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Abstract

We consider group contests where the number of competing groups is fixed but
group sizes are stochastic and unobservable to contest participants at the time of
investment. We allow for arbitrary correlation between group sizes. When the distri-
bution of group sizes is symmetric, the symmetric equilibrium aggregate investment
is always lower than in a symmetric group contest where the same expected group
size is commonly known. The same holds for asymmetric distributions of group
sizes in contests between two groups. The reduction in investment due to popula-
tion uncertainty is stronger the larger the variance in appropriately defined relative
group impacts. When group sizes are independent conditional on a common shock,
a stochastic increase in the common shock mitigates the effect of group size uncer-
tainty unless the common and idiosyncratic components of group size are strong
complements.
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1 Introduction

Contests are a major mechanism of non-market allocation of resources. Examples include

rent-seeking activities, such as companies fighting for government contracts, or lobbyists

promoting legislation, as well as litigation, political campaigns and R&D competition

(for a review see, e.g., Congleton, Hillman and Konrad, 2008). In many cases, contests

involve groups of independent actors competing for a common goal in order to secure a

non-rival prize for all members of the winning group. For example, loosely defined groups

of US telecommunication giants (such as Comcast and Verizon) and Internet content

providers (the likes of Netflix, Amazon, Microsoft, Google and Facebook) find themselves

on opposite sides of the net neutrality debate and lobby actively for their respective

interests. Importantly, the number of players in each of the competing groups may not

be exactly known, especially as many companies refrain from taking a public stance

on the issue, while working covertly behind the scenes. The same applies to political

campaigns where, especially after the US Supreme Court’s Citizens United vs. Federal

Election Commission decision, the number and identity of donors is easy to conceal. Yet,

a standard assumption in most models of contests in the literature is that the number of

competitors is commonly known. More recently, researchers have started to explore the

effects of population uncertainty on behavior in contests between individuals (Münster,

2006; Myerson and Wärneryd, 2006; Lim and Matros, 2009; Fu, Jiao and Lu, 2011; Kahana

and Klunover, 2015, 2016; Ryvkin and Drugov, 2017).1 However, to the best of our

knowledge, there is no study to date that examines the effects of population uncertainty

on behavior in group contests.2

In this paper, we study contests between groups whose number is fixed but size is

uncertain. This type of population uncertainty is different from the one arising in games

(e.g., contests) between individuals where the number of competing units (players) is

uncertain. In contrast, our setting is more akin to Bayesian games where players receive

private signals about their own type but only know the distribution of others’ types.

Intuitively, by participating in a group contest, a player updates her beliefs about the size

(and hence an appropriately defined measure of strength) of her own group. We allow

1Similarly, population uncertainty has been studied theoretically in auctions (McAfee and McMillan,
1987; Harstad, Kagel and Levin, 1990; Levin and Ozdenoren, 2004) and other environments, such as
voting, coordination games and public goods (e.g., Myerson, 1998, 2000; Makris, 2008, 2009; De Sinopoli
and Pimienta, 2009; Mohlin, Östling and Wang, 2015).

2There is a well-developed theoretical literature on group contests examining a wide range of envi-
ronments with common knowledge about group sizes (e.g., Katz, Nitzan and Rosenberg, 1990; Nitzan,
1991; Baik, 1993; Riaz, Shogren and Johnson, 1995; Nti, 1998; Esteban and Ray, 2001; Baik, 2008;
Nitzan and Ueda, 2009, 2011; Ryvkin, 2011; Lee, 2012; Chowdhury, Lee and Sheremeta, 2013; Kolmar
and Rommeswinkel, 2013; Brookins and Ryvkin, 2016; Barbieri and Malueg, 2016).
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for arbitrary correlations between group sizes; in particular, our model can accommodate

common shocks to group sizes. For example, the results of the 2016 Presidential election

in the United States and ensuing changes in the regulatory climate have created a common

shock to the sizes of groups fighting on different sides of many contentious issues such as

net neutrality, health care, and environmental regulation. Thus, a better understanding

of how contest behavior responds to population uncertainty and to various structural or

policy-induced shocks that can generate correlation (positive and negative) between group

sizes, is important for a wide range of prominent social and political issues. In particular,

we show that our results have implications for optimal disclosure policies when the contest

designer has an option to commit to disclosure of the number of competitors in each group

prior to investment decisions.

In our model, we consider group contest environments where the prize is non-rival,

such that all members of the winning group enjoy the full benefits associated with the

prize. We also assume that individual efforts are perfect substitutes within groups, such

that competition between groups is accompanied by within-group incentives for free-

riding. While there are some group contest environments in which the prize is (partly

or fully) rival, or where individual efforts within groups are aggregated according to a

different technology (e.g., weak-link, or best-shot), our assumptions closely describe the

main examples mentioned above.

There are three main findings. First, for symmetric distributions of group sizes, we

show that the symmetric equilibrium investment for any non-degenerate distribution with

mean group size k is strictly lower than the symmetric equilibrium investment in a sym-

metric group contest where group size is fixed and commonly known to be k. Furthermore,

we show that the reduction in equilibrium investment increases with the variance of an

appropriately defined measure of relative group impact for any given distribution. This

is consistent with other results in the literature that link larger reductions in equilibrium

investment to the degree of heterogeneity in contestants’ ability or impact in the contest

(Baik, 2008; Ryvkin, 2011).

Second, we show that when group sizes are symmetrically distributed and correlated

so that the size of each group is an increasing function of a common component and an

idiosyncratic component, an increase in the common component (in the usual stochastic

order) leads to a reduction in the variance of relative group impact unless the common and

idiosyncratic components are strong complements. Thus, in most cases a large positive

shock to all group sizes mitigates the effect of population uncertainty on individual and

aggregate investment in contests.

Third, we show that in the case of two competing groups with (possibly) asymmet-
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rically distributed group sizes with means k̄1 and k̄2, aggregate equilibrium investment is

lower than in the corresponding contest where the group sizes are fixed and commonly

known to be k̄1 and k̄2.

Relation to previous literature

There are several previous studies that explore individual contests with a stochastic

number of players. Myerson and Wärneryd (2006) show that aggregate equilibrium in-

vestment in an uncertain contest with mean number of players equal to µ is strictly lower

than in a contest where the number of players is equal to µ with certainty. This finding

is very similar to our first main result concerning the negative effects of group size uncer-

tainty on (individual and aggregate) equilibrium investment in the group contest setting.

Münster (2006) considers a similar environment to Myerson and Wärneryd (2006) and

examines the robustness of the reduction in rent dissipation to various alternative factors,

such as the assumption that contestants are risk averse, or that they face budget caps.

In a related setting, Lim and Matros (2009) consider contests in which the number of

players is a random variable drawn from the binomial distribution with parameters (n, q).

They show, first, that equilibrium investment is nonmonotone and single-peaked in the

probability of participation q whenever the number of potential players n > 2, and second,

that investment is nonmonotone in n, provided q is not too large. Furthermore, in the

same spirit as our first result and consistent with Myerson and Wärneryd (2006), they

show that aggregate equilibrium investment is lower than in a corresponding contest with

certain group size, nq. Another research thread that relates to the study of population

uncertainty explores the effect of disclosure of the number of participating players on

aggregate effort. Fu, Jiao and Lu (2011) show that the optimality of disclosure depends

on the properties of the impact function for the generalized lottery-form contest success

function. While the aforementioned studies concentrate on Tullock contests and their

lottery-form generalizations, Ryvkin and Drugov (2017) derive a set of general results

for a broader class of winner-take-all rank-order tournaments, including new results for

tournaments with a stochastic number of players that encompass the existing results for

Tullock contests.

Our paper adds a new environment to the literature on (general) games with popula-

tion uncertainty that also includes auctions (McAfee and McMillan, 1987; Harstad, Kagel

and Levin, 1990; Levin and Ozdenoren, 2004), elections and voting games (Myerson, 1998,

2000), and binary public good provision (Makris, 2008). Furthermore, our contribution

is novel in that the manifestation of population uncertainty in group contests is different

from that in individual contests. Specifically, while the previous literature concerns un-

certainty about the number of competing units, the uncertainty in our setting relates to
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the size of the (fixed) number of competing units. This represents an additional dimen-

sion through which the (general) notion of population uncertainty can affect equilibrium

behavior in competitive environments.

Finally, our results also relate to the theoretical literature on contests (both between

individuals and between groups) with incomplete information about players’ types. In

our setting, uncertainty about group sizes can be interpreted as a form of uncertainty

about the groups’ relative “strengths.” Earlier work on contests with private information

includes Hurley and Shogren (1998) and Malueg and Yates (2004). Fey (2008) established

existence and provided a (numerical) characterization of the equilibrium bidding function

for a two-player contest with uniformly distributed marginal effort costs. Ryvkin (2010)

extended the analysis to contests with more than two players, general cost distributions,

and a more general class of contest success functions. More recent work has further

demonstrated the existence and, in some cases, uniqueness, of pure strategy Bayesian

equilibrium for individual contests (see, e.g., Wasser, 2013a,b; Ewerhart, 2014; Einy et al.,

2015; Ewerhart and Quartieri, 2016), and for group contests with incomplete information

(Brookins and Ryvkin, 2016; Barbieri and Malueg, 2016). Existing results suggest that

private information can sometimes reduce and sometimes increase aggregate equilibrium

investment compared to the full information case (Wasser, 2013a). In contrast, in our

setting, we show that incomplete information concerning group sizes unambiguously leads

to a reduction in aggregate equilibrium investment.

The rest of the paper is organized as follows. In Section 2, we set up the model

and characterize the equilibrium. Section 3 provides general results and examples for

symmetric distributions of group sizes. In Section 4, we consider contests between two

groups and allow for arbitrary (possibly asymmetric) distributions of group sizes. Section

5 contains a discussion and concluding remarks.

2 The model

2.1 Preliminaries

Consider a contest between n ≥ 2 groups indexed by i = 1, . . . , n. The number of players

in each group i, denoted by Ki, is a random variable drawn from set Mi = {1, 2, . . . ,mi},
where mi ≥ 1 can be finite or infinite.3 We will use K = (K1, . . . , Kn) to denote the

3We assume that the minimal number of players in each group is one; that is, we do not consider a
scenario in which some groups may not exist at all. Such a setting would conflate the effects of uncertainty
with respect to group sizes with those of uncertainty about the number of competing units. The latter
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random vector of group sizes with support M = ×ni=1Mi, and k ∈M to denote a generic

realization of K. Let 1 ∈M denote a vector of ones, and ≥ denote the usual component-

wise partial order (when applied to vectors). We use pk = Pr(K = k) to denote the joint

probability mass function (pmf) of group sizes. We allow for the possibility that group

sizes are not independent; that is, pk is not necessarily equal to the product of marginal

pmfs pki .

All participating players simultaneously choose investment levels xij ∈ R+, where

xij denotes the investment of player j in group i (referred to as “player ij”). The total

investment of group i, denoted by Xi, is the sum of individual investments: Xi =
∑Ki

j=1 xij.

We consider a group contest with the contest success function (CSF) of the lottery

form (Tullock, 1980) where each group’s impact function is homogeneous of degree r ∈
(0, 1]. Thus, the probability that group i wins the contest conditional on K is given by

Pi(Xi, X−i|K = k) =


1
n
, if X1 = . . . = Xn = 0
Xr

i
n∑

l=1

Xr
l

, otherwise. (1)

All players in the winning group receive a prize normalized to one, while players in other

groups receive zero prize. All players are risk-neutral expected payoff maximizers.

2.2 Equilibrium investment

In our setting, participating players do not observe the realization of K at the time of

investment. From an outsider’s perspective,
∑

k∈M pkφ(k) then gives the expectation

of some function φ(k) with respect to the joint distribution of group sizes. From the

perspective of a participating player, however, the distribution of the vector of group sizes

is updated (cf., e.g., Harstad, Kagel and Levin, 1990; Myerson and Wärneryd, 2006).

Let Iij denote a random variable equal to 1 if player j is selected to participate in the

contest as a member of group i, and equal to zero otherwise. Using Bayes’ rule, player ij

should update the probability of any vector of group sizes k to

p̃ik ≡ Pr(K = k|Iij = 1) =
Pr(Iij = 1|K = k)pk∑
l∈M Pr(Iij = 1|K = l)pl

.

effects have been explored extensively in the literature on individual contests with size uncertainty (see,
e.g., Münster, 2006; Myerson and Wärneryd, 2006; Lim and Matros, 2009; Ryvkin and Drugov, 2017).
In this paper, we focus on the effects of group size uncertainty in group contests and keep the number of
groups fixed.
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Given that players are equally likely to be selected as participants, it follows that

p̃ik =
kipk
k̄i

, (2)

where k̄i =
∑

l∈M lipl is the (prior) expected number of players in group i.4

It then follows from (2) that from the perspective of a participating player in group

i expectations are updated as 1
k̄i

∑
k∈M pkkiφ(k). The payoff of player ij, conditional on

being selected, is, therefore,

πij =
1

k̄i

∑
k∈M

pk
kiX

r
i∑n

h=1X
r
h

− xij.

We will study the properties of a semi-symmetric equilibrium in pure strategies, where

all players in group i choose the same investment x∗i . Assuming all participating players

other than ij choose such investment levels, the payoff of player ij from some deviation

investment xij is

πij(xij, (x
∗
h)
n
h=1) =

1

k̄i

∑
k∈M

pk
ki(xij + (ki − 1)x∗i )

r

(xij + (ki − 1)x∗i )
r +

∑
h6=i(khx

∗
h)
r
− xij. (3)

The first-order conditions
∂πij
∂xij

= 0 evaluated at xij = x∗i produce the system of equations

r

k̄i

∑
k∈M

pk
kri (x

∗
i )
r−1
∑

h6=i(khx
∗
h)
r

(
∑n

h=1(khx∗h)
r)2

= 1, i = 1, . . . , n. (4)

The following proposition shows that any interior solution to this system of equations is

a Nash equilibrium in the contest. All proofs are relegated to Appendix A.

Proposition 1 For r ∈ (0, 1], if (x∗i )
n
i=1 is an interior solution to the system of equations

(4), then it is a semi-symmetric Nash equilibrium.

Note that, in general, there need not be an interior solution (or even a solution at all)

to such a nonlinear system of equations, and there may be no pure strategy equilibrium in

the contest. Nevertheless, while we cannot guarantee equilibrium existence for all possible

4Consider the probability that Iij = 1 given K = k. First, player j is equally likely to be selected as
one of the total number of participants,

∑n
h=1 kh. Thus, the probability that j is a participant at all is∑n

h=1 kh∑n
h=1 mh

. Second, the probability that player j is a member of group i, given that she is a participant

at all is equal to the number of players in group i, divided by the total number of participants, ki∑n
h=1 kh

.

Together, these observations imply that Pr(Iij = 1|K = k) = ki∑n
h=1 mh

.
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group size distributions, Proposition 1 implies existence (by construction) for situations

when the existence of an interior solution to (4) can be established.

Below we derive and study the solution (and hence, the equilibrium) for two important

and relevant cases. First, we derive the fully symmetric equilibrium investment level

for arbitrary n under the assumption that the distribution of group sizes is symmetric.

Second, we derive the semi-symmetric equilibrium investment levels for arbitrary (possibly

asymmetric) distributions in the case where there are n = 2 groups.

3 Symmetric group size distributions

Consider the case where the distribution of group sizes is symmetric, i.e., pk = pρ(k) for

any permutation ρ of the components of k. In this case, we look for a fully symmetric

equilibrium, with x∗i = x∗ for all i = 1, . . . , n. Let k̄ = k̄i denote the symmetric expected

group size, and m = mi the symmetric maximum group size. The system of Eqns. (4)

simplifies to

x∗ =
r

k̄

∑
k

pk
kri
∑

h6=i k
r
h

(
∑n

h=1 k
r
h)

2
. (5)

Let Si =
Kr

i∑n
h=1K

r
h

denote the (random) relative impact of group i. Due to the symmetry

of the joint distribution, since
∑n

i=1 Si = 1, the expected relative impact of each group is

E[Si] = 1
n
. Moreover, from the definition of variance, E[S2

i ] = Var[Si] + 1
n2 . Equation (5)

then can be written in the form

x∗ =
r

k̄

(
n− 1

n2
− Var[Si]

)
. (6)

Equation (6) has a very intuitive structure. First, in the degenerate case when Var[Si] = 0

it collapses into the well-known expression for the symmetric equilibrium investment in a

group contest where all group sizes are fixed and equal to k̄,

x0 =
r(n− 1)

k̄n2
. (7)

Second, when group sizes are stochastic, Var[Si] ≥ 0. Moreover, the variance is strictly

positive unless group sizes are perfectly correlated. Therefore, we obtain the following

result.

Proposition 2 For symmetrically distributed group sizes, the symmetric equilibrium in-

vestment is not higher than in the case when the group size is fixed at k̄; that is, x∗ ≤ x0.

Moreover, the inequality is strict unless (i) pk is degenerate or (ii) pk = 0 for all k 6= α1,
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for some α ∈ {1, . . . ,m}.

It also follows from Eq. (6) that the reduction in equilibrium investment due to uncertainty

is stronger the larger the variance in relative group impacts.

We will now explore the role of dependence between group sizes. One way to model

such dependence is to assume that the size of group i is given by Ki = g(Z, Yi), where Z is

an integer random variable common for all groups, Yi are i.i.d. integer idiosyncratic shocks

independent of Z, and g is an integer-valued function increasing in both arguments. One

simple example is an additive model, g(z, yi) = z+yi, where the common and idiosyncratic

components are perfect substitutes. Intuitively, as the size of the common component Z

increases, variation in relative group impacts should go down because, for any given

realization of Z, group sizes become more similar. This intuition may not work, however,

when there is strong complementarity between Z and Yi, because an increase in Z can

lead to an increase in the effect of Yi on Ki and hence to a larger variation in relative

impacts. The result is summarized in the following proposition.

Proposition 3 Suppose g(z+1,y)
g(z,y)

is decreasing (increasing) in y. Then a stochastic in-

crease in Z leads to a lower (higher) Var[Si].

Returning to the example discussed above, for g(z, yi) = z+yi we have g(z+1,y)
g(z,y)

= z+1+y
z+y

decreasing in y and hence Proposition 3 indeed implies that a stochastic increase in Z will

lead to a reduction in Var[Si]. In fact, this example is a special case of a more general

property.

Corollary 1 Suppose g(z, yi) = φ(a(z) + b(yi)) where a(·) and b(·) are increasing and

φ(·) is increasing and log-concave (log-convex). Then a stochastic increase in Z leads to

a lower (higher) Var[Si].

Corollary 1 provides a straightforward way to construct examples where a stochastic

increase in Z leads to an increase in Var[Si]. For example, function φ(t) = 2t
2

is log-

convex, and hence g(z, yi) = 2(z+yi)
2

produces the desired result. Another example (not

covered by Corollary 1, but easily verified via Proposition 3) is g(z, yi) = zyi . As expected,

in both cases, the common and idiosyncratic components are strong complements.

Next, we consider expected total investment in the contest, E[X∗] = nk̄x∗. Equation

(6) gives

E[X∗] = r

(
n− 1

n
− nVar[Si]

)
. (8)

Note that, for individual investment x∗, a stochastic increase in Z has two effects. On

the one hand, according to Proposition 3, when g(z+1,y)
g(z,y)

is decreasing in y, it leads to a
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lower Var[Si], thereby increasing x∗. On the other hand, a stochastic increase in Z also

increases k̄, thereby reducing x∗. In contrast, expected total investment in the contest is

independent of k̄. Thus, a stochastic increase in Z only affects expected total investment

in the contest through its effect on the variance of relative group impacts.

Corollary 2 (i) Expected total investment in the contest is decreasing in Var[Si].

(ii) Suppose Ki = g(Z, Yi) as in Proposition 3 and g(z+1,y)
g(z,y)

is decreasing (increasing) in y.

Then a stochastic increase in Z leads to a higher (lower) expected total investment in the

contest.

In contests with population uncertainty, the contest designer may be able to disclose

the number of participants; it is, therefore, of interest to explore whether commitment

to such disclosure is optimal. Parallel results have been established in the literature on

contests between individuals. Lim and Matros (2009) showed that disclosure leads to an

increase in ex ante expected aggregate investment in Tullock contests with the binomial

distribution of the number of players. Fu, Jiao and Lu (2011) extended this result to

contests with a CSF of the generalized lottery form and showed that disclosure can increase

or decrease aggregate investment depending on the shape of the CSF’s impact function.

Ryvkin and Drugov (2017) further generalized these results to arbitrary tournaments with

arbitrary distributions of the number of players.

In our setting, disclosing the number of players in each group will generate the same

total equilibrium group investment X0
i = kix

0
i = r(n−1)

n2 in all groups, where x0
i = r(n−1)

kin2

is the semi-symmetric equilibrium effort level in the corresponding group contest with

commonly known group sizes k (Baik, 1993). The resulting aggregate contest investment,

X0 = r(n−1)
n

, exceeds the expected total investment without disclosure, Eq. (8), in all but

degenerate cases.

Corollary 3 The disclosure of group sizes leads to an increase in expected total invest-

ment. The effect is strictly positive with the exception of the degenerate cases in Proposi-

tion 2.

Next, we provide an example to illustrate the results presented in this section, using

a symmetric multivariate distribution with dependence between group sizes.

3.1 Example 1: Symmetric distribution

Consider the additive model described above, with Ki = Z + Yi. Further, assume that

Z is a Poisson random variable with parameter θ, and Yi, i = 1, . . . , n, are i.i.d. zero-

truncated Poisson random variables with parameter λ. The pmf for the zero-truncated
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Figure 1: Variance of Si for λ ∈ {0.5, 2, 5} and θ varying from 0 to 10.

Poisson distribution is given by

Pr[Yi = y|Yi ≥ 1] =
λy

y!(eλ − 1)
. (9)

The joint pmf of K is, therefore,5

pk =
e−θλ

∑n
i=1 ki

(eλ − 1)n
∏n

i=1 ki!

min{k1,...,kn}−1∑
s=0

(s!)n−1

(
θ

λn

)s n∏
i=1

(
ki
s

)
, k ≥ 1. (10)

Since g(Z, Yi) is additive, g(z+1,y)
g(z,y)

is decreasing in y. Thus, by Proposition 3, a stochastic

increase in Z will lead to a reduction in Var[Si]. For the Poisson distribution, an increase

in θ generates a stochastic increase in Z.

To illustrate the main results from this section, we consider the case of n = 3 groups.

For simplicity, we set r = 1. We compute Var[Si] directly using (10) and the definition of

Si. Figure 1 plots Var[Si] as a function of θ for three different values of λ. For each case,

λ ∈ {0.5, 2, 5}, the variance of relative group impact is strictly decreasing as θ increases.

Furthermore, as θ →∞, Var[Si]→ 0.

The effects of θ and Var[Si] on equilibrium individual investment are also highlighted

5This joint pmf can be derived using the same approach as to deriving the standard multivariate
Poisson distribution in which the Yi, i = 1, . . . , n are not truncated at zero, (cf., e.g., Johnson, Kotz and
Balakrishnan, 1997).
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Figure 2: Equilibrium individual investment, x∗(θ, λ) (solid lines), compared with x0(θ, λ)
(dashed lines), the corresponding equilibrium investment in a group contest where all
group sizes are fixed and equal to k̄(θ, λ).

in Figure 2, which plots the equilibrium investment under group size uncertainty alongside

the corresponding equilibrium investment in a deterministic contest with all group sizes

fixed and equal to k̄. For the multivariate distribution (10) with n = 3, the mean group

size as a function of θ and λ is given by

k̄(θ, λ) = θ +
λeλ

eλ − 1
.

To make clear the relevant comparison, we denote by x0(θ, λ) the equilibrium investment

in the corresponding deterministic contest with k̄(θ, λ) active participants in each group.

As expected, x∗(θ, λ) < x0(θ, λ), for each (θ, λ). However, keeping λ fixed, as θ increases,

the difference between the equilibrium investment with and without group size uncertainty

disappears.

4 Arbitrary group size distributions with n = 2

In this section, we consider the case where there are only n = 2 groups, but the joint

distribution over group sizes need not be symmetric. The first-order conditions (4) take
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the form

∑
k

pk
kr1(x∗1)r−1(k2x

∗
2)r

((k1x∗1)r + (k2x∗2)r)2
=
k̄1

r
,
∑
k

pk
kr2(x∗2)r−1(k1x

∗
1)r

((k1x∗1)r + (k2x∗2)r)2
=
k̄2

r
, (11)

which immediately implies
x∗2
x∗1

=
k̄1

k̄2

. (12)

That is, the ratio of equilibrium investment levels for the individual members of group 2

relative to group 1 is equal to the inverse ratio of the expected number of players in group

2 relative to group 1. Furthermore, this implies that the expected equilibrium group level

investment, E[X∗i ] = k̄ix
∗
i , is identical across groups.

Using (12) and (11), we obtain

x∗i =
r

k̄i

∑
k

pk
(k1k2k̄1k̄2)r

(kr1k̄
r
2 + k̄r1k

r
2)2

. (13)

First, notice that for a group contest with deterministic group sizes equal to k̄1 and k̄2,

equation (13) reduces to

x0
i =

r

4k̄i
, (14)

which corresponds to the equilibrium derived in Baik (1993, 2008). Second, it follows that

in equilibrium, total expected investment in the contest, E[X∗] = E[X∗1 + X∗2 ] = 2E[X∗1 ],

is given by

E[X∗] = 2r
∑
k

pk
(k1k2k̄1k̄2)r

(kr1k̄
r
2 + k̄r1k

r
2)2

. (15)

As seen from (15), E[X∗] = r
2

if K1 = aK2 for some a > 0 or if both K1 and K2 are

degenerate (even if they are different). However, in all other non-deterministic cases,

expected total investment is lower.

Proposition 4 For n = 2, with an arbitrary distribution of group sizes, expected total

investment is lower as compared to the case when the group sizes are fixed at (k̄1, k̄2); that

is, E[X∗] ≤ r
2
. The inequality is strict unless pk is degenerate or K1 = aK2 for some

a > 0.

Similar to the case of symmetric group size distributions (cf. Corollary 3), Proposition

4 informs on the consequences of disclosure of group sizes (k1, k2). Total equilibrium

investment with disclosure, X0 = r
2
, exceeds expected total investment without disclosure

in all but the degenerate cases.
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Corollary 4 For n = 2, with an arbitrary distribution of group sizes, the disclosure of

group sizes leads to an increase in expected total investment. The effect is strictly positive

with the exception of the degenerate cases in Proposition 4.

We illustrate these results using two examples. Example 2 uses an asymmetric dis-

tribution constructed using Poisson random variables (following an approach similar to

the one used for Example 1). This example illustrates the effect of positive correlation

between group sizes. Example 3 considers the case in which there is always a fixed total

number of active players m, divided between the two groups according to a Binomial

distribution, in order to illustrate the effect of negative correlation between group sizes.

4.1 Example 2: Asymmetric distribution with positive correla-

tion

Similar to the construction in Example 1, let K = (K1, K2) be given by Ki = Z + Yi,

where Z is a Poisson random variable with parameter θ, and Yi, i = 1, 2, are independent

zero-truncated Poisson random variables with (possibly different) parameters λi. The

joint pmf of K is given by

pk =
e−θλk11 λ

k2
2

(eλ1 − 1)(eλ2 − 1)k1!k2!

min{k1,k2}−1∑
s=0

(
k1

s

)(
k2

s

)
s!

(
θ

λ1λ2

)s
, k ≥ 1. (16)

Note that the mean number of active players in group i = 1, 2 as a function of θ and λi is

k̄i(θ, λi) = θ +
λie

λi

eλi − 1
. (17)

Again, for simplicity, we set r = 1. Then, using equation (13), we compute E[X∗] for

different combinations of parameters (θ, λ1, λ2).

For any fixed pair of parameters (λ1, λ2), as θ increases, Z becomes more important

and the idiosyncratic components, Yi, i = 1, 2, become less important for the realized

group size. Consequently, realizations of K with K1 = K2 will become relatively more

likely. For these realizations of K, the term in the summand of equation (13) is equal to
pk
4

. Thus, intuition suggests that as θ increases, these terms receive greater probability

weight, and E[X∗] will tend to increase. Although this argument seems intuitive, it does

not always hold, as we show in the examples below.

In Figure 3, we plot E[X∗] for (λ1, λ2) = (2, 5) and for (λ1, λ2) = (8, 5), with θ

varying from 0 to 10. In both cases, expected total investment is below the corresponding

total investment in a contest with deterministic group sizes, which is represented by the

14



Figure 3: Expected total investment E[X∗] for (λ1, λ2) = (2, 5) and (λ1, λ2) = (8, 5).

horizontal reference line at 0.5. Furthermore, as θ increases, expected total investment is

monotonically increasing, consistent with the preceding intuition.

In contrast, Figure 4 provides an example where, if the asymmetry between groups

is strong enough and one of the groups has a sufficiently low parameter λi, expected to-

tal investment may not be monotonically increasing in θ. Using (λ1, λ2) = (1, 15) and

(λ1, λ2) = (0.5, 15), Figure 4 shows that E[X∗] is, at first, decreasing in θ, then subse-

quently increasing in θ. The source of this nonmonotonicity in E[X∗] with respect to θ is

the fact that we use zero-truncated Poisson random variables for the idiosyncratic compo-

nents, Yi. Specifically, if λ2 is relatively large, while λ1 is sufficiently small, the truncated

distribution for Y1 is substantially different from its standard Poisson distribution, while

the truncated distribution for Y2 is very similar to its standard Poisson distribution. This

differential impact of truncation on the distributions of Y1 and Y2 then distorts the relative

likelihood of realizations in which group sizes are the same, provided θ is also sufficiently

small. Nevertheless, even in these somewhat unusual cases, once θ grows sufficiently large,

E[X∗] is increasing in θ, as can be observed in Figure 4.

4.2 Example 3: Negative correlation between group sizes

In this example, we consider the effects of negative correlation between group sizes on

the equilibrium investment in the contest. Suppose there are m potential participants
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Figure 4: Expected total investment E[X∗] for (λ1, λ2) = (0.5, 15) and (λ1, λ2) = (1, 15).

in the population. Each potential participant is active in one of the two groups. Let

q ∈ [0, 1] be the probability of any given player being a member of group 1. In this

setting, K1 +K2 = m, from which the perfect negative correlation between group sizes is

evident. Then the probability of K = k = (k1,m−k1) is given by the binomial probability

pBk =

(
m

k1

)
qk1(1− q)m−k1 , k1 = 0, . . . ,m. (18)

Once again, since we assume the minimum group size in any group is 1, we use a truncated

distribution, updated to ensure that k1 ≥ 1 and k1 ≤ m − 1 (corresponding to k2 ≥ 1).

The resulting pmf is given by

pk =

(
m
k1

)
qk1(1− q)m−k1

1− (qm + (1− q)m)
, k1 = 1, . . . ,m− 1. (19)

The resulting mean group sizes are given by

k̄1 = mq

(
1− qm−1

1− (qm + (1− q)m)

)
, k̄2 = m(1− q)

(
1− (1− q)m−1

1− (qm + (1− q)m)

)
.

Fixing r = 1 and using equation (13), we compute E[X∗] for various parameters (m, q).

In Figure 5 we plot E[X∗] against q for m ∈ {5, 10, 20, 50, 500}. Several features are worth

highlighting. First, as predicted, expected total investment is below the corresponding
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Figure 5: Expected total investment E[X∗] as a function of q, for m ∈ {5, 10, 20, 50, 500}.
The reference line at 0.50 indicates equilibrium total investment in a contest without
group size uncertainty.

total investment in a contest without group size uncertainty. Second, when q is equal

to 0.5 (so that each group is equally likely to receive a particular participant), expected

total investment is increasing in the population size. For q close to 0.5, this ordering is

preserved. Intuitively, when q is close to 0.5, even if there is perfect negative correlation,

realized group sizes are much more likely to be the same, especially when the number of

potential participants is very large.

However, when there are stronger asymmetries between groups, i.e., when q is closer

to 0 or closer to 1, expected total investment may be higher for smaller populations than

for larger ones. For example, as shown in Figure 5, when q = 0.1 (or q = 0.9), E[X∗] is

higher for m = 5 than for m = 10 or m = 20.

5 Discussion and conclusion

In this paper, we provide the first investigation of group contests under population uncer-

tainty. More specifically, we study group contests where the number of groups is fixed, but

the sizes of the groups are unknown. We consider the simplest, canonical group contest

setting in which the prize awarded to the winning group is non-rival and the efforts of

individuals are perfect substitutes within groups. Individuals do not observe the size of
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their own group or of any other groups at the time of investment. Rather, group sizes are

determined stochastically, according to a general distribution. In particular, we allow for

arbitrary correlations between group sizes, including those driven by a common shock.

We first characterize the semi-symmetric equilibrium in pure strategies for the general

model, then provide three main results under additional assumptions. Our first main

result illustrates that for symmetric distributions of group sizes, the symmetric equilibrium

investment for any non-degenerate distribution with mean group sizes k̄ is strictly lower

than in a group contest where group sizes are fixed and commonly known to be k̄. That

is, population uncertainty (in terms of the sizes of the groups) lowers the individual

(and aggregate) equilibrium investment. This finding is similar to findings regarding the

effects of population uncertainty in individual contests derived by Myerson and Wärneryd

(2006) and Lim and Matros (2009). In addition, we show that the reduction in equilibrium

investment is driven by the variance of relative group impact, which is a property derived

from the (symmetric) distribution of group sizes. One can think of this notion of relative

group impact as a (random) measure of the group’s strength in the contest, in which

case our result implies that the reduction in equilibrium investment is stronger when the

distribution generates higher variance in the groups’ strengths. This finding echoes some

of the results on the effects of heterogeneity on aggregate effort in contests where it is

generally believed that larger asymmetries lead to lower effort.6

Our second main result, extending on the first, concerns the effect of correlation

between group sizes when the distribution is symmetric. To this end, we consider the

case in which the size of each group is an increasing function of a common component

and an idiosyncratic component. We show that, provided the common and idiosyncratic

components are not sufficiently strong complements, a stochastic increase in the common

component reduces the variance of relative group impact, thereby mitigating the effects

of population uncertainty on equilibrium investment.

We then consider the case of two competing groups with a distribution of group sizes

that need not be symmetric. Our third result shows that, as for symmetric distributions,

aggregate equilibrium investment is lower under population uncertainty than in the corre-

sponding contest with group sizes fixed and commonly known to be the respective means

of the (possibly) asymmetric distribution.

Altogether, our results suggest that population uncertainty has a negative effect on

equilibrium investment in group contests. One immediate implication is the effect of dis-

closure of group sizes. These findings are compatible with those derived for individual

6See, however, Ryvkin (2013) and Drugov and Ryvkin (2017) who show that this “common wisdom”
is far from universal.
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contests with population uncertainty, despite the fact that in our setting, population un-

certainty manifests in a manner more akin to uncertainty about the relative strength of

the groups (due to variations in the group’s size) than about the number of competing

units. In addition, we show that, depending on the nature and the extent of the corre-

lations between group sizes, this effect may be magnified or moderated when there is a

common shock, such as a change in regulatory policy, the approach of an election, or a

landmark judicial decision.

Our investigation also motivates some promising avenues for future work. For ex-

ample, while our analysis assumes that the distribution of group sizes is stochastic, the

true source of such group size uncertainty may be the endogenous entry decisions of po-

tential participants with commonly aligned interests. Any investigation of endogenous

entry into group contests, or the formation of groups and alliances in contests, has the

potential to generate population uncertainty for participants at the time of investment.

Our results provide a general and substantially simpler framework in which to consider

the effects of such population uncertainty (however determined) on behavior. However,

it seems equally appealing to explore the potential sources of uncertainty in a model that

specifically incorporates endogenous entry by potential participants.

Another interesting extension would be to consider a group contest in which the prize

is partially or fully rival, or in which the individual efforts of group members are aggre-

gated according to a different production technology. For instance, previous studies have

examined the weak-link and best-shot mechanisms in group contests under the standard

assumption that group sizes are fixed and commonly known. Another natural extension

is to consider heterogeneous participants. Finally, while our results inform on the conse-

quence of (non)disclosure of the sizes of competing groups by the contest designer, our

study raises additional questions about whether or when it may be optimal for partici-

pants to conceal or reveal their own participation in a group contest. For instance, are

organizations that conceal their lobbying efforts from the public eye acting optimally, or

could they improve their expected payoff by publicly declaring their support (or intended

support) to encourage increased participation? Our investigation provides a framework

for the analysis of these kinds of questions.
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A Proofs

Proof of Proposition 1 It is sufficient to show that the payoff function πij(xij, (x
∗
h)
n
h=1)

in Eq. (3) is globally strictly concave in xij. This follows immediately from the observation

that function x
x+a

is strictly concave in x for any a > 0, function (x+ b)r is concave in x

for any b ≥ 0 and r ∈ (0, 1], and a composition of a strictly concave and concave functions

is strictly concave. It then follows that if (x∗i )
n
i=1 is an interior solution to the system of

n equations in (4), setting xij = x∗i is a best response for player ij, and hence (x∗i )
n
i=1 is a

Nash equilibrium.

Proof of Proposition 3 Since Var[Si] = E[S2
i ] + 1

n2 , we will show that E[S2
i ] behaves

as stated in the proposition. By the law of iterated expectations, E[S2
i ] = EZ [EY [S2

i |Z]],

where the inner expectation is taken over the realizations of Y = (Y1, . . . , Yn) for a given

Z and the outer expectation is with respect to Z. In order to prove the result stated in

the proposition, it is sufficient to establish that EY [S2
i |Z = z] is decreasing (increasing)

in z when g(z+1,y)
g(z,y)

is decreasing (increasing). Using the definition of Si and symmetry, we

have

EY [S2
i |Z = z + 1]− EY [S2

i |Z = z] =
1

n

∑
i

(
EY [S2

i |Z = z + 1]− EY [S2
i |Z = z]

)
=

1

n
EY

∑
i

(
g(z + 1, Yi)

2

(
∑

j g(z + 1, Yj))2
− g(z, Yi)

2

(
∑

j g(z, Yj))2

)
=

1

n
EY A1(z,Y ) +

1

n
EY A2(z,Y ),

where

A1(z,y) =
∑
i

g(z + 1, yi)∑
j g(z + 1, yj)

(
g(z + 1, yi)∑
j g(z + 1, yj)

− g(z, yi)∑
j g(z, yj)

)
,

A2(z,y) =
∑
i

g(z, yi)∑
j g(z, yj)

(
g(z + 1, yi)∑
j g(z + 1, yj)

− g(z, yi)∑
j g(z, yj)

)
.

We will establish that A1(z,y) ≤ (≥)0 and A2(z,y) ≤ (≥)0 provided g(z+1,y)
g(z,y)

is de-

creasing (increasing) in y. The sign of A1(z,y) is determined by the sign of the expression

B1(z,y) =
∑
i

g(z + 1, yi)

[
g(z + 1, yi)

∑
j

g(z, yj)− g(z, yi)
∑
j

g(z + 1, yj)

]

=
∑
i,j

g(z + 1, yi)g(z, yi)g(z, yj)

[
g(z + 1, yi)

g(z, yi)
− g(z + 1, yj)

g(z, yj)

]
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Suppose, for concreteness, that g(z+1,y)
g(z,y)

is decreasing in y. Then

∑
i,j

[g(z + 1, yi)− g(z + 1, yj)]g(z, yi)g(z, yj)

[
g(z + 1, yi)

g(z, yi)
− g(z + 1, yj)

g(z, yj)

]
≤ 0,

because the two expressions in square brackets have opposite signs. This gives

B1(z,y) =
∑
i,j

g(z + 1, yi)g(z, yi)g(z, yj)

[
g(z + 1, yi)

g(z, yi)
− g(z + 1, yj)

g(z, yj)

]
≤
∑
i,j

g(z + 1, yj)g(z, yi)g(z, yj)

[
g(z + 1, yi)

g(z, yi)
− g(z + 1, yj)

g(z, yj)

]
=
∑
j,i

g(z + 1, yi)g(z, yj)g(z, yi)

[
g(z + 1, yj)

g(z, yj)
− g(z + 1, yi)

g(z, yi)

]
= −B1(z,y),

which implies B1(z,y) ≤ 0. The derivation for A2(z,y) and the case when g(z+1,y)
g(z,y)

is

increasing in y is similar.

Proof of Corollary 1 Suppose, for concreteness, that φ is log-concave. This implies

that φ(t+x)
φ(x)

is decreasing in x for any t ≥ 0. Letting x = x2 + y and t = x1 − x2 + y,

where x1 ≥ x2, it follows that φ(x1+y)
φ(x2+y)

is decreasing in y for any x1 ≥ x2. Therefore, for

any y1 ≥ y2 we have φ(x1+y1)
φ(x2+y1)

≤ φ(x1+y2)
φ(x2+y2)

. Setting x1 = a(z + 1), x2 = a(z), y1 = b(y + 1)

and y2 = b(y), obtain that g(z+1,y)
g(z,y)

is decreasing in y. The case of log-convex φ is similar.

Proof of Proposition 4 From equation (13),

E[X∗1 ] = E[X∗2 ] = r
∑
k

pk
(k1k2k̄1k̄2)r

((k1k̄2)r + (k̄1k2)r)2
.

Thus, E[X∗] = 2E[X∗1 ]. Next, we show that for any k1, k2,

(k1k2k̄1k̄2)r

((k1k̄2)r + (k̄1k2)r)2
≤ 1

4
.

Using the fact that ((k1k̄2)r − (k̄1k2)r)2 ≥ 0,

0 ≤ (k1k̄2)2r + (k̄1k2)2r − 2(k1k2k̄1k̄2)r

= ((k1k̄2)r + (k̄1k2)r)2 − 4(k1k2k̄1k̄2)r.

Rearranging yields the desired result. Furthermore, the inequality is strict if k1k̄2 6= k̄1k2.
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Then, taking expectations over all possible k = (k1, k2),

E[X∗] = 2r
∑
k

pk
(k1k2k̄1k̄2)r

((k1k̄2)r + (k̄1k2)r)2
≤ 2r

∑
k

pk
1

4
=
r

2
,

with strict inequality if there is some k such that k1k̄2 6= k̄1k2 and pk > 0. Thus, equality

is reached if pk > 0 only for points (k1, k2) with k1
k2

= k̄1
k̄2

; that is, it must be that K1 = aK2

for some a > 0.
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