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Abstract

In many contest situations, the number of participants is not observable at the time
of investment. We design a laboratory experiment to study individual behavior
in Tullock (lottery) contests with group size uncertainty. There is a fixed pool of
n potential players, each with independent probability q ∈ (0, 1] of participating.
As shown by Lim and Matros (2009; Games and Economic Behavior, vol. 67, pp.
584–597), the unique symmetric equilibrium investment level in this setting can ex-
hibit nonmonotonicity with respect to both n and q. We independently manipulate
each of the parameters and test the implied comparative statics predictions. Our
results provide considerable support for the theory, both in terms of comparative
statics and point predictions. Most surprisingly, we find no evidence of overbidding
in treatments where there is a nontrivial probability that group size is one. This
stands in stark contrast to the robust overbidding observed in experimental contests
with deterministic group size. We propose a one-parameter model that incorporates
nonlinear probability weighting and a modified version of joy of winning, which we
call Constant Winning Aspirations (CWA), and show that it neatly organizes all of
our results. The CWA model applies to a broad range of contexts and may be used
to explain existing evidence on the differences in overbidding across many other
contest and auction experiments.
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1 Introduction

In contests, such as R&D races, political campaigns, lobbying, litigation, or job market
tournaments, participants spend resources to secure a valuable prize.1 While in most
contest models it is assumed that the number of contestants is common knowledge, it
is often the case that at the time a contestant has to choose her investment, she is not
aware of how many other competitors she will face. Thus, in modeling the behavior of
agents involved in contests, group size uncertainty can be both an appealing and realistic
feature.

There are, in general, two ways to think about the emergence of uncertainty about
the number of contestants. On the one hand, entry into contests may be endogenous,
with each potential contestant deciding simultaneously, and privately, whether or not to
participate. Typically, a model with endogenous entry will have a symmetric equilib-
rium in mixed strategies, which induces uncertainty about the realized size of the group.
The equilibrium entry probability, q∗, can be manipulated exogenously by varying the
parameters of the environment, such as the value of the prize, outside option or entry
fee. Changes in q∗ induced in this manner will in turn lead to changes in the equilibrium
contest investment. Thus, one might think of the underlying group size uncertainty as
being driven by the decisions of a third party, such as a contest organizer, industry regu-
lator, or governing body. For example, an R&D firm may only be able to participate in
a contest if particular quality control or safety protocols are satisfied, regulatory barriers
are removed, or certain legislation is passed.2 In these settings, it is important to under-
stand how the resulting contest investment changes in response to a change in external
parameters (e.g., regulation), which requires one to understand the comparative statics
of equilibrium investment with respect to q∗.

On the other hand, a somewhat simpler and more direct approach is to bypass the
entry decision entirely and assume that group size uncertainty is exogenous. One possibil-
ity is to assume, as in Lim and Matros (2009), that there is a fixed number n of potential
contestants and, from the perspective of an active contest participant, the number of other
active participants is distributed as Binomial(n− 1, q), with some underlying probability
of participation q. By studying the comparative statics of equilibrium investment with
respect to q and n, one can gain valuable insight into the effects of group size uncertainty
in contests in isolation from the entry decision. Indeed, in any symmetric equilibrium of
a model with entry, an active participant forms beliefs about others’ participation prob-
ability and consequently about the distribution of actual contest size. In a setting with

1For a recent survey of the theoretical literature on contests, see, e.g., Konrad (2009), Congleton, Hill-
man and Konrad (2008), Corchón (2007), Connelly et al. (2014); for a summary of some nonexperimental
empirical results in personnel economics and sports, see, e.g., Prendergast (1999) and Szymanski (2003);
for a survey of the experimental literature on contests, see Dechenaux, Kovenock and Sheremeta (2015).

2We are grateful to an anonymous referee for suggesting regulation as a source of exogenous variation
in the participation probability. In addition to R&D competition, other examples of contest environments
where entry probability, and hence the underlying group size uncertainty, may be manipulated by third
parties include lobbyists competing in a rent-seeking contest or job candidates applying for a promotion
or new position.
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exogenous group size uncertainty, these beliefs can be manipulated directly, but the re-
sulting comparative statics are essential in understanding the effects of external factors
in an environment with endogenous entry as well.

In this paper, we use a laboratory experiment to study the behavior of individuals in
a contest with group size uncertainty. In particular, we test two theoretical predictions
about individual equilibrium investment derived by Lim and Matros (2009) for Tullock
(1980) lottery contests with a stochastic number of players following the binomial dis-
tribution with parameters (n, q). There is a unique symmetric equilibrium that exhibits
two key features. First, for any fixed number of potential players n > 2, individual equi-
librium investment is single-peaked in the probability of participation q. Second, for any
two values of n, the individual equilibrium investment functions satisfy a single-crossing
property; as a result, for different values of q, increasing the number of potential players
can have opposite effects on individual investment. The intuition for this reversal is as
follows. When q is small and n is low, the modal group size is one (i.e., a player in a group
by herself) and the equilibrium investment is very low. As n increases, group sizes larger
than one become more likely and the equilibrium investment goes up. In contrast, when
q is large, the group size is almost certainly greater than one, and hence an increase in
n has the same effect on individual equilibrium investment as in standard contests where
the number of players is known, i.e., the investment goes down.

In our experiment, we use a 2×2 between- and within-subject hybrid design to test
these comparative statics. In the resulting four treatments, we independently manipulate
the maximal number of bidders (n = 3 and n = 6) and the participation probability
(q = 0.2 and q = 0.8). The parameters are selected so that individual equilibrium
investment is increasing in n for the low value of q and decreasing in n for the high value
of q. As a robustness check, we also vary the participation probability within subjects for
each n, accounting for possible order effects.

We make three key contributions in this paper. First, to the best of our knowledge,
this is the first experimental study to explore the comparative statics of behavior in
contests with group size uncertainty. There is a well-developed theoretical literature on
contests with a stochastic number of participants (Münster, 2006; Myerson and Wärneryd,
2006; Lim and Matros, 2009; Fu, Jiao and Lu, 2011; Kahana and Klunover, 2015, 2016;
Ryvkin and Drugov, 2017), including contests with endogenous entry (Fu and Lu, 2010).
Our study is also related to that of Morgan, Orzen and Sefton (2012), who explored
endogenous entry in contests experimentally. However, Morgan, Orzen and Sefton (2012)
model entry as a sequential process, and there is no group size uncertainty at the time
when subjects make their investment decisions. Games with population uncertainty have
also been studied in other environments, including auctions,3 as well as voting, public

3For a theoretical analysis of auctions with a stochastic number of bidders see, e.g., McAfee and
McMillan (1987), Harstad, Kagel and Levin (1990) and Levin and Ozdenoren (2004). For a theoretical
analysis of endogenous entry in auctions see, e.g., Levin and Smith (1994) and Pevnitskaya (2004).
Experiments on auctions with a stochastic number of bidders and endogenous entry include Dyer, Kagel
and Levin (1989), Isaac, Pevnitskaya and Schnier (2012) and Palfrey and Pevnitskaya (2008).
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goods, and coordination game settings modeled as Poisson games.4

The second key contribution of our study is methodological. Specifically, our exper-
imental design has two important novel features. The first is that instead of informing
subjects about the underlying participation probability, q, we inform them directly about
the probabilities, qm, of different realizations of random group size m ∈ {1, . . . , n}. We
do this for a couple of reasons. On the one hand, we believe this information is easier for
subjects to understand. On the other hand, and arguably more importantly, we feel that
this approach is also more “ecologically valid,” in the sense that people in the field are
more likely to think about situations with population uncertainty in terms of probabilities
of possible outcomes (group sizes) as opposed to the underlying stochastic process (which
may be unknown). In this respect, our results are not dependent on subjects’ abilities to
correctly calculate binomial outcome probabilities, nor do they depend on the precise un-
derlying stochastic process used to generate these probabilities. The second novel feature
of our design is that, even though subjects participate in games with random group sizes,
we draw the relevant groups and determine the probability of winning independently for
each subject. This approach allows us to maximize the number of observations and avoid
issues with uneven grouping and subjects sitting out, while retaining the same incentive
structure as in other ways of implementing contest experiments.

Our third, and most important, contribution is substantive. Overall, we find remark-
able agreement between the theory and our experimental data, especially in terms of the
point predictions. With the exception of the treatment where n = 6 and q = 0.8, aver-
age observed investment is extremely close to the risk-neutral Nash equilibrium levels, in
stark contrast with the literature on lottery contests with deterministic group size, where
overbidding has been widely documented (Sheremeta, 2013, 2016). Furthermore, in an
additional control treatment where groups of size one cannot occur, we find that over-
bidding is restored. Thus, comparing the treatment conditions where overbidding occurs
with those where it does not suggests a link between the absence of overbidding and the
possibility that realized group size equals one and conflict is dissolved.

We propose a unifying explanation for these results based on a combination of non-
linear probability weighting and a modified version of joy of winning. Specifically, we
argue that individuals use decision weights, consistent with the probability weighting fea-
ture of Cumulative Prospect Theory (Tversky and Kahneman, 1992), when faced with
group size uncertainty. As such, subjects place higher weight on the payoff-maximizing
possibility that they are the only participant in the contest; that is, they overweigh the
probability that the realized group size is one. At the same time, there is considerable
evidence to suggest that individuals derive some nonmonetary utility from winning (i.e.,
joy of winning), which can induce an increase in the contest investment (e.g., Goeree, Holt
and Palfrey, 2002; Sheremeta, 2010; Brookins and Ryvkin, 2014). We provide a simple
modification to the standard joy of winning model, which we call the Constant Winning
Aspirations (CWA) hypothesis, that allows us to explain differences in overbidding be-
tween treatments in our experiment. The key innovation in the CWA approach is to allow

4See, e.g., Myerson (1998, 2000); Makris (2008, 2009); De Sinopoli and Pimienta (2009); Mohlin,
Östling and Wang (2015); Ioannou and Makris (2017).
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the joy of winning effect to vary with the equilibrium probability of winning in such a
way that the expected value of winning remains constant.

Thus, under our proposed model, bidding is influenced by potentially conflicting mo-
tives. On the one hand, the joy of winning, captured by our CWA hypothesis, induces
higher investment; on the other hand, the possibility that conflict is dissolved (group size
equals one), with an extreme gain from not wasting any resources, is overweighed in line
with Cumulative Prospect Theory, and induces lower investment. We show that the dif-
ferent effects of probability weighting across treatments can explain, at least qualitatively,
the differences in overbidding across treatments. Moreover, under our CWA model, the
effects from joy of winning on overbidding are also different across treatments. Together,
our one-parameter unified model is able to fully explain the differences in overbidding
observed across treatments in our experiment.5

Additionally, unlike the standard way of modeling joy of winning, our CWA hypothesis
can also be used to explain differences in overbidding across games in various contest
environments. For instance, existing experimental evidence on the effect of group size
in Tullock contests finds either no systematic variation in average investment, or else a
smaller reduction in average investment than is predicted by theory (e.g., Anderson and
Stafford, 2003; Morgan, Orzen and Sefton, 2012; Lim, Matros and Turocy, 2014; Baik
et al., 2015). Thus, empirical evidence suggests that overbidding increases with group
size, while the standard joy of winning approach predicts it to be decreasing. In contrast,
under the CWA hypothesis, the effect from joy of winning depends on group size through
the equilibrium probability of winning, such that, consistent with the empirical evidence,
overbidding is predicted to increase with group size.

The rest of the paper is organized as follows. In Section 2, we present the theoretical
model and predictions for the parameters used in the experiment. Section 3 presents
the experimental design and procedures. The results of the experiment are presented in
Section 4. Then, in Section 5, we propose and develop the model incorporating probability
weighting and Constant Winning Aspirations to explain the differences in overbidding
observed across treatments. Section 6 provides concluding remarks.

2 Theoretical model and predictions

In this section, we summarize the results of Lim and Matros (2009) that are relevant for
our experiment. Consider a game of n identical risk-neutral players indexed by i ∈ N =
{1, . . . , n}, each of whom participates in a contest with independent probability q ∈ (0, 1].
Assuming player i participates in the contest, let M ⊆ N \{i} denote the (random) set of
participating players other than i. The participating players {i}∪M compete by spending

5Parco, Rapoport and Amaldoss (2005) combine nonmonetary utility of winning with probability
weighting to explain behavior in a two-stage contest with budget-constrained players. However, they do
not propose the feature that equilibrium expected utility of winning remains constant across settings,
and the validity of their parameterization for the joy of winning is not tested across different group sizes.
Furthermore, the probability weighting in their model applies to the probability of winning in the contest
success function rather than to the probabilities of different group sizes.
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(xi, xM) ∈ R+ × R|M |+ , where xi is the investment level of player i and xM is the vector
of investments of all other participating players. The probability of player i winning is
given by the Tullock (1980) lottery contest success function

Pi(xi, xM ;M) =

{
1

|M |+1
, if xi = 0 and xj = 0 for all j ∈M ,
xi

xi+
∑
j∈M xj

, otherwise.
(1)

The winner of the contest receives a prize V > 0. Thus, the expected payoff of a partici-
pating player i given the realization of M and investments (xi, xM) is V Pi(xi, xM ;M)−xi.

Lim and Matros (2009) have shown that this game has a unique symmetric pure-
strategy Nash equilibrium (NE), with individual investments given by

x∗(n, q) = V
n−1∑
i=0

(
n− 1

i

)
qi(1− q)n−i−1 i

(i+ 1)2
. (2)

Equation (2) implies nontrivial comparative statics of individual equilibrium investment
with respect to the participation probability, q, and the maximal group size, n. Specif-
ically, as shown by Lim and Matros (2009), for a given n, x∗(n, q) is nonmonotonic in
q, with a single peak q̂(n) ∈ (0, 1) for n ≥ 3. Additionally, x∗(n, q) satisfies the single-
crossing property, i.e., for any two maximal group sizes n and n′ there is a unique q ∈ (0, 1]
such that the individual equilibrium investments are equal, x∗(n, q) = x∗(n′, q).

These results lead to a possibility that the direction of the effect of maximal group
size n on x∗(n, q) changes depending on the value of q. Specifically, for a relatively low q,
individual investment x∗ may be increasing in n, whereas for a relatively high q it may be
decreasing in n. The intuition for this reversal is as follows. When q is low, smaller group
sizes are more likely; in particular, the modal group size may be the group of one, i.e.,
an active player in a group by herself, in which case the optimal investment is zero. As
n increases, the probability of larger group sizes (two and higher) also increases, leading
to an increase in the optimal investment. On the contrary, when q is high, the number of
participating players is likely to be large, and an increase in n has an effect on individual
investment that is similar to the effect of an increase in group size in a standard contest
with deterministic group size; that is, x∗ will decrease with n.

In the experiment, we set out to test these comparative statics using a 2×2 design. We
vary the maximal group size between n = 3 and n = 6 and the participation probability
between q = 0.2 and q = 0.8. All amounts in the experiment are denominated in points,
with the prize set at V = 120. Based on Eq. (2), the equilibrium individual investments
under these parameters are

x∗(3, 0.2) = 10.67, x∗(3, 0.8) = 26.66,

x∗(6, 0.2) = 19.03, x∗(6, 0.8) = 19.49. (3)

The main comparison we are interested in is the difference in the effect of increasing
the maximal group size n for different values of q. As seen from the predictions (3), there
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is indeed a reversal of the effect of n on x∗ for a high q as compared to a low q. When
q = 0.2, individual equilibrium investment is higher in the larger population (n = 6)
than in the smaller population (n = 3). On the other hand, when q = 0.8, equilibrium
investment is lower in the larger population than in the smaller population. In addition,
we examine the comparative statics with respect to q. That is, for a fixed maximal group
size, we compare individual investment under the low (q = 0.2) and high (q = 0.8) values
of q. As seen from (3), x∗ increases in q when n = 3 but practically does not change with
q when n = 6.

3 Experimental design

All experimental sessions were conducted using z-Tree (Fischbacher, 2007), with sub-
jects making decisions at visually separated computer terminals at the XS/FS laboratory
at Florida State University. A total of 216 subjects (57.4% of them female) were ran-
domly recruited via ORSEE (Greiner, 2015) from a subpopulation of FSU undergraduate
students who pre-registered to receive announcements about participation in upcoming
experiments. Ten sessions were conducted, and each subject participated in only one ses-
sion. Each session consisted of four parts. Instructions were distributed and read aloud
prior to the start of each part. The instructions for the main portion of the experiment
are provided in Appendix B.6 A session lasted approximately 70 minutes, with subjects
earning $25.53, on average, including a $7.00 show-up fee.7

In Part 1 of the experiment, we measured subjects’ attitudes towards risk, ambiguity,
and losses. Each of these attitudes was elicited using a “list-style” environment similar to
the methods used by Holt and Laury (2002) and Sutter et al. (2013).8 The lists for the
three measures were presented to subjects in a random order. One of the lists, and one
of the rows in that list, were selected randomly for actual payments. If a subject’s choice
in that row were the sure amount of money, that amount was paid; if the choice were a
lottery, the outcome was randomly realized. The results and payoffs from this part were
withheld until the end of the experiment.

6All other instructions not reproduced in Appendix B are straightforward and available from the
authors upon request.

7Each subject’s earnings are the show-up fee plus the sum of their earnings from the four parts of the
experiment. We describe the way that earnings were calculated for each part in the explanation of the
procedures.

8In each case, subjects were presented with a list of 20 choices between a sure amount of money and
a gamble with two outcomes. The sure amounts of money changed gradually from the top to the bottom
of the list. Subjects were asked to select a row where they were willing to switch from preferring a
gamble to preferring a sure amount. In the risk list, the gamble was a lottery (0, $2; 0.5, 0.5) and sure
amounts changed between $0.10 and $2; in the ambiguity list, the same sure amounts were used but the
gamble was a lottery (0, $2; p, 1 − p), with a uniform random p drawn from [0, 1] and not disclosed to
subjects; in the loss list, the gamble was a lottery (0,−$2; 0.5, 0.5) and sure amounts changed between
−$2 and −$0.10. Our measures for risk aversion (RA) and loss aversion (LA) were constructed using the
row numbers where subjects switched. The measure for ambiguity aversion (AA) was constructed as the
difference between the row numbers where the subject switched in the ambiguous and risky lists.
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Treatment n q (Part 2) q (Part 3) Sessions Subjects Groups

3LH 3 0.2 0.8 2 48 8
3HL 3 0.8 0.2 2 42 7
6LH 6 0.2 0.8 2 42 7
6HL 6 0.8 0.2 2 42 7

3HL+ 3+1 0.8 0.2 2 42 7

Table 1: Summary of experimental treatments.

The main parts of our experiment (Part 2 and Part 3) were designed to test the
comparative statics of individual equilibrium investment with respect to both maximal
group size, n, and participation probability, q, cf. (3). We implemented a 2×2 between-
and within-subject hybrid design with four treatments. In any given session, we kept
the maximal group size fixed at n = 3 or n = 6. In Part 2 of the experiment, all
subjects participated in a contest with a maximal group size of n (fixed for the session),
and with a fixed participation probability (either q = 0.2 or q = 0.8). Then, in Part 3,
we changed the participation probability within each session; that is, in sessions where
subjects experienced q = 0.2 (respectively, q = 0.8) in Part 2, all subjects in the session
then faced q = 0.8 (respectively, q = 0.2) in Part 3.9 Comparisons of behavior in Part
2 across treatments allow us to test the comparative static predictions between subjects.
Similar between-subjects comparisons using behavior in Part 3 provide a useful robustness
test for our results. However, subjects in Part 3 have also experienced different treatments
in Part 2. Thus, we concentrate our analysis on the comparison between treatments in
Part 2. Similarly, although we do not report them, comparisons between Part 2 and Part
3 are designed to provide within-subject reactions to changes in q for each n, accounting
for possible order effects. The resulting four treatments are referred to as nLH and
nHL, depending on n and on whether (L)ow (q = 0.2) or (H)igh (q = 0.8) participation
probability was used in Part 2 and Part 3, respectively. The parameters of the treatments
are summarized in Table 1. Within each of the main parts of the experiment (Part 2 and
Part 3), we denote the relevant treatment conditions by 3Low, 3High, 6Low, and 6High.

In addition to our four main treatments, we also conducted a control treatment, called
3HL+, where the possible group sizes were m ∈ {2, 3, 4}. Otherwise, procedures were the
same as in all other treatments. In this treatment, the players were informed that there
would always be at least one other player in their group. To facilitate the comparison
with the other treatments, we kept fixed the underlying stochastic process for the number
of additional players. Thus, the distribution over group sizes was the same as for n = 3,
with the support of the distribution shifted up by 1. In this control treatment, subjects
faced the high participation probability (q = 0.8) in Part 2, and the low participation
probability (q = 0.2) in Part 3. We refer to the treatment condition implemented in
Part 2 as 3+High and the treatment condition implemented in Part 3 as 3+Low. The

9When subjects were making decisions in Part 2 they were not yet informed about the existence of or
instructions for Part 3.
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Group Size Treatment
m 3Low 3High 6Low 6High 3+Low 3+High

1 0.64 0.04 0.32768 0.00032
2 0.32 0.32 0.4096 0.0064 0.64 0.04
3 0.04 0.64 0.2048 0.0512 0.32 0.32
4 0.0512 0.2048 0.04 0.64
5 0.0064 0.4096
6 0.00032 0.32768

Table 2: Probabilities, qm, for each possible group size m for the different treatment
conditions.

purpose of this additional control treatment was to explore our proposed explanation for
the absence of average overbidding observed in our main treatments. Further details are
provided in Section 5.

In Part 2, subjects participated in 30 rounds of the contest game with random group
size described in Section 2. Before the first round in all treatments, subjects were randomly
placed into matching groups consisting of six subjects each. Matching groups were fixed
for the duration of the experiment, and interactions between subjects were confined within
the matching groups. In each round, subjects were given an endowment of 120 points and
asked to choose how many points to invest into a project. Any points not invested were
retained as part of their payoff for the round.

At the time of making their investment decisions, subjects were not informed about
the actual size of their group but only knew the probabilities for each possible group size
to occur. That is, instead of providing subjects with the participation probability q, we
gave them the resulting probabilities, qm, for each possible group size m. In the main
treatments nLH and nHL, qm =

(
n−1
m−1

)
qm−1(1−q)n−m, m = 1, . . . , n, whereas in treatment

3HL+ where the support of the distribution is shifted by 1, qm =
(
n−2
m−2

)
qm−2(1 − q)n−m,

with n = 4 and m = 2, 3, 4. These probabilities are shown in Table 2 for each of the
treatment conditions. Following the investment decisions, each subject received their
own independent group size realization, m, drawn according to the relevant probabilities.
Then, m− 1 other subjects were randomly selected from the subject’s matching group to
form their contest group for the round.

A subject’s project could either succeed or fail, with success given by the lottery
contest success function (1). If the project was successful (respectively, failed) the subject
received 120 (respectively, 0) points in revenue for the round. Therefore, a subject who
invested x received 240− x (respectively, 120− x) points for the round if her project was
successful (respectively, failed). After the investment decisions were made, subjects were
shown the realized size of their contest group, their own investment, the investments of all
other contest group members (if any), the probability that their project was successful,
the outcome, and their payoff. At the end of Part 2, the payoffs from five randomly
selected rounds counted towards final earnings at the exchange rate of $1 = 100 points.
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Earnings from this and other parts of the experiment were not disclosed until the end of
the experiment.

Part 3 of the experiment was identical to Part 2, with the exception that subjects now
experienced a new set of probabilities for the different sizes of their group (see Table 2), due
to the change in the participation probability q. Subjects remained in the same matching
groups as in Part 2. Earnings from Part 3 were obtained using the same procedure as
in Part 2 (adding together the payoffs from five randomly selected rounds in Part 3) and
added to the final earnings.

In Part 4, we introduced a control task to measure subjects’ behavior when strategic
uncertainty about others’ investment decisions is removed. Subjects were asked to make
two decisions based on the information about others’ investments in selected rounds of
Parts 2 and 3. We do not use the results from Part 4 in the analysis below and, therefore,
omit the specifics. Details are available from the authors upon request.

Finally, at the conclusion of the experiment, subjects were informed about their earn-
ings in all four parts and paid privately by check the sum of their earnings from all parts
and show-up fee.

As mentioned in the Introduction, our implementation of the contest with random
group size incorporated two novel features. First, by providing subjects with the proba-
bilities, qm, for each possible group size, rather than the participation probability q, we
greatly simplified the decision making environment. With this feature, our experimental
test of the theory does not rely on the subjects’ ability to correctly calculate the likeli-
hood of different group sizes for given n and q. Furthermore, we view this information as
more representative of the way contest participants think about group size uncertainty in
practice; i.e., in terms of the likelihood of various outcomes rather than the underlying
stochastic process.

Second, we allowed subjects to have their own independent group size realization in
each round. That is, for a subject with randomly determined group size m, we used the
investments from m − 1 other participants, drawn randomly from their matching group
without replacement, to calculate their probability of success in the current round.10 As
a result, all subjects were active in each round, and therefore, any issues involved with
matching subjects to different group sizes and having some of them sitting out were
avoided.

4 Results

We organize the results as follows. First, in Section 4.1, we report summary statis-
tics and examine the comparative static predictions described in Section 2 using only
between-subject comparisons of the data from the first 30 rounds of contests (Part 2 of
the experiment). We also compare average investments with the NE point predictions
for each treatment. To check the robustness of our results, we also conducted the same

10Note that, in this way, player i’s payoff is unaffected by the payoff calculation for another player j,
even if j’s investment was used to determine player i’s probability of success.
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Figure 1: Average observed investment and NE predictions in Part 2 (rounds 1-30), by
treatment.

between-subject analysis using the data from the second 30 rounds of contests (Part 3
of the experiment), although the results are relegated to Section A.1 in the Appendix.11

In Section 4.2, we analyze the dynamics of individual behavior in Part 2 over time, con-
trolling for feedback and various individual characteristics. In Section 4.3, we report the
results from our additional control treatment 3HL+. Throughout this Section, all stan-
dard errors are clustered at the matching group level and matching groups are used as
the unit of analysis for nonparametric tests.

4.1 Average investment and comparative statics

Since we confine our analysis to the data from Part 2, we will refer to treatments by the
relevant treatment condition used in Part 2 only. Thus, we identify treatments nLH as
nLow and to treatments nHL as nHigh, for each value of n ∈ {3, 6}. Figure 1 shows the
average individual investment across all 30 rounds for each treatment condition, along
with the corresponding NE predictions. As seen from the figure, in all treatments except
6High, the average investment converges closely to the NE predictions by round 15.

Table 3 reports the average individual investments by treatment over all 30 rounds as
well as over rounds 16-30, with robust standard errors in parentheses. For comparison,

11Recall that subjects who faced q = 0.2 in Part 3 had experienced contests with q = 0.8 in Part 2,
and vice versa. Hence, by the beginning of Part 3, subjects experienced different histories; therefore, the
comparisons using Part 3 decisions across different treatments should be interpreted with some caution.

11



Treatment Ave. investment: 1-30 Ave. investment: 16-30 NE investment

3Low 13.05 10.71 10.67
(1.16) (1.22)

3High 29.95 27.32 26.66
(3.29) (3.86)

6Low 21.09 17.32 19.03
(1.98) (2.89)

6High 34.34 31.01 19.49
(1.66) (1.66)

Table 3: Average individual investment in Part 2, by treatment, with robust standard
errors in parentheses, clustered by matching group.

the table also provides the NE predictions. The one-sample Wilcoxon signed-rank tests
comparing the average investments in rounds 16-30 to the NE predictions produce the
two-sided p-values of 0.889, 0.866, 0.612 and 0.028 for treatments 3Low, 3High, 6Low and
6High, respectively. Thus, over the last 15 rounds, only the 6High treatment exhibits
average overbidding relative to the NE. This surprising level of agreement with the point
predictions is in stark contrast to the widely documented phenomenon of overbidding in
lottery contest experiments with deterministic group size (Sheremeta, 2013).

Result 1 (a) In treatment conditions 3Low, 3High, and 6Low, average investment agrees
with the NE point predictions.

(b) In treatment 6High, we find significant overbidding relative to the NE point pre-
diction.

Regarding comparative statics with respect to maximal group size n, as predicted,
when the participation probability is low (q = 0.2), increasing the maximal group size
from n = 3 to n = 6 leads to a significant increase in average investment from 13.05 to
21.09 (Wilcoxon rank-sum test, p = 0.004). On the other hand, when the participation
probability is high (q = 0.8), the prediction that spending decreases in the maximal
group size is not supported. In fact, average investment increases slightly (though not
significantly) from 29.95 to 34.34 (Wilcoxon rank-sum test, p = 0.110). We find the same
results for these comparative static predictions when we examine average investment over
only the last 15 rounds of the sequence (rounds 16-30).

Similarly, as predicted, increasing the participation probability from q = 0.2 to q = 0.8
leads to a significant increase in average investment from 13.05 to 29.95 when n = 3
(Wilcoxon rank-sum test, p = 0.001). However, contrary to theory, the increase in q also
leads to a significant increase in investment from 21.09 to 34.34 (Wilcoxon rank-sum test,
p = 0.002) when n = 6. The same comparisons hold for the data from rounds 16-30.

Result 2 (a) Investment increases in n, as predicted, for low q, but does not change,
contrary to the prediction (reduction), for high q.

12



(b) Investment increases in q, as predicted, for low n, but also increases in q, contrary
to the prediction (no change), for high n.

Overall, our basic results agree well with the theory. The disagreement is driven by
subjects’ behavior in 6High – the only treatment where we observe substantial overbidding
relative to the equilibrium predictions. To check the robustness of our findings, we also
analyzed behavior between treatments using the data from Part 3 of the experiment.
The results, reported in Section A.1 in the Appendix, strongly confirm all four of the
comparative static predictions.12

Finally, although our design and analysis focuses on individual investment, we also
find evidence consistent with the predicted effects of n and q on expected total investment
X∗ = nqx∗. Lim and Matros (2009) show that although there may be nonmonotonicity
in individual investment, expected total investment is always increasing in n and in q,
holding other parameters constant. We use the individual investment decisions in Part
2 to compute the (ex ante) expected total investment, averaged across matching groups,
for each treatment. Consistent with the prediction, an increase from n = 3 to n = 6
leads to a significant increase in average total investment from 7.83 to 25.31 when q = 0.2
(Wilcoxon rank-sum test, p = 0.001), and from 71.88 to 164.85 when q = 0.8 (Wilcoxon
rank-sum test, p = 0.002). Similarly, as predicted, an increase from q = 0.2 to q = 0.8
leads to a significant increase in average total investment from 7.83 to 71.88 when n = 3
(Wilcoxon rank-sum test, p = 0.001) and from 25.31 to 164.85 when n = 6 (Wilcoxon
rank-sum test, p = 0.002).

4.2 Dynamics of individual investment

In this section, we explore the dynamics of individual investment in Part 2 of the ex-
periment. We analyze how subjects adjust their investment over time in response to the
payoff-relevant feedback they receive, and also control for individual characteristics.

Table 4 reports the OLS estimates from several regression models. Model (1) is a
simple robustness check of comparative statics of individual investment (Investmentt)
across treatments controlling for the time trend (Round) and individual characteristics –
the measures of the subject’s ambiguity aversion (AA), risk aversion (RA), loss aversion
(LA), and the subject’s gender (Female = 1 if the subject is a female and zero otherwise).
The results are rather standard: The previously reported comparisons between treatments
hold up, investment exhibits an overall negative time trend, and more ambiguity-averse
subjects tend to invest less.13

In model (2), the dependent variable is ∆Investmentt defined as the difference in
the subject’s investments between rounds t and t − 1. As in model (1), we include the

12As noted earlier, between-subjects comparisons using data from Part 3 are not perfectly clean, since
the subjects in different treatments will have experienced different treatment conditions in Part 2. Never-
theless, the comparative statics analysis provided in the Appendix can inform somewhat on the robustness
of our main findings.

13While there is no ambiguity in the structure of the game itself, subjects face strategic ambiguity with
respect to the behavior of others. It is, therefore, plausible that ambiguity aversion should play a role.
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Investmentt ∆Investmentt ∆Investmentt ∆Investmentt
1 ≤ t ≤ 15 16 ≤ t ≤ 30

(1) (2) (3) (4)

Round -0.360*** 0.0103
(0.0818) (0.0183)

3High 16.37*** -1.758*** -0.475 0.866
(3.075) (0.600) (1.531) (1.073)

6Low 8.470*** -0.812** -1.430 1.669**
(2.652) (0.378) (1.669) (0.648)

6High 19.51*** -3.223*** 1.259 1.231
(1.688) (0.664) (1.643) (0.820)

Wint−1 -6.459*** -5.055*** -0.891*
(1.230) (1.760) (0.461)

Wint−1×3High -1.522 -2.868
(2.178) (2.382)

Wint−1×6Low 1.448 -2.747**
(2.104) (1.018)

Wint−1×6High -13.70*** -10.04***
(3.013) (3.106)

Ave Inv Otherst−1 -0.0130
(0.0258)

AA -0.691* -0.0512*
(0.377) (0.0278)

RA 0.561 0.0156
(0.351) (0.0260)

LA -0.157 0.0194
(0.201) (0.0177)

Female 1.075 -0.216
(3.418) (0.329)

Intercept 14.90*** 4.370*** 3.107** 0.511*
(3.953) (1.250) (1.490) (0.280)

Observations 5,220 5,046 2,436 2,610
Clusters 29 29 29 29
R-squared 0.140 0.016 0.034 0.015

Table 4: OLS regression results for the dynamics of individual investment in Part 2.
Standard errors in parentheses are clustered by matching group. Significance levels: *
p < 0.10, ** p < 0.05, *** p < 0.01.

treatment dummies and individual characteristics. In addition, we control for whether the
subject won the contest in the previous round (Wint−1 = 1 if the subject won and zero
otherwise) and for the average investment of other subjects in the subject’s realized group
in the previous round (Ave Inv Otherst−1). As seen from the results, subjects exhibit
strong reactions to winning and losing. For example, ceteris paribus in the baseline
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Treatment ∆Investmentt Win Freq. Ave. ∆Investmentt
Wint−1 = 1 Wint−1 = 0

Rounds 1-15
3Low -5.055 3.107 0.817 -3.558
3High -6.577 2.633 0.397 -1.022
6Low -3.607 1.678 0.643 -1.719
6High -18.759 4.366 0.227 -0.883

Rounds 16-30
3Low -0.891 0.511 0.811 -0.626
3High -3.759 1.377 0.427 -0.816
6Low -3.638 2.180 0.629 -1.477
6High -10.931 1.742 0.203 -0.833

Table 5: Average round-by-round investment adjustments in response to winning and
losing, average winning frequencies, and total average investment adjustments, by treat-
ment.

treatment (3Low), they increase investment by 4.37 (the coefficient on the intercept,
p < 0.01) in response to losing and decrease investment by 2.09 (the sum of the intercept
and the coefficient on Wint−1, p < 0.01, Wald test) in response to winning.14 These
effects are consistent with a combination of reinforcement learning (e.g., Roth and Erev,
1995) and directional learning (e.g., Selten and Stoecker, 1986) theories whereby strategies
that lead to a reduction in payoff are played less frequently and investment is adjusted
in the direction of higher payoffs (for a similar approach, see Grosskopf, 2003; Dutcher
et al., 2015). Indeed, winning provides a signal that the same high payoff could possibly be
achieved with a lower investment while losing indicates that a higher investment is needed.
Notably, conditional on the winning/losing feedback the information about investments
of other group members has no effect on effort adjustment. In line with model (1), more
ambiguity-averse subjects tend to increase their investment less.

In models (3) and (4), we analyze investment adjustment in response to winning/losing
in more detail, controlling for possible differences in the adjustment process across treat-
ments via interactions of Wint−1 with the treatment dummies. We do not control for any
other factors, which allows us to obtain more precise quantitative estimates for average
investment adjustments conditional on winning and losing in each treatment. Column (3)
reports the results using data from rounds 1-15, while column (4) uses data from rounds
16-30. The average estimated effects based on these regressions are summarized in Table
5.

Table 5 shows the estimated average change in investment from round t−1 to round t
in response to winning (Wint−1 = 1) and losing (Wint−1 = 0), average winning frequency

14These estimates are approximate as they do not take into account changes over time following the
coefficient on Round. As time progresses, the estimated increase in investment after losing is increasing
slightly while the estimated reduction in investment after winning is decreasing slightly, although these
trends are not statistically significant.
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and overall average change in investment for each treatment. As seen from the table,
subjects reduce investment after winning and increase it after losing in all treatments.
These effects are stronger at the beginning (in rounds 1-15 as compared to rounds 16-
30), with the exception of treatment 6Low where they appear to be stable over time.
Importantly, winning frequencies differ substantially across treatments, from around 0.8
in 3Low to 0.2 in 6High. Total average investment adjustments (the last column in
Table 5) are a weighted average of the adjustments after winning and losing with the
corresponding winning and losing frequencies as weights. As a result, the initial downward
trend is the strongest in 3Low and 6Low where the frequencies of winning are the highest,
whereas in 6High there is nearly no reduction in investment over time even though the
downward adjustment after winning is very strong. These differences in adjustment are
consistent with the observed differences in overbidding between 6High and the other three
treatments.

We conclude that the observed dynamics in individual investment are consistent with
the basic models of reinforcement and directional learning. Reinforcement works differ-
ently in different treatments due to differences in the frequencies of positive and negative
stimuli.

4.3 Average investment in 3HL+

In this section, we further explore the surprising absence of overbidding summarized in
Result 1. We first provide some intuition based on the differences between our main
treatments. A notable difference between the treatment where overbidding still arises,
6High, and the other three treatments, is that the probability of group size being equal to
one is negligible in the former, but nontrivial for the latter. This key difference suggests
that the possibility of no conflict (being in a group of size one) reduces overbidding when
group size is uncertain. Based on this intuition, we implemented the additional control
treatment, 3HL+, in which the support of the probability distribution over group size is
shifted up by one.15 That is, realized group size could be 2, 3, or 4. If the possibility of
being in a group of size one is a driving factor behind our lack of overbidding, then we
would expect overbidding to be restored in both sequences of the 3HL+ treatment.

As described in Section 3, the procedures for the 3HL+ treatment were identical to
the procedures for the other treatments, except with respect to the possible group sizes.
Specifically, the realized group size was equal to (m + 1), where m − 1 is a binomial
random variable with success parameter q, representing the number of (additional) active
participants. For each treatment condition, we calculate the NE investments, given the
prize value of V = 120. For 3+High, the NE is x∗ = 24.13, while for 3+Low, the NE is
x∗ = 28.63.

Table 6 provides the summary statistics for the average investment in our 3HL+ treat-
ment, as well as the corresponding NE investment level. Using the one-sample Wilcoxon
signed-rank test to compare average investment with the NE point predictions, we find
significant overbidding in both treatment conditions, 3+High and 3+Low. For 3+High,

15We are especially grateful to an anonymous referee for suggesting this as an additional treatment.
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Treatment (Rounds) Ave. investment NE investment

3+High (1-30) 36.58 24.13
(1.95)

3+High (16-30) 34.31 24.13
(3.36)

3+Low (31-60) 37.26 28.63
(3.46)

3+Low (46-60) 34.63 28.63
(3.05)

Table 6: Average individual investment in treatment 3HL+, with robust standard errors
in parentheses, clustered by matching group.

the difference is positive and significant over all 30 rounds of the first sequence (p = 0.018)
and over the last 15 rounds of the first sequence (p = 0.028). Likewise, for 3+Low, which
is played only in the second sequence (and thus may be influenced by subjects’ experiences
in Part 2), the difference is positive and significant across all 30 rounds (p = 0.063) and
over the last 15 rounds of the second sequence (p = 0.091). These summary statistics,
and the corresponding average overbidding are also illustrated by Figure 2, which plots
the average investment in each round for the 3+High treatment condition implemented in
Part 2.16

Result 3 In both 3+High and 3+Low, we find significant overbidding relative to the NE
point prediction.

Thus, our additional control treatment provides further evidence that the absence of
overbidding is linked to the possibility of group size being equal to one. When the proba-
bility of this outcome is negligible (6High) or absent altogether (3+High and 3+Low), we
find overbidding, consistent with the rest of the experimental contests literature. How-
ever, when the probability is nonnegligible, even if it is small (e.g. 4% in 3Low), there is
no average overbidding relative to the NE investment level.

5 Explaining the differences in overbidding

Before we turn to our formal explanation, it will be helpful to outline the various al-
ternative explanations that have been proposed for overbidding in standard contest ex-
periments. The survey study by Dechenaux, Kovenock and Sheremeta (2015) presents a
summary of these different explanations, while Sheremeta (2016) provides a comprehen-
sive experimental test of the various theories.

16We find similar visual support for overbidding in all rounds for the 3+Low treatment condition
implemented in Part 3. However, since subjects had already experienced the high participation probability
in Part 2, we omit the data from Figure 2.
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Figure 2: Average investment in the treatment condition 3+High. The reference line
indicates the NE point prediction.

One important explanation is that subjects derive some additional nonmonetary util-
ity from winning, and that this induces higher effort investments by contestants. There
is ample evidence that winning in contests per se has value beyond the monetary value of
the prize due to the joy of winning (e.g., Goeree, Holt and Palfrey, 2002; Sheremeta, 2010;
Brookins and Ryvkin, 2014). A second proposed explanation is that subjects who are con-
cerned with status or relative payoffs may invest more effort in the contest (Hehenkamp,
Leininger and Possajennikov, 2004; Mago, Samak and Sheremeta, 2016). A third expla-
nation is based on the argument that individuals often make mistakes, which introduces
noise into the equilibrium solution. One of the standard approaches for explaining overbid-
ding in this context is the Quantal Response Equilibrium (QRE) framework (McKelvey
and Palfrey, 1995) where it is assumed that players mix over their available strategy
spaces so that a strategy s is chosen with a probability that increases in the expected
payoff from s given the behavior of other players. Several other studies have provided
supporting evidence for this argument using the QRE framework in standard lottery
contests (Sheremeta, 2011; Chowdhury, Sheremeta and Turocy, 2014; Lim, Matros and
Turocy, 2014; Brookins and Ryvkin, 2014). Another explanation contends that individ-
uals are subject to certain judgmental biases, such as nonlinear probability weighting or
the hot hand fallacy, which lead individuals to bid above the Nash equilibrium (Parco,
Rapoport and Amaldoss, 2005; Baharad and Nitzan, 2008; Amaldoss and Rapoport, 2009;
Sheremeta, 2011).

Our proposed model is based on a combination of nonlinear probability weighting
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with respect to group size uncertainty and a joy of winning effect that depends on the
expected frequency of winning. Although we think that bounded rationality, particularly
as captured in the QRE framework, is also an important consideration, we do not include
it in our proposed model. However, we illustrate the implications of QRE behavior in our
setting in Appendix A.2.

5.1 Probability weighting

The basic intuition for our model is as follows. First, we argue that subjects overweigh the
probability of being in a contest on their own, consistent with the formation of decision
weights in Cumulative Prospect Theory (Tversky and Kahneman, 1992). In deriving the
NE level of effort when group size is uncertain, the possibility of being in a group of size
one (i.e. of being the only participant) has the effect of reducing the optimal effort in the
contest, since in a group of size one, the payoff maximizing expenditure is 0. As such, if
subjects place higher decision weight on the possibility that the size of their group is one,
it may lead them to further reduce their equilibrium spending relative to the NE.

To illustrate the effects of such probability weighting, we derive the adjusted, probability-
weighted NE investment levels assuming that subjects form decision weights according
to the probability weighting function estimated by Tversky and Kahneman (1992). The
weighting function is given as follows,

π(p) =
pγ

(pγ + (1− p)γ)
1
γ

. (4)

Tversky and Kahneman (1992) estimate the value of γ to be 0.61 for outcomes that
are expressed in the realm of gains in their setting.17 Consistent with the extension of
Prospect Theory to Cumulative Prospect Theory (CPT), we apply the weighting function
to the cumulative probabilities. To this end, we first rank the outcomes (group size) from
lowest (1) to highest (n).18 For the highest group size, the decision weight is given by
π̂(pn) = π(pn), as defined above. For the second highest group size, n − 1, the decision
weight is given by

π̂(pn−1) = π(pn + pn−1)− π(pn), (5)

while for all other group sizes k < n− 1,

π̂(pk) = π

(
n∑
i=k

pi

)
− π

(
n∑

i=k+1

pi

)
. (6)

The decision weights calculated for each treatment in our experiment are shown in Table
7. In addition, the table reports the NE (assuming the actual probabilities are used)
and the adjusted (probability-weighted) NE investment level, assuming subjects use the
calculated decision weights.

17Other studies have estimated slightly different values for γ. However, the effect of probability weight-
ing in our environment is not particularly sensitive to the exact parameter value. Thus, we adopt the
original estimate from Tversky and Kahneman (1992) for our calculations.

18In treatment 3HL+, groups sizes change between 2 and 4.
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Treatment Group Size Actual CPT decision weights NE Adjusted NE
m pm π̂(pm)

1 0.64 0.65029
3Low 2 0.32 0.23242 10.67 10.10

3 0.04 0.11729

1 0.04 0.18493
3High 2 0.32 0.31833 26.66 22.796

3 0.64 0.49674

1 0.32768 0.48377
2 0.4096 0.21828

6Low 3 0.2048 0.15607 19.03 13.739
4 0.0512 0.09776
5 0.0064 0.03682
6 0.00032 0.00729

1 0.00032 0.01186
2 0.0064 0.05892

6High 3 0.0512 0.15155 19.49 20.618
4 0.2048 0.21854
5 0.4096 0.22612
6 0.32768 0.33300

2 0.04 0.18493
3+High 3 0.32 0.31833 24.13 25.21

4 0.64 0.49674

Table 7: Decision weights and Adjusted NE investment levels for each treatment using
the CPT probability weighting function.

Table 7 shows that if subjects use decision weights that distort the objective proba-
bilities, consistent with CPT, the adjusted NE investment levels are lower than when the
objective probabilities are used, in all treatments except 6High and 3+High, where the
probabilities of group size being one are negligible and zero, respectively. Thus, direc-
tionally, we would expect nonlinear probability weighting to lower investment in the three
treatments where overbidding is absent, and to increase investment in the two treatments
where overbidding is present. Furthermore, the adjusted equilibrium investment level is
substantially lower in 3High and 6Low, compared with the unadjusted NE.

The forces underlying these differences between treatments are quite straightforward.
In 3High and 6Low, the decision weights assigned to m = 1 (group size equal to one)
are substantially higher than the objective probabilities. Since the optimal investment is
zero for a contestant who faces no other participants, these decision weights significantly
reduce the adjusted equilibrium investment below the NE. In contrast, in 3Low, the
decision weight for m = 1 is only slightly higher than the objective probability. However,
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the decision weight on m = 3 is substantially higher, while the decision weight on m = 2
is substantially lower. The net result is also a reduction in the equilibrium investment
level, albeit less pronounced for the 3Low treatment than for 3High and 6Low.

By contrast, in 6High, the inflation of decision weights on groups of size m = 2 and
m = 3, which provide incentives for much higher investment, is stronger than the effect of
inflating the negligible probability that m = 1. In 3+High, the probability of the lowest
possible group size is significantly inflated, the same as in 3High. However, the lowest
possible group size is two in 3+High, which provides incentives for higher investment,
unlike the lowest possible group size in 3High.

To summarize, in our setting where group size is uncertain, the effects of nonlinear
probability weighting on equilibrium investment depend on whether or not there is a non-
trivial probability of group size being one. In the three treatments where this probability
is nontrivial, probability weighting has a strong negative effect on the equilibrium invest-
ment level. This negative effect may counter the effect of nonmonetary utility of winning,
which might otherwise be expected to generate overbidding. In contrast, when the prob-
ability that group size equals one is trivial, as in 6High, or zero, as in 3+High, probability
weighting actually increases the equilibrium investment relative to the standard NE. As
such, any effects driven by the joy of winning will be unfettered by the effect of probability
weighting, which also works to (marginally) increase investment levels above the standard
NE.

While probability weighting is a critical part of the explanation for our results, the
adjusted equilibrium calculations in Table 7 do not explain the observed investment.
However, we have yet to account for any other potential influences on investment levels,
such as joy of winning, relative payoff concerns, or bounded rationality. To unify our
model, we next develop a simple modification of the standard joy of winning model that,
together with probability weighting, provides a full explanation for our results.

5.2 A Constant Winning Aspirations model of joy of winning

The standard way of modeling joy of winning in contests is to include an additive term, w,
on top of the monetary prize value V (see, e.g., Goeree, Holt and Palfrey, 2002; Sheremeta,
2010; Brookins and Ryvkin, 2014). The expected utility of player i then takes the form

ui(xi, x−i) = (V + w)Pi(xi, x−i)− xi,

which leads to a symmetric equilibrium investment level, x∗w, above the standard equilib-
rium investment in the absence of joy of winning, x∗0. For example, in a Tullock contest

with group size m the resulting equilibrium investment is x∗w = (V+w)(m−1)
m2 , and the pre-

dicted level of overbidding is δx∗w ≡ x∗w − x∗0 = w(m−1)
m2 .

By appropriately selecting w, average overbidding in any contest experiment can be
explained.19 However, the existing evidence suggests that a single additive parameter

19Sheremeta (2010) proposes a method for independently estimating w by letting subjects bid in a
contest for zero prize.
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w cannot explain differences in overbidding across games within the same experiment.
To see this, recall that one of the standard equilibrium comparative statics in Tullock
contests is the reduction of equilibrium investment with group size. However, the existing
experimental evidence on the effect of group size on investment in contests is mixed,
showing either no systematic variation of average bids with group size or a much smaller
than predicted reduction. For example, Anderson and Stafford (2003) found no significant
variation in spending across group sizes between 2 and 5. Similarly, Morgan, Orzen and
Sefton (2012) and Lim, Matros and Turocy (2014) found no systematic effect of group
size on spending in contests of 2, 3, 4 and 2, 4 and 9 players, respectively; and Baik et al.
(2015) found no significant differences in average spending between contests of 2 and 3
players. In any of these experiments, a single joy of winning parameter w would not be
able to explain overbidding across group sizes because the predicted overbidding, δx∗w, is
decreasing in the group size, whereas the observed overbidding is increasing.

In what follows, we propose a simple modification to the standard model of joy of
winning, which helps explain this phenomenon and also allows us to explain differences
in overbidding between treatments in our experiment where group size is uncertain.

In the original model, parameter w measures how much, in monetary terms, a player
values winning, on top of the value of the prize. However, there is no reason to think that
subjects should place the same value on winning contests with different group sizes, or,
more generally, with different probabilities of winning. In fact, there is ample evidence that
people value winning more the harder it is to win. For example, in sports competitions,
national championship is valued more than regional championship; and in academia,
publications in journals with lower acceptance rates are more valuable.20

In order to construct a parsimonious model, we propose a Constant Winning Aspira-
tions (CWA) hypothesis, whereby across similar contests of different group sizes m, joy
of winning changes with group size in such a way that the expected value of winning in
equilibrium, W = wP ∗m, is a constant. Here, P ∗m is the equilibrium probability of winning
in the contest of size m. In symmetric contests with deterministic group sizes, P ∗m = 1

m
,

and hence W = w
m

.21 For contests with stochastic group sizes, P ∗m can be calculated ac-
cordingly. The modified model still contains only one parameter, W , which now measures
the expected value of winning.

For any given contest, P ∗m is fixed and the CWA assumption is not distinguishable
from the original joy of winning model. Across contests of different sizes, however, the
CWA predicts the joy of winning parameter w = mW increasing linearly with group size.
For a Tullock contest, this gives the equilibrium effort x∗W = (V+mW )(m−1)

m2 . The resulting

20Of course, monetary rewards (or their equivalents) also tend to be higher in larger contests, but
ceteris paribus winning a larger contest, or, more generally, winning in any situation where it is more
difficult to win, still carries more intrinsic value.

21This linear functional form was proposed by Sheremeta (2010) as one of alternative specifications for
the joy of winning, but it was never explored. Parco, Rapoport and Amaldoss (2005) proposed a nonlinear
functional form for the joy of winning depending on the group size, the number of groups competing at
the first stage, and the prize value. Keeping the group sizes and equilibrium winning probabilities fixed
across treatments, they varied the value of the prize and were able to fit the observed expenditures
reasonably well.
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Treatment CPT-adjusted Observed CWA-predicted Estimated
Prob(win) Ave. Investment Ave. Investment Joy of Winning, w

(rounds 16-30)

3Low 0.806 10.71 11.73 19.34
3High 0.510 27.32 28.61 30.57
6Low 0.678 17.32 16.37 22.99
6High 0.247 31.01 31.46 63.12
3+High 0.432 34.31 32.79 36.09

Table 8: CPT-adjusted winning probabilities, observed and predicted average investment
and estimated joy of winning, by treatment, with CWA parameter W = 15.59.

level of overbidding δx∗W = W (m−1)
m

is increasing in the group size m, consistent with the
empirical evidence.

The CWA assumption can be interpreted statically as based on the individual’s expec-
tation about how difficult it is to win the contest. It can also be interpreted dynamically
in a repeatedly played contest as a long-run equilibrium of a learning process in which
winning and losing serve as reinforcements. In a larger contest, over time the individual
realizes that winning is more rare and values it more. This interpretation is related to
our findings regarding the adjustment of investment over time reported in Section 4.2.
As seen from Table 5, in treatment 6High subjects reduce investment very strongly in
response to winning; this indicates that, on average, subjects realize that they are over-
bidding and are happy to scale down their bids. However, winning is so rare in 6High
that the relatively moderate upward adjustments in response to losing, driven by winning
aspirations, completely compensate these reductions, and excessive investment does not
decline over time.

In our experiment with group size uncertainty, the equilibrium probabilities of winning
are very different across treatments. Under the CWA assumption, we should observe the
highest joy of winning effects in 6High and the lowest in 3Low. In order to calibrate
the model, we assume that subjects use the CPT-adjusted probabilities of different group
sizes, as shown in Table 7, to form beliefs about the resulting probabilities of winning.
We then use those probabilities to calculate the predicted level of overbidding, relative
to the CPT-adjusted NE, in each treatment as a function of parameter W . Finally, we
run an OLS regression, without the intercept, of observed average overbidding in rounds
16-30 on the coefficient on W in the predicted overbidding. This produces the estimate of
W = 15.59 (SE=1.30, N = 5, R2 = 0.86). The estimates of joy of winning parameter w by
treatment range from w = 19.34 in 3Low to w = 63.12 in 6High. Interestingly, the latter
estimate is very close to the value of w = 62.9 obtained by Sheremeta (2010) for contests
with deterministic group size four by letting subjects invest in a contest with zero prize.
The agreement is rather striking considering that the equilibrium probability of winning
in a four-player contest is 0.25, which is very close to the CPT-adjusted equilibrium
probability of winning in 6High (0.247). The results are summarized in Table 8, which
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shows CPT-adjusted winning probabilities, observed and predicted average investments
and estimated joy of winning for each of the five treatments. As seen from the table, the
one-parameter CWA model with CPT-adjusted winning probabilities predicts investment
across treatments remarkably well.

6 Conclusions

In this paper, we report the first experimental study of contest environments with un-
known group size. We designed our experiment to test the comparative static predictions
for individual investment derived by Lim and Matros (2009) for lottery contests with a
binomially distributed number of participants.

Our main results are quite surprising, especially when compared with the substantial
evidence of overbidding in contests where the number of players is known. Average invest-
ment converges very closely to the theoretical point predictions except in the treatment
with n = 6 and q = 0.8. The overbidding in this treatment (together with the consistency
between theory and data in the other treatments) contradicts two of the four comparative
static predictions. Furthermore, in an additional control treatment, where the possibility
of group size equal to one is eliminated, we find that overbidding is restored. These results
suggest that when there is a nontrivial probability that conflict is dissolved due to the
lack of competitors, overbidding is significantly reduced.

We propose a unifying explanation for the differences in overbidding across the dif-
ferent treatment conditions. Our model incorporates nonlinear probability weighting,
consistent with CPT, and develops a modified notion of the joy of winning, called Con-
stant Winning Aspirations (CWA). With probability weighting, in the three treatments
where we find close alignment between theory and average behavior, subjects tend to
overweigh the possibility of being in a group of size one, which provides a countervailing
influence on the tendency to overbid. When the probability of being in a group of size one
is negligible or absent altogether, no such countervailing influence emerges. In addition,
our CWA hypothesis predicts differential effects due to joy of winning, depending on the
expected equilibrium probability of winning in different treatment conditions. Together,
these two features are able to neatly organize and explain all of our results. Admittedly,
our experiment was not designed to systematically test the CWA hypothesis, and with
only five treatment conditions varying the equilibrium probability of winning, our results
provide a rather limited support for it.

There are several extensions to our experiment that could be explored. First, our
CWA hypothesis also provides a possible explanation for the existing experimental re-
sults concerning the effects of deterministic group size on overbidding in contests and
auctions. While the standard joy of winning model would predict reduced overbidding
in larger groups, several experimental studies have reported higher overbidding in larger
groups. Under the CWA assumption, we show that the equilibrium level of overbidding
(relative to the standard NE) is increasing in the number of contestants. Thus, one ex-
ercise for future research would be to estimate the CWA parameter for these existing

24



experimental studies, or for a new experiment that systematically compares similar con-
tests or auctions with different, deterministic group sizes. This analysis can be further
extended, and the CWA assumption tested, in other environments, such as contests with
heterogeneous players, group contests or dynamic contests. Second, while our experiment
provides important results on the comparative statics of behavior in response to exoge-
nous variation in underlying group size uncertainty, a richer model might explore a contest
environment with endogenous entry, in which the contestants must also make investment
decisions before group size uncertainty is resolved. Finally, in this paper we have explored
group size uncertainty only in the context of Tullock lottery contests with homogeneous
participants. For future work, it may be interesting to extend the study to contests with
heterogeneous agents, or with different contest success functions.
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A Additional results

A.1 Average investment in Part 3

In this section, we examine subjects’ investment decisions in the second 30-period sequence
of contests (Part 3 of the experiment). We refer to the treatments nLH as nHigh, and
to the treatments nHL as nLow, to reflect the participation probabilities used in Part 3
of the experiment. In Figure A.1, we show that for the second sequence of 30 rounds,
all of the comparative statics are supported. Summary statistics for each treatment are
reported in Table A.1.

As we found for the sequence of decisions in Part 2 of the experiment, when the
participation probability is low (q = 0.2), increasing the maximal group size from n = 3
to n = 6 leads to a significant increase in average investment from 4.40 to 23.46 (Wilcoxon
rank-sum test, p = 0.002). Furthermore, when the participation probability is high (q =
0.8), increasing the maximal group size from n = 3 to n = 6 leads, as predicted, to a
significant decrease in average investment, from 28.86 to 20.83 (Wilcoxon rank-sum test,
p = 0.037). Both of these comparative statics are robust to considering only the last 15
rounds (46 - 60) of Part 3.

We also find strong confirmation for the comparative statics with respect to the partic-
ipation probability q. When n = 3, increasing the participation probability from q = 0.2 to
q = 0.8 leads to a significant increase in average investment from 4.40 to 28.86 (Wilcoxon
rank-sum test, p = 0.001). On the other hand, when n = 6, we find that there is no signif-
icant difference between average investment for q = 0.2 and q = 0.8 (Wilcoxon rank-sum
test, p = 0.406), which is consistent with the theoretical prediction.

In both Figure A.1 and Table A.1, we provide the NE predictions for the purposes of
comparison. As for the analysis of Part 2, we find little evidence in support of overbid-
ding relative to the NE investments, in stark contrast to the majority of the experimental
contests literature. Recall that for the sequence of decisions in Part 2, the only case in
which we observed any significant overbidding is the 6High treatment. In the sequence of
decisions in Part 3, there is no significant overbidding in any treatment condition. In fact,
in the 3Low treatment, we even find significant underbidding, relative to the NE predic-
tion. The one-sample Wilcoxon signed-rank tests comparing the average investments in
rounds 31-60 to the NE predictions produce the two-sided p values of 0.263, 0.398 and
0.128 for treatments 3High, 6Low and 6High. For the 3Low treatment, the two-sided p
value is 0.018, but indicates significant underbidding relative to the NE prediction.

Comparing these findings in Part 3, with our results from Part 2, we see that the
confirmation of all four comparative statics is driven by the significant order effects for
the 6High treatment condition. In particular, the substantial overbidding in 6High is not
observed after subjects have already experienced the 6Low treatment condition in Part
2. One possible explanation for this order effect is that subjects form payoff aspirations
after experiencing treatment condition 6Low for 30 rounds, which causes them to curtail
their investment levels in the second sequence of decisions (see, e.g., Huck et al., 2007).
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Figure A.1: Average investment by treatment: Periods 31 - 60.

Treatment Ave. investment: 31-60 Ave. investment: 46-60 NE investment

3Low 4.40 3.56 10.67
(0.50) (0.61)

3High 28.86 29.05 26.66
(2.54) (2.84)

6Low 23.46 22.29 19.03
(4.25) (3.95)

6High 20.83 19.06 19.49
(1.74) (2.04)

Table A.1: Average individual investment in Part 3, by treatment, with robust standard
errors in parentheses, clustered by matching group.
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A.2 QRE behavior in contests with stochastic group size

In this section, we summarize the implications of Quantal Response Equilibrium (QRE)
behavior in our setting. For brevity, the theory is summarized for the contest with n = 3
potential players, each with participation probability q. The expressions for n = 6 are
similar.

Let B be a discretized set of available investment choices, and let p(b) denote the
symmetric QRE probability of investing b ∈ B by an active player. Then, the symmet-
ric (logit) QRE with parameter λ can be obtained by solving the following system of
equations:

p(b) =
exp[λπe(b)]∑

b′∈B exp[λπe(b′)]
, (A.1)

πe(b) =
∑

i2,i3∈{0,1}

∑
b2,b3∈B

qi2+i3(1− q)2−i2−i3 V b

b+ i2b2 + i3b3
p(b2)p(b3)− b, (A.2)

where πe(b) represents the equilibrium expected payoff of a player investing b, conditional
on being active in the contest. The noise parameter λ captures the degree to which
mistakes are made, with λ = 0 corresponding to completely random behavior and λ→∞
to the NE.

Figure A.2 displays average QRE investments bQRE =
∑

b′∈B b
′p(b′) as a function of

the noise parameter λ for each combination of participation probability q ∈ {0.2, 0.8}
and maximum possible group size n ∈ {3, 6}. For each calculation, we normalized the
prize to V = 1 and used a discretized investment space B = {0.00, 0.05, 0.10, . . . , 1.00}.
The corresponding set of QRE densities {p(0.00), p(0.05), . . . , p(1.00)} are obtained by
iteratively and simultaneously solving the system of equations defined by Eq. (A.1) and
Eq. (A.2). Consistent with other studies, we find that, in all treatments, bQRE approaches
the NE investment level from above. Furthermore, note that for each λ, the ranking of
the QRE predictions matches that of the ranking of our NE predictions. As such, the
comparative statics predictions between treatments are the same even when we allow for
bounded rationality consistent with quantal response behavior.
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Figure A.2: Average QRE investment by treatment for various levels of noise, λ. The
solid lines show the corresponding NE investments.
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B Experimental instructions

Each experimental session consisted of four parts. Following a brief introduction by the
experimenter, instructions for part 1 were distributed, read aloud, and then subjects
made decisions for that part. This procedure continued for all other parts. Below, we
reproduce instructions for part 2 of the experimental session for treatment 3LH and
exclude instructions for the other three treatments, as well as part 3 instructions, due to
the similarities. Instructions for part 1 – risk, ambiguity, and loss aversion elicitation –
are standard and available upon request. For part 4, subjects were told that they would
continue to make investment decisions in an environment similar to part 2 and part 3, with
the exception that they will now be able to see investments made by other participants
which were randomly selected from a previous round. Instructions for part 3 and 4 are
also available upon request.

Part 2

All amounts in this part of the experiment are expressed in points. The exchange rate is
100 points = $1 or 1 point = $0.01.

This part of the experiment consists of a sequence of decision rounds.

Endowment and investment

In each round, you will be given an endowment of 120 points. You can invest any integer
number of points from 0 to 120 into a project. Any points you do not invest, you get to
keep. The project can either succeed or fail. If your project succeeds, you will receive 120
points of revenue for the round. If your project fails, you will not receive any revenue for
the round.

What is the likelihood that your project succeeds?

After you have made your investment decision, the outcome of your project will be deter-
mined. In each round, the probability that your project succeeds is determined as follows.

(1) First, the computer program randomly forms Your Group from the other participants
in the experiment.

• The size of Your Group (including you) can be 1, 2, or 3.

• The program will randomly determine the size of Your Group according to the
probabilities in Table 1. This table will also be visible on your screen.

• The other players in Your Group (if there are any) will be randomly chosen.
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Table 1: Probabilities for the Size of Your Group

Size of Your Group 1 2 3
Probability 64.000% 32.000% 4.000%

(2) Second, the sum of the project investments made by all members of Your Group is
computed. Then, the probability that your project succeeds is given by:

Number of points you invested in your project
Sum of the points invested in projects by all members of Your Group

For example, suppose you invested 10 points, and then the size of Your Group is ran-
domly determined to be 2. If the randomly chosen other member of Your Group invested
20 points, then the probability that your project succeeds is

10

10 + 20
=

10

30
=

1

3
= 33.33%.

For another example, suppose you invested 10 points, and then the size of Your Group
is randomly determined to be 3. If the two randomly chosen other members of Your
Group invested 5 points and 25 points, then the probability that your project succeeds
is

10

10 + 5 + 25
=

10

40
=

1

4
= 25.00%.

Lastly, if the size of Your Group is randomly determined to be 1, then your project
always succeeds (the probability is 100%), regardless of how much you invested.

Payoff in a given round

After determining the size of Your Group and the probability that your project suc-
ceeds, the software program will randomly determine whether your project succeeds or
not, according to the calculated probability.

Then your individual payoff in the round is determined as follows:

If your project succeeds: If your project fails:
+120 (endowment) +120 (endowment)
+120 (revenue) +0 (no revenue)
− (points you invested) − (points you invested)
240− (points you invested) 120− (points you invested)
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How are your earnings from this part determined?

You will participate in a series of many decision rounds. At the end of the series, five of
these rounds will be chosen randomly (with all rounds being equally likely to be chosen).
At the end of the experiment, you will be informed about which five rounds were chosen
and your payoff from each of those five rounds. Then your earnings from this part will be
the sum of your payoffs from the five randomly selected rounds.

Practice stage

Before the actual decision rounds begin, you will participate in an unpaid practice stage
that is designed to help you better understand the rules just described to you. In the
practice stage, you will not interact with anyone else, and no decisions you make will be
shown to anyone else. You will not earn anything from this practice stage – it is only
intended to help you understand the instructions.

As in the actual decision rounds, you can choose how many points to invest into your
project. In addition, for this practice stage only, you can choose the project invest-
ments for the other two players who may be selected as members of Your Group. In the
actual decision rounds, these project investments for the other members of Your Group
will be the investments that were actually chosen by the other participants.

Also for this practice stage only, the computer will calculate the probability that
your project succeeds for each of the possible group sizes. This allows you to see what
would happen in each case, given the decisions you entered for yourself and the decisions
you entered for others. In the actual decision rounds, only one of the possible group sizes
will be randomly selected by the computer in each round, according to the probabilities
shown in Table 1.

Please go ahead and make your decisions on the first practice screen and click CONTINUE
when you are done.

At the top of the second practice screen, you can see a summary of the investment deci-
sions you entered for yourself and for the other two players. Next to that, you can also
see the probability table for the possible sizes of Your Group.

Below these, there are 3 panels. The left panel shows you what you would see if the
computer randomly determined that the size of Your Group is 1. The table in the panel
shows you the Investment made by each Group Member in Your Group (which in this
case, is only You). Below the table, the probability your project succeeds is calculated
and labeled as ‘Your Probability of Success’. In this case, when the size of Your Group
is 1, the probability that your project succeeds is always 100%.
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The middle panel shows you what you would see if the computer randomly determined
that the size of Your Group is 2. In the actual experiment, the other member of Your
Group will be randomly selected from among the other participants. In this practice
stage, it may be either of the hypothetical group members for whom you made the invest-
ment decisions. The table in the panel shows you the Investment made by each Group
Member in Your Group. As in the left panel, below the table, the probability your
project succeeds is calculated and labeled as ‘Your Probability of Success’. In this case,
when the size of Your Group is 2, the probability that your project succeeds is given by
dividing your Investment by the sum of your Investment and the Investment of the other
member of Your Group.

Finally, the right panel shows you what you would see if the computer randomly deter-
mined that the size of Your Group is 3. In the actual experiment, the other members
of Your Group will be randomly selected from among the other participants. In this
practice stage, the other group members will be the hypothetical ones for whom you made
the investment decisions. The table in the panel shows you the Investment made by each
Group Member in Your Group. As in the other two panels, below the table, the proba-
bility your project succeeds is calculated and labeled as ‘Your Probability of Success’. In
this case, when the size of Your Group is 3, the probability that your projects succeeds
is given by dividing your Investment by the sum of your Investment and the Investments
of both other members of Your Group.

Remember, in the actual experiment, only one of the panels will be shown to you in each
round, corresponding to the group size selected in that round by the computer, according
to the probabilities shown in Table 1.

Recap of this part

In each decision round, you will receive an endowment of 120 points. You must choose
how many points to invest in your project. Any points that you do not invest, you can
keep. Remember that you must decide how much to invest in your project before the size
of Your Group is determined. After the investment decisions are made, the program
will determine the size of Your Group and the probability your project succeeds, based
on the investments made by you and the other members of Your Group (if any). If your
project succeeds, you earn 120 points in revenue, but if it fails, you earn 0 revenue. There
will be a large number of decision rounds, and at the end of the experiment, you will be
paid your earnings from 5 randomly selected rounds.

In a moment, you will start on the actual decision rounds for this part. Please do not
communicate with other participants or look at anyone else’s monitor. If you have a
question or problem, from this point on, please simply raise your hand so that one of us
can assist you in private. Please remember to click CONTINUE to proceed.
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