ă 0. As such, a maximizer does not exist for P,

just as the best response function for πi is empty when x´i “ 0.

By means of the three cases, we have verified that for an arbitrary player i, the

set of maximizers for P given any x´i coincide with the best responses according

to the payoff functions πi. Thus, P is a BR-potential for Γ.

A.3 Proof of Theorem 2

The network contest game is a best-response potential game (Voorneveld, 2000).

Lemma 2 provides a BR-potential for the game, P. Then, by Proposition 2.2

of Voorneveld (2000), the profile x is a Nash equilibrium of the network contest

game if and only if it maximizes the BR-potential, P. The remainder of the proof

establishes conditions under which a unique maximizer exists for P.

Recall that P is strictly concave if ∇2P is negative definite. Before deriving the

Hessian for P, note that we can restrict the search for maxima to investment

profiles x with |Apxq| ě 2, since we have already established that there are no

Nash equilibria in which fewer than 2 players are active. Thus, for any such x,

the diagonal elements of the Hessian ∇2P are given by

B2P

Bx2
i

“ ´2
n
ÿ

h“1

xh

while the cross-partial terms are symmetric and given by

B2P

BxiBxj
“

B2P

BxjBxi
“ p1´ αgijq ´ 2

n
ÿ

h“1

xh.

Rewriting in matrix form and using Xtot “
ř

h xh gives

∇2P “
`

1´ 2Xtot

˘

J´ rI` αGs,

where J denotes the n ˆ n matrix of ones. Note that even if I ` αG is positive

definite, if Xtot ă 0.5 and is small enough, the Hessian need not be negative

definite. Our approach to getting around this problem is to partition the domain

into two subsets, XH and XL.

(i) If we restrict the domain of P to the set XH of vectors x such thatXtot ě 0.5,

it is readily verified that P is strictly concave on the restricted domain if I` αG
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is positive definite, which is equivalent to the condition that α ă 1{|λminpGq|.

Before turning to Case (ii), suppose all of the links in the network are negative,

as for part (a) of the Theorem. By Lemma 1, we must have for each active agent

i P A,

xi `
ÿ

jPA

αgijxj “ Xtotp1´Xtotq,

so that, using the fact that each gij ď 0 and summing over all i P A, we obtain

Xtot ě nAXtotp1´Xtotq,

which simplifies to Xtot ě 1´ 1{nA. Then, because nA ě 2 in any equilibrium, we

conclude that for the case where all links are negative, we must have Xtot ě 0.5.

This establishes part (i) of Theorem 2.

(ii) Next, consider the subdomain XL, which is composed of strategy profiles

x with Xtot ă 0.5. We proceed by direct argument. Suppose that x is a Nash

equilibrium with Xtot ă 0.5. First, by the argument above, this can not be the

case if all links are negative—there must be at least one strictly positive link. We

consider two cases:

(a) First, if there is any inactive player, k, we must have

Xtot ´ α
n
ÿ

h“1

gkhxh ď
`

Xtot

˘2
.

When
n
ř

h“1

gihxh ą 0, we can rearrange the inequality above to

α ě
Xtot

`

1´Xtot

˘

řn
h“1 gkhxh

,

and since gkh ď 1 for all k, h, it follows that α ě 1 ´ Xtot ą 0.5. On the other

hand, when
n
ř

h“1

gihxh ď 0, we obtain

Xtot ´ α
n
ÿ

h“1

gkhxh ě Xtot ą pXtotq
2

which implies that k will not wish to remain inactive, contradicting that the profile

is an equilibrium. Thus, if there is an equilibrium with an inactive player, such

that Xtot “
ř

h xh ă 0.5, it must be the case that α ą 0.5.
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(b) Second, suppose there is no inactive player for x with Xtot ă 0.5. Then,

for all n players, we must have

xi ` α
n
ÿ

h“1

gihxh “ Xtotp1´Xtotq.

Summing over all i, obtain

α
n
ÿ

i“1

n
ÿ

h“1

gihxh “ Xtotpnp1´Xtotq ´ 1q

ñ α
n
ÿ

h“1

xh

n
ÿ

i“1

gih ą Xtot

ˆ

n´ 2

2

˙

ñ α
n
ÿ

h“1

dhxh ą Xtot

ˆ

n´ 2

2

˙

ñ α∆pGqXtot ą Xtot

ˆ

n´ 2

2

˙

ñ α ą
n´ 2

2∆pGq
,

where the second line follows from 1 ´ Xtot ą 0.5, and the fourth line from the

fact that ∆pGq is the maximum degree of G.

It follows that if α ď 0.5 and α ď 0.5pn ´ 2q{∆pGq, there cannot be a Nash

equilibrium in XL. By the existence of an equilibrium, there must exist at least one

equilibrium in XH . If we also have that α ă 1{|λminpGq|, then rI`αGs is positive

definite, P is strictly concave on XH , and there exists a unique Nash equilibrium,

x P XH , such that Xtot ě 0.5. This establishes part (ii) of Theorem 2.

A.4 Proof of Proposition 1

Both parts of the proposition follow directly. From condition (i) in Lemma 1, it

follows from the fact that gij “ 0 for all i, j P A in a specialized equilibrium, that

xi “
ř

jPA xj ´ p
ř

jPA xjq
2 for all i P A, which implies that all active players must

be choosing the same investment x̄A “
nA´1
n2
A

. Therefore, total investment is given

by XA “
ř

jPA xj “ pnA ´ 1q{nA. Then, for the second condition in Proposition 1
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to be satisfied, it must be the case that for all i P N ´ A,

nA ´ 1

n2
A

pnA ´ αd
i
Aq ď

pnA ´ 1q2

n2
A

ðñ α

$

&

%

ě 1
diA

if diA ą 0

ď 1
diA

if diA ă 0

Note that since α ě 0, the condition can never be satisfied if there exists some

inactive agent, k P N ´ A for whom dkA ď 0. Thus, a specialized equilibrium

requires that dN´A,A, defined to be the minimum of diA over all i P N´A, must be

strictly positive, to ensure that the inequality is satisfied for all inactive players.

A.5 Proof of Proposition 3

Suppose that A “ N (that is, all agents are active). From Lemma 1, only condi-

tion (i) needs to be satisfied. Summing equation [5] for all n active players and

rearranging gives

pn´ 1q
n
ÿ

i“1

xi ´ α
n
ÿ

i“1

n
ÿ

j“1

gijxj “ n

˜

n
ÿ

i“1

xi

¸2

and positing xi “ x for all i yields

pn´ 1qnx´ αnkx “ npnxq2

pn´ 1q ´ αk “ n2x

from which x˚ follows.

A.6 Proof of Proposition 4

Suppose both types are active and consider condition (i) from Proposition 1. For

each peripheral player, equation [5] reduces to

pnc ´ αqxc ` pncm´ 1qxp “ pncxc ` ncmxpq
2

while for each core player, it simplifies to

pnc ´ 1qp1´ αqxc ` pncm´ αmqxp “ pncxc ` ncmxpq
2.
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From this, we obtain xcp1` αpnc ´ 2qq “ p1´ αmqxp.

Substituting into the condition for the core players and solving yields the so-

lution xc “ p1´ αmq∆ and xp “ p1` αpnc ´ 2qq∆, where

∆ “
nc r1`m` αmpnc ´ 3qs ´ r1` αpnc ´ 1´ αmqs

n2
c r1`m` αmpnc ´ 3qs2

ě 0.

For xc to be strictly positive, we must have α ă 1
m

. Thus, a semi-symmetric

equilibrium with full participation exists only when α is not too large. Once

α ě 1
m

, there is a semi-symmetric equilibrium which is also a specialized equilibrium

in which the core players are all inactive, while the peripheral players, who form a

maximal independent set, invest the standard equilibrium investment for a contest

between ncm individuals.
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Ballester, Coralio, Antoni Calvó-Armengol, and Yves Zenou. 2006. “Who’s

who in networks. Wanted: The key player.” Econometrica, 74(5): 1403–1417.

Boosey, Luke, and Christopher Brown. 2022. “Experimental evidence on behavior

in contests with network externalities.” Working Paper.
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