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Abstract

We study group contests where group sizes are stochastic and unobservable to participants
at the time of investment. When the joint distribution of group sizes is symmetric, with
expected group size k̄, the symmetric equilibrium aggregate investment is lower than in a
symmetric group contest with commonly known fixed group size k̄. A similar result holds
for two groups with asymmetric distributions of sizes. For the symmetric case, the reduction
in individual and aggregate investment due to group size uncertainty increases with the
variance in relative group impacts. When group sizes are independent conditional on a
common shock, a stochastic increase in the common shock mitigates the effect of group
size uncertainty unless the common and idiosyncratic components of group size are strong
complements. Finally, group size uncertainty undermines the robustness of the group size
paradox otherwise present in the model.

Keywords: group contest, stochastic group size, population uncertainty, relative group im-
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1 Introduction

In this paper, we study group contests where the number of competing groups is fixed but

group sizes are stochastic and unknown to participants at the time of investment. We consider

the simplest, canonical group contest setting in which the prize awarded to the winning group

is non-rival and the efforts of individuals are perfect substitutes within groups. Group sizes

are determined stochastically according to a joint distribution, where we allow for arbitrary

correlations between group sizes, including those driven by a common shock.

Contests arise in a wide range of settings. Examples include competition for bonuses and

promotions in organizations, rent-seeking activities, such as companies fighting for government

contracts, or lobbyists promoting legislation, as well as litigation, political campaigns and R&D

competition (for related reviews see, e.g., Lazear, 1999; Congleton, Hillman and Konrad, 2008).
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In many cases, these contests involve groups of independent actors competing for a common

goal in order to secure a non-rival prize for all members of the winning group. For example,

loosely defined groups of US telecommunication giants (such as Comcast and Verizon) and

Internet content providers (the likes of Netflix, Amazon, Microsoft, Google and Facebook) find

themselves on opposite sides of the net neutrality debate and lobby actively for their respective

interests. Furthermore, in many of these settings, the number of players in each of the competing

groups may not be exactly known, especially as many companies refrain from taking a public

stance on the issue, while working covertly behind the scenes. The same applies to political

campaigns where, especially after the US Supreme Court’s Citizens United vs. Federal Election

Commission decision, the number and identity of donors is easy to conceal.

More recently, researchers have challenged the standard assumption in the contest literature

that the number of competitors is commonly known, thereby exploring the effects of population

uncertainty on behavior in contests between individuals (Münster, 2006; Myerson and Wärneryd,

2006; Lim and Matros, 2009; Fu, Jiao and Lu, 2011; Kahana and Klunover, 2015, 2016; Ryvkin

and Drugov, 2017; Boosey, Brookins and Ryvkin, 2017).1 However, to the best of our knowledge,

there is no study to date that examines the effects of population uncertainty on behavior in

group contests.2 To the extent that the uncertainty relates to the number of groups, many

of the insights from contests between individuals can be naturally extended. However, there

is another dimension – uncertainty about the sizes of the groups – through which population

uncertainty may operate in group contests. In contrast to the existing literature on games with

population uncertainty, such a setting is more similar to private information in Bayesian games,

where the incomplete information relates to players’ types. Intuitively, a player who is active in

the group contest updates her beliefs about the size (and hence the relative “strength”) of her

own group and, in case the group sizes are correlated, about the sizes of other groups.

By allowing for arbitrary correlations between group sizes, our model can also accommo-

date common shocks to group sizes. The way that contest participants respond to population

uncertainty or to the correlation (positive and negative) induced by various structural or policy-

induced shocks is important for a wide range of prominent social and political issues. For

example, the results of the 2016 Presidential election in the United States and ensuing changes

in the regulatory climate have created a common shock to the sizes of groups fighting on dif-

ferent sides of many contentious issues such as net neutrality, health care, and environmental

regulation.

We characterize the semi-symmetric equilibrium in pure strategies for a general model with

1Similarly, population uncertainty has been studied theoretically in auctions (McAfee and McMillan, 1987;
Harstad, Kagel and Levin, 1990; Levin and Ozdenoren, 2004) and other environments, such as voting, coordination
games and public goods (e.g., Myerson, 1998, 2000; Makris, 2008, 2009; De Sinopoli and Pimienta, 2009; Mohlin,
Östling and Wang, 2015).

2There is a well-developed theoretical literature on group contests examining a wide range of environments
with common knowledge about group sizes (e.g., Katz, Nitzan and Rosenberg, 1990; Nitzan, 1991; Baik, 1993;
Riaz, Shogren and Johnson, 1995; Nti, 1998; Esteban and Ray, 2001; Baik, 2008; Nitzan and Ueda, 2009, 2011;
Ryvkin, 2011; Lee, 2012; Chowdhury, Lee and Sheremeta, 2013; Kolmar and Rommeswinkel, 2013; Brookins and
Ryvkin, 2016; Barbieri and Malueg, 2016).
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n groups and an arbitrary joint distribution over group sizes, then provide three main results

under additional assumptions. Our first main result illustrates that for symmetric distributions

of group sizes, the symmetric equilibrium investment for any non-degenerate distribution with

mean group sizes k̄ is strictly lower than in a group contest where group sizes are fixed and

commonly known to be k̄. That is, population uncertainty (in terms of the sizes of the groups)

lowers both the individual and aggregate equilibrium investment. This result is similar to

findings regarding the effects of population uncertainty in individual contests derived by Myerson

and Wärneryd (2006) and Lim and Matros (2009).

In particular, we show that the reduction in equilibrium investment increases with the

variance of relative group impact, which is essentially the group’s equilibrium probability of

winning conditional on realized group sizes. As such, greater variance in relative group impact

implies greater variance in the probability of winning, which reduces the marginal effect of

investment on winning and hence leads to a reduction in equilibrium investment. This effect is

similar to the (negative) impact of noise, or uncertainty in the winner determination process,

on equilibrium effort in contests and tournaments. Alternatively, the notion of relative group

impact can be interpreted as a (random) measure of the group’s relative strength in the contest,

in which case our result implies that the reduction in equilibrium investment is stronger when the

distribution generates higher variance in the groups’ relative strengths. This characterization

echoes results on the effects of different kinds of player heterogeneity on aggregate effort in

contests where it is generally demonstrated that larger asymmetries lead to lower effort.3

We also show that when group sizes are symmetrically distributed and correlated so that the

size of each group is an increasing function of a common component and an idiosyncratic compo-

nent, an increase in the common component (in the usual stochastic order) leads to a reduction

in the variance of relative group impact unless the common and idiosyncratic components are

strong complements. Thus, in most cases a large positive shock to all group sizes mitigates the

effect of population uncertainty on individual and aggregate investment in contests.

Finally, we consider the case of two competing groups with (possibly) asymmetrically dis-

tributed group sizes with means k̄1 and k̄2. We show that, as for the symmetric distribution

case, aggregate equilibrium investment is lower under population uncertainty than in the corre-

sponding contest where the group sizes are fixed and commonly known to be k̄1 and k̄2. We also

consider the effect of a stochastic increase in the size of a group on its probability of winning and

show that it can be positive or negative depending on the details of the group size distribution.

Thus, group size uncertainty is an additional channel undermining the robustness of the group

size paradox (Olson, 1965; Esteban and Ray, 2001).

Relation to previous literature

Our model provides a novel extension to the existing theoretical literature on group contests.

The natural complete information benchmark for our setting is provided by Baik (1993). He

3See, however, Ryvkin (2013) and Drugov and Ryvkin (2017) who show that this “common wisdom” is far
from universal.
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shows that only the highest-valuation players in each group will make positive investments,

such that the total group effort is independent of group size. Moreover, even in a setting with

“partial” group size uncertainty where each player knows the size of her own group but not

the sizes of the other groups, this neutrality with respect to group size is readily extended.

However, in our setting, where players also do not know the size of their own group, we show

that population uncertainty has an effect on individual and aggregate investment.

Our study is also related to the existing literature on individual contests with a stochastic

number of players. For lottery-type contests, Myerson and Wärneryd (2006) show that aggregate

equilibrium investment in an uncertain contest with mean number of players equal to µ is strictly

lower than in a contest where the number of players is equal to µ with certainty. Lim and Matros

(2009) and Münster (2006) consider similar environments in which the number of players is a

random variable drawn from the binomial distribution with parameters (n, q) and also find that

aggregate equilibrium investment is lower than in a corresponding contest with certain group

size, nq. Ryvkin and Drugov (2017) generalize these results to a more general tournament model,

also allowing for arbitrary distributions of the number of players. These findings are similar to

our first main result concerning the negative effects of group size uncertainty on individual and

aggregate equilibrium investment in the group contest setting.

The rest of the paper is organized as follows. In Section 2, we introduce the model and

characterize the equilibrium. Section 3 provides general results and examples for symmetric

distributions of group sizes. In Section 4, we consider contests between two groups and allow

for arbitrary (possibly asymmetric) distributions of group sizes, then provide two examples to

illustrate the results. Section 5 provides some concluding remarks.

2 The model

2.1 Preliminaries

Consider a contest between n ≥ 2 groups indexed by i = 1, . . . , n. The number of players in each

group i, denoted by Ki, is a random variable drawn from the set Mi = {1, 2, . . . ,mi}, where

mi ≥ 1 can be finite or infinite.4 We will use K = (K1, . . . ,Kn) to denote the random vector

of group sizes with support M = ×ni=1Mi, and k ∈M to denote a generic realization of K. Let

1 ∈ M denote a vector of ones, and ≥ denote the usual component-wise partial order (when

applied to vectors). We use pk = Pr(K = k) to denote the joint probability mass function

(pmf) of group sizes. We allow for the possibility that group sizes are not independent; that is,

pk is not necessarily equal to the product of marginal pmfs pki .

4We assume that the minimal number of players in each group is one; that is, we do not consider a scenario in
which some groups may not exist at all. Such a setting would conflate the effects of uncertainty with respect to
group sizes with those of uncertainty about the number of competing units. The latter effects have been explored
extensively in the literature on individual contests with group size uncertainty (see, e.g., Münster, 2006; Myerson
and Wärneryd, 2006; Lim and Matros, 2009; Ryvkin and Drugov, 2017). In this paper, we focus on the effects of
group size uncertainty in group contests and keep the number of groups fixed.
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All participating players simultaneously choose investment levels xij ∈ R+, where xij de-

notes the investment of player j in group i (referred to as “player ij”). The total investment of

group i, denoted by Xi, is the sum of individual investments: Xi =
∑Ki

j=1 xij .

We consider a group contest with the contest success function (CSF) of the lottery form

(Tullock, 1980) where each group’s impact function is homogeneous of degree r ∈ (0, 1]. Thus,

the probability that group i wins the contest conditional on K is given by

Pi(Xi, X−i|K = k) =


1
n , if X1 = . . . = Xn = 0
Xr

i
n∑

l=1
Xr

l

, otherwise. (1)

All players in the winning group receive a prize normalized to one, while players in other groups

receive zero prize. All players are risk-neutral expected payoff maximizers.

2.2 Equilibrium investment

We assume that participating players do not observe the realization of K at the time of in-

vestment. This structure of group size uncertainty is rather stylized in that all players ex ante

have the same information. A more general, and nuanced, model would allow for informational

asymmetries, with insiders better informed about the group size than outsiders. For the extreme

version of such a setting where insiders know their group size with certainty, it is easy to show

that aggregate equilibrium investment is the same as with complete information. However, a

setting where insiders only have partial information, e.g., they receive noisy signals about their

group’s size, would be an interesting extension.

From an outsider’s perspective,
∑

k∈M pkφ(k) gives the expectation of some function φ(k)

with respect to the joint distribution of group sizes. From the perspective of a participating

player, however, the distribution of the vector of group sizes is updated (cf., e.g., Harstad, Kagel

and Levin, 1990; Myerson and Wärneryd, 2006).

Let Iij denote a random variable equal to 1 if player j is selected to participate in the contest

as a member of group i, and equal to zero otherwise. Using Bayes’ rule, player ij should update

the probability of any vector of group sizes k to

p̃ik ≡ Pr(K = k|Iij = 1) =
Pr(Iij = 1|K = k)pk∑
l∈M Pr(Iij = 1|K = l)pl

.

Assuming that players are equally likely to be selected as participants, it follows that

p̃ik =
kipk
k̄i

, (2)

where k̄i =
∑

l∈M lipl is the (prior) expected number of players in group i.5

5Formally, we model the selection process as follows. Consider the probability that Iij = 1 given K = k.
First, player j is equally likely to be selected as one of the total number of participants,

∑n
h=1 kh. Thus, the
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It then follows from (2) that from the perspective of a participating player in group i

expectations are updated as 1
k̄i

∑
k∈M pkkiφ(k). The payoff of player ij, conditional on being

selected, is, therefore,

πij =
1

k̄i

∑
k∈M

pk
kiX

r
i∑n

h=1X
r
h

− xij . (3)

When group sizes are deterministic, this game has multiple (pure strategy Nash) equilibria

such that the sum of investments in each group is given by the equilibrium investment in the

corresponding contest between n individuals (Baik, 2008). The reason is that all players in a

group have the same marginal payoff that only depends on the group’s aggregate investment;

therefore, it does not matter how aggregate investment is allocated across players. In contrast,

in the stochastic group size case any equilibrium is semi-symmetric; that is, all players within a

group have the same investment level. To understand why, recall that, conditional on a realized

group size, all players in the group have equal chances of being selected. Therefore, if players

commit to different investment levels, the aggregate group investment will depend not only on

the realized group size but also on which players are selected; however, in that case different

players will have different marginal payoffs, which is impossible. The result is formalized in the

following lemma (all missing proofs are relegated to Appendix A.).

Lemma 1 Suppose Ki, the number of players in group i, is non-degenerate. Then in any

equilibrium all active players in group i choose the same investment.

In view of Lemma 1, in what follows we focus on the properties of a semi-symmetric equi-

librium, where all players in group i choose the same investment x∗i . Assuming all participating

players other than ij choose such investment levels, the payoff of player ij from some deviation

investment xij is

πij(xij , (x
∗
h)nh=1) =

1

k̄i

∑
k∈M

pk
ki(xij + (ki − 1)x∗i )

r

(xij + (ki − 1)x∗i )
r +

∑
h6=i(khx

∗
h)r
− xij . (4)

The first-order conditions
∂πij
∂xij

= 0 evaluated at xij = x∗i produce the system of equations

r

k̄i

∑
k∈M

pk
kri (x

∗
i )
r−1
∑

h6=i(khx
∗
h)r

(
∑n

h=1(khx
∗
h)r)2

= 1, i = 1, . . . , n. (5)

Lemma 2 For r ∈ (0, 1], if (x∗i )
n
i=1 is an interior solution to the system of equations (5), then

it is a semi-symmetric equilibrium.

Lemma 2 implies equilibrium existence (by construction) for situations when the existence

of an interior solution to (5) can be established. More generally, the existence of equilibrium

probability that j is a participant at all is
∑n

h=1 kh∑n
h=1

mh
. Second, the probability that player j is a member of group

i, given that she is a participant at all is equal to the number of players in group i, divided by the total number
of participants, ki∑n

h=1
kh

. Together, these observations imply that Pr(Iij = 1|K = k) = ki∑n
h=1

mh
.
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follows from Theorem 1 of Baye, Tian and Zhou (1993) that provides sufficient conditions for the

existence of pure strategy equilibria in games with possibly discontinuous and non-quasiconcave

payoffs.6 This result, along with Lemmas 1 and 2, implies that the group contest with stochastic

group sizes has a semi-symmetric equilibrium given by a solution of (5). Moreover, as long as

group sizes are non-degenerate, any equilibrium has this structure.

Below we derive and study the solution to (5) (and hence, the equilibrium) for two important

and relevant cases. First, we derive the fully symmetric equilibrium investment level for arbitrary

n under the assumption that the distribution of group sizes is symmetric. Second, we derive the

semi-symmetric equilibrium investment levels for arbitrary (possibly asymmetric) distributions

in the case where there are n = 2 groups.

3 Symmetric group size distributions

Consider the case where the distribution of group sizes is symmetric, i.e., pk = pρ(k) for any

permutation ρ of the components of k. In this case, we look for a fully symmetric equilibrium,

with x∗i = x∗ for all i = 1, . . . , n. Let k̄ = k̄i denote the symmetric expected group size, and

m = mi the symmetric maximum group size. The system of Eqns. (5) simplifies to

x∗ =
r

k̄

∑
k

pk
kri
∑

h6=i k
r
h

(
∑n

h=1 k
r
h)2

. (6)

Let Si =
Kr

i∑n
h=1K

r
h

denote the (random) relative impact of group i. Due to the symmetry of the

joint distribution, since
∑n

i=1 Si = 1, the expected relative impact of each group is E[Si] = 1
n .

Moreover, from the definition of variance, E[S2
i ] = Var[Si] + 1

n2 . Equation (6) then can be

written in the form

x∗ =
r

k̄

(
n− 1

n2
−Var[Si]

)
. (7)

Equation (7) has a very intuitive structure. First, in the degenerate case when Var[Si] = 0 it

collapses into the well-known expression for the symmetric equilibrium investment in a group

contest where all group sizes are fixed and equal to k̄,

x0 =
r(n− 1)

k̄n2
. (8)

6Theorem 1 of Baye, Tian and Zhou (1993) requires that (i) strategy spaces are nonempty, convex and compact
subsets of a Euclidean space; (ii) aggregator function U(x, y) =

∑
i,j πij(xij , y−(ij)) is diagonally transfer contin-

uous in y; and (iii) U(x, y) is diagonally transfer quasiconcave in x. Here, x = (x11, . . . , x1m1 , . . . , xn1, . . . , xnm1)
is a generic vector of all players’ investments, and y−(ij) is a generic vector of investments of all players other
than ij. Condition (i) is satisfied trivially by restricting investment spaces to [0, 1]. Condition (ii) holds because,
as shown by Baye, Tian and Zhou (1993), the aggregator in contests between individuals satisfies the diagonal
transfer continuity condition; hence aggregator U , which is a composition of individual payoffs with continuous
functions, satisfies it as well. Finally, payoffs (3) are strictly concave in xij , therefore U is strictly concave in x
(which is a stronger condition than diagonal transfer quasiconcavity).
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Second, when group sizes are stochastic, Var[Si] ≥ 0. Moreover, the variance is strictly positive

unless group sizes are perfectly correlated. Therefore, we obtain the following result.

Proposition 1 For symmetrically distributed group sizes, the symmetric equilibrium investment

is not higher than in the case when the group size is fixed at k̄; that is, x∗ ≤ x0. Moreover,

the inequality is strict unless (i) pk is degenerate or (ii) pk = 0 for all k 6= α1, for some

α ∈ {1, . . . ,m}.

It also follows from Eq. (7) that the reduction in equilibrium investment due to uncertainty is

stronger the larger the variance in relative group impacts.

We next explore the role of dependence between group sizes. One way to model such

dependence is to assume that the size of group i is given by Ki = g(Z, Yi), where Z is an integer

random variable common for all groups, Yi are i.i.d. integer idiosyncratic shocks independent of

Z, and g is an integer-valued function increasing in both arguments. One simple example is an

additive model, g(z, yi) = z + yi, where the common and idiosyncratic components are perfect

substitutes. Intuitively, as the size of the common component Z increases, variation in relative

group impacts should go down because, for any given realization of Z, group sizes become more

similar. This intuition may not work, however, when there is strong complementarity between

Z and Yi, because an increase in Z can lead to an increase in the effect of Yi on Ki and hence

to a larger variation in relative impacts. The result is summarized in the following proposition.

Proposition 2 Suppose g(z+1,y)
g(z,y) is decreasing (increasing) in y. Then a stochastic increase in

Z leads to a lower (higher) Var[Si].

Returning to the example discussed above, for g(z, yi) = z + yi we have g(z+1,y)
g(z,y) = z+1+y

z+y

decreasing in y and hence Proposition 2 indeed implies that a stochastic increase in Z will lead

to a reduction in Var[Si]. In fact, this example is a special case of a more general property.

Corollary 1 Suppose g(z, yi) = φ(a(z) + b(yi)) where a(·) and b(·) are increasing and φ(·) is

increasing and log-concave (log-convex). Then a stochastic increase in Z leads to a lower (higher)

Var[Si].

Corollary 1 provides a straightforward way to construct examples where a stochastic increase

in Z leads to an increase in Var[Si]. For example, function φ(t) = 2t
2

is log-convex, and hence

g(z, yi) = 2(z+yi)
2

produces the desired result. Another example (not covered by Corollary 1,

but easily verified via Proposition 2) is g(z, yi) = zyi . As expected, in both cases, the common

and idiosyncratic components are strong complements.

Next, we consider expected total investment in the contest, E[X∗] = nk̄x∗. Equation (7)

gives

E[X∗] = r

(
n− 1

n
− nVar[Si]

)
. (9)

Note that, for individual investment x∗, a stochastic increase in Z has two effects. On the one

hand, according to Proposition 2, when g(z+1,y)
g(z,y) is decreasing in y, it leads to a lower Var[Si],
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thereby increasing x∗. On the other hand, a stochastic increase in Z also increases k̄, thereby

reducing x∗. In contrast, expected total investment in the contest is independent of k̄. Thus, a

stochastic increase in Z only affects expected total investment in the contest through its effect

on the variance of relative group impacts.

Corollary 2 (i) Expected total investment in the contest is decreasing in Var[Si].

(ii) Suppose Ki = g(Z, Yi) as in Proposition 2 and g(z+1,y)
g(z,y) is decreasing (increasing) in y. Then

a stochastic increase in Z leads to a higher (lower) expected total investment in the contest.

In contests with population uncertainty, the contest designer may be able to disclose the

number of participants; it is, therefore, of interest to explore whether commitment to such

disclosure is optimal. Parallel results have been established in the literature on contests between

individuals. Lim and Matros (2009) showed that disclosure does not affect ex ante expected

aggregate investment in Tullock contests with the binomial distribution of the number of players.

Fu, Jiao and Lu (2011) extended this result to contests with a CSF of the generalized lottery

form and showed that disclosure can increase or decrease aggregate investment depending on

the shape of the CSF’s impact function. Ryvkin and Drugov (2017) further generalized these

results to arbitrary tournaments with arbitrary distributions of the number of players.

In our setting, disclosing the number of players in each group will generate the same total

equilibrium group investment X0
i = kix

0
i = r(n−1)

n2 in all groups, where x0
i = r(n−1)

kin2 is the semi-

symmetric equilibrium effort level in the corresponding group contest with commonly known

group sizes k (Baik, 1993). The resulting aggregate contest investment, X0 = r(n−1)
n ,7 exceeds

the expected total investment without disclosure, Eq. (9), in all but degenerate cases.

Corollary 3 The disclosure of group sizes leads to an increase in expected total investment.

The effect is strictly positive with the exception of the degenerate cases in Proposition 1.

Next, we provide an example to illustrate the results presented in this section, using a

symmetric multivariate distribution with dependence between group sizes.

Example 1: Symmetric distribution. Consider the additive model described above, with

Ki = Z + Yi. Further, assume that Z is a Poisson random variable with parameter θ, and Yi,

i = 1, . . . , n, are i.i.d. zero-truncated Poisson random variables with parameter λ. The pmf for

the zero-truncated Poisson distribution is given by

Pr[Yi = y|Yi ≥ 1] =
λy

y!(eλ − 1)
. (10)

7Aggregate investment X0 in a contest where group sizes are disclosed is the same in any equilibrium, not just
in the semi-symmetric one.
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Figure 1: Variance of Si for λ ∈ {0.5, 2, 5} and θ varying from 0 to 10.

The joint pmf of K is, therefore,8

pk =
e−θλ

∑n
i=1 ki

(eλ − 1)n
∏n
i=1 ki!

min{k1,...,kn}−1∑
s=0

(s!)n−1

(
θ

λn

)s n∏
i=1

(
ki
s

)
, k ≥ 1. (11)

Since g(Z, Yi) is additive, g(z+1,y)
g(z,y) is decreasing in y. Thus, by Proposition 2, a stochastic increase

in Z will lead to a reduction in Var[Si]. For the Poisson distribution, an increase in θ generates

a stochastic increase in Z.

To illustrate the main results from this section, we consider the case of n = 3 groups. For

simplicity, we set r = 1. We compute Var[Si] directly using (11) and the definition of Si. Figure

1 plots Var[Si] as a function of θ for three different values of λ. For each case, λ ∈ {0.5, 2, 5}, the

variance of relative group impact is strictly decreasing as θ increases. Furthermore, as θ →∞,

Var[Si]→ 0.

The effects of θ and Var[Si] on equilibrium individual investment are also highlighted in

Figure 2, which plots the equilibrium investment under group size uncertainty alongside the

corresponding equilibrium investment in a deterministic contest with all group sizes fixed and

equal to k̄. For the multivariate distribution (11) with n = 3, the mean group size as a function

of θ and λ is given by

k̄(θ, λ) = θ +
λeλ

eλ − 1
.

8This joint pmf can be derived using the same approach as to deriving the standard multivariate Poisson
distribution in which the Yi, i = 1, . . . , n are not truncated at zero, (cf., e.g., Johnson, Kotz and Balakrishnan,
1997).
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Figure 2: Equilibrium individual investment, x∗(θ, λ) (solid lines), compared with x0(θ, λ)
(dashed lines), the corresponding equilibrium investment in a group contest where all group
sizes are fixed and equal to k̄(θ, λ).

To make clear the relevant comparison, we denote by x0(θ, λ) the equilibrium investment in the

corresponding deterministic contest with k̄(θ, λ) active participants in each group. As expected,

x∗(θ, λ) < x0(θ, λ), for each (θ, λ). However, keeping λ fixed, as θ increases, the difference

between the equilibrium investment with and without group size uncertainty disappears.

4 Arbitrary group size distributions with n = 2

In this section, we consider the case where there are only n = 2 groups, but the joint distribution

over group sizes need not be symmetric. The first-order conditions (5) take the form

∑
k

pk
kr1(x∗1)r−1(k2x

∗
2)r

((k1x∗1)r + (k2x∗2)r)2
=
k̄1

r
,
∑
k

pk
kr2(x∗2)r−1(k1x

∗
1)r

((k1x∗1)r + (k2x∗2)r)2
=
k̄2

r
, (12)

which immediately implies
x∗2
x∗1

=
k̄1

k̄2
. (13)

That is, the ratio of equilibrium investment levels for the individual members of group 2 relative

to group 1 is equal to the inverse ratio of the expected number of players in group 2 relative

to group 1. Furthermore, this implies that the expected equilibrium group level investment,

E[X∗i ] = k̄ix
∗
i , is identical across groups.

11



Using (13) and (12), we obtain

x∗i =
r

k̄i

∑
k

pk
(k1k2k̄1k̄2)r

(kr1k̄
r
2 + k̄r1k

r
2)2

. (14)

First, notice that for a group contest with deterministic group sizes equal to k̄1 and k̄2, equation

(14) reduces to

x0
i =

r

4k̄i
, (15)

which corresponds to the equilibrium derived in Baik (1993, 2008). Second, it follows that in

equilibrium, total expected investment in the contest, E[X∗] = E[X∗1 + X∗2 ] = 2E[X∗1 ], is given

by

E[X∗] = 2r
∑
k

pk
(k1k2k̄1k̄2)r

(kr1k̄
r
2 + k̄r1k

r
2)2

. (16)

As seen from (16), E[X∗] = r
2 if K1 = aK2 for some a > 0 or if both K1 and K2 are degen-

erate (even if they are different). However, in all other non-deterministic cases, expected total

investment is lower.

Proposition 3 For n = 2, with an arbitrary distribution of group sizes, expected total in-

vestment is lower as compared to the case when the group sizes are fixed at (k̄1, k̄2); that is,

E[X∗] ≤ r
2 . The inequality is strict unless pk is degenerate or K1 = aK2 for some a > 0.

Similar to the case of symmetric group size distributions (cf. Corollary 3), Proposition 3

informs on the consequences of disclosure of group sizes (k1, k2). Total equilibrium investment

with disclosure, X0 = r
2 , exceeds expected total investment without disclosure in all but the

degenerate cases.

Corollary 4 For n = 2, with an arbitrary distribution of group sizes, the disclosure of group

sizes leads to an increase in expected total investment. The effect is strictly positive with the

exception of the degenerate cases in Proposition 3.

We illustrate these results using two examples. Example 2 uses an asymmetric distribution

constructed using Poisson random variables (following an approach similar to the one used for

Example 1). This example illustrates the effect of positive correlation between group sizes.

Example 3 considers the case in which there is always a fixed total number of active players m,

divided between the two groups according to a Binomial distribution, in order to illustrate the

effect of negative correlation between group sizes.

Example 2: Asymmetric distribution with positive correlation. Similar to the con-

struction in Example 1, let K = (K1,K2) be given by Ki = Z + Yi, where Z is a Poisson

random variable with parameter θ, and Yi, i = 1, 2, are independent zero-truncated Poisson

12



random variables with (possibly different) parameters λi. The joint pmf of K is given by

pk =
e−θλk11 λ

k2
2

(eλ1 − 1)(eλ2 − 1)k1!k2!

min{k1,k2}−1∑
s=0

(
k1

s

)(
k2

s

)
s!

(
θ

λ1λ2

)s
, k ≥ 1. (17)

Note that the mean number of active players in group i = 1, 2 as a function of θ and λi is

k̄i(θ, λi) = θ +
λie

λi

eλi − 1
. (18)

Again, for simplicity, we set r = 1. Then, using equation (14), we compute E[X∗] for different

combinations of parameters (θ, λ1, λ2).

For any fixed pair of parameters (λ1, λ2), as θ increases, Z becomes more important and

the idiosyncratic components, Yi, i = 1, 2, become less important for the realized group size.

Consequently, realizations of K with K1 = K2 will become relatively more likely. For these

realizations of K, the term in the summand of equation (14) is equal to pk
4 . Thus, intuition

suggests that as θ increases, these terms receive greater probability weight, and E[X∗] will tend

to increase. Although this argument seems intuitive, it does not always hold, as we show in the

examples below.

In Figure 3, we plot E[X∗] for (λ1, λ2) = (2, 5) and for (λ1, λ2) = (8, 5), with θ varying from

0 to 10. In both cases, expected total investment is below the corresponding total investment

in a contest with deterministic group sizes, which is represented by the horizontal reference

line at 0.5. Furthermore, as θ increases, expected total investment is monotonically increasing,

consistent with the preceding intuition.

In contrast, Figure 4 provides an example where, if the asymmetry between groups is strong

enough and one of the groups has a sufficiently low parameter λi, expected total investment

may not be monotonically increasing in θ. Using (λ1, λ2) = (1, 15) and (λ1, λ2) = (0.5, 15),

Figure 4 shows that E[X∗] is, at first, decreasing in θ, then subsequently increasing in θ. The

source of this nonmonotonicity in E[X∗] with respect to θ is the fact that we use zero-truncated

Poisson random variables for the idiosyncratic components, Yi. Specifically, if λ2 is relatively

large, while λ1 is sufficiently small, the truncated distribution for Y1 is substantially different

from its standard Poisson distribution, while the truncated distribution for Y2 is very similar to

its standard Poisson distribution. This differential impact of truncation on the distributions of

Y1 and Y2 then distorts the relative likelihood of realizations in which group sizes are the same,

provided θ is also sufficiently small. Nevertheless, even in these somewhat unusual cases, once

θ grows sufficiently large, E[X∗] is increasing in θ, as can be observed in Figure 4.

Example 3: Negative correlation between group sizes. In this example, we consider the

effects of negative correlation between group sizes on the equilibrium investment in the contest.

Suppose there are m potential participants in the population. Each potential participant is

active in one of the two groups. Let q ∈ [0, 1] be the probability of any given player being a

13



Figure 3: Expected total investment E[X∗] for (λ1, λ2) = (2, 5) and (λ1, λ2) = (8, 5).

Figure 4: Expected total investment E[X∗] for (λ1, λ2) = (0.5, 15) and (λ1, λ2) = (1, 15).

member of group 1. In this setting, K1 +K2 = m, from which the perfect negative correlation

between group sizes is evident. Then the probability of K = k = (k1,m − k1) is given by the

binomial probability

pBk =

(
m

k1

)
qk1(1− q)m−k1 , k1 = 0, . . . ,m. (19)
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Figure 5: Expected total investment E[X∗] as a function of q, for m ∈ {5, 10, 20, 50, 500}. The
reference line at 0.50 indicates equilibrium total investment in a contest without group size
uncertainty.

Once again, since we assume the minimum group size in any group is 1, we use a truncated

distribution, updated to ensure that k1 ≥ 1 and k1 ≤ m − 1 (corresponding to k2 ≥ 1). The

resulting pmf is given by

pk =

(
m
k1

)
qk1(1− q)m−k1

1− (qm + (1− q)m)
, k1 = 1, . . . ,m− 1. (20)

The resulting mean group sizes are given by

k̄1 = mq

(
1− qm−1

1− (qm + (1− q)m)

)
, k̄2 = m(1− q)

(
1− (1− q)m−1

1− (qm + (1− q)m)

)
.

Fixing r = 1 and using equation (14), we compute E[X∗] for various parameters (m, q).

In Figure 5 we plot E[X∗] against q for m ∈ {5, 10, 20, 50, 500}. Several features are worth

highlighting. First, as predicted, expected total investment is below the corresponding total

investment in a contest without group size uncertainty. Second, when q is equal to 0.5 (so that

each group is equally likely to receive a particular participant), expected total investment is

increasing in the population size. For q close to 0.5, this ordering is preserved. Intuitively, when

q is close to 0.5, even if there is perfect negative correlation, realized group sizes are much more

likely to be the same, especially when the number of potential participants is very large.

However, when there are stronger asymmetries between groups, i.e., when q is closer to 0

or closer to 1, expected total investment may be higher for smaller populations than for larger
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ones. For example, as shown in Figure 5, when q = 0.1 (or q = 0.9), E[X∗] is higher for m = 5

than for m = 10 or m = 20.

The group size paradox revisited. The group size paradox, discussed initially by Olson

(1965), is a feature of group contests whereby a smaller group is more likely to win the contest

because its members have more to gain from such a win and are less prone to free-riding on the

investments of one another. Multiple authors have since addressed the emergence and robustness

of this phenomenon in models of group contests, showing that it is not universal and can be

reversed, for example, when the costs of investment are sufficiently convex (Esteban and Ray,

2001) or in the presence complementarities in group production (Kolmar and Rommeswinkel,

2011). In this section, we explore how group size affects the group’s chances of winning in the

presence of group size uncertainty. To keep things simple, we assume that there are two groups

and the groups’ sizes (K1,K2) are independent.

Note first that when group sizes are deterministic ((K1,K2) = (k̄1, k̄2) with probability one),

we obtain a version of group size paradox whereby each group’s total equilibrium investment,

X∗i = k̄ix
0
i = r

4 , and hence its probability of winning, 1
2 , is independent of group size, cf. Eq.

(15).9 When group sizes are stochastic, the equilibrium probability of group 1 winning is given

by

w1 =
∑
k

pk
(k1x

∗
1)r

(k1x∗1)r + (k2x∗2)r
=
∑
k

pk
kr1k̄

r
2

kr1k̄
r
2 + kr2k̄

r
1

= E
K̃r

1

K̃r
1 + K̃r

2

, (21)

where we used Eq. (13) and defined rescaled group sizes K̃i = Ki

k̄i
. Note that E[K̃i] = 1.

Consider an increase in the size of group 1 in the sense of first-order stochastic dominance

(FOSD). The expectation of K̃1 is not affected, and the function under expectation in Eq. (21)

is strictly increasing and strictly concave in K̃1. Therefore, an increase in K̃1 in the sense of

second-order stochastic dominance (SOSD) will lead to an increase in w1. Thus, we have the

following result.

Lemma 3 In a contest between two groups with independent stochastic sizes (K1,K2), the equi-

librium probability of group i winning increases in Ki (when Ki is increased in the FOSD sense)

if K̃i increases in the SOSD sense.

As we show with the following example, when Ki is stochastically increased, it is possible

for K̃i to go up or down in the SOSD sense, depending on the details of its distribution. Suppose

K1 takes two positive integer values, a and b, with probability 1
2 each, such that b > a ≥ 1.

In this case k̄1 = a+b
2 , and K̃1 takes values 2a

a+b and 2b
a+b with probabilities 1

2 . This gives

Var(K̃1) = (b−a)2

(b+a)2
. An increase in a and b such that b − a stays constant, therefore, leads to

9This is a generic property of models with perfect substitutes and linear investment costs where the group
public good is non-rival (Baik, 1993). If the public good were rival, i.e., if the prize were divided equally among
the members of the winning group, as in the original formulation of Olson (1965), the probability of winning
would be decreasing in group size.
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a reduction in Var(K̃1), whereas an increase in b, keeping a constant, leads to an increase in

Var(K̃1).

We conclude that, when group sizes are stochastic, an FOSD increase in group size Ki has

no universal effect on the group’s winning probability – it can go up or down depending on the

riskiness of rescaled group size K̃i, which can change in either direction. Thus, the presence of

uncertainty in group sizes is another dimension that potentially reduces the robustness of the

group size paradox. A more detailed exploration in this area can be of interest.

5 Concluding remarks

Altogether, our results suggest that population uncertainty has a negative effect on equilibrium

investment in group contests. In addition, we show that, depending on the nature and the extent

of the correlations between group sizes, this effect may be magnified or moderated when there

is a common shock, such as a change in regulatory policy, the approach of an election, or a

landmark judicial decision. Our study also motivates some promising avenues for future work.

For example, while our analysis assumes group sizes are stochastic, the true source of such group

size uncertainty may be the endogenous entry decisions of potential participants with commonly

aligned interests. Any investigation of endogenous entry into group contests, or the formation

of groups and alliances in contests, has the potential to generate population uncertainty for

participants at the time of investment.

Other natural extensions would be to consider a group contest in which the prize is par-

tially or fully rival; in which insiders are ex ante better informed about the size of their own

group; or in which the individual investments of group members are aggregated according to

a different production technology, such as weak-link, best-shot, or with intermediate levels of

complementarity.

Finally, while our results inform on the consequence of (non)disclosure of the sizes of com-

peting groups by the contest designer, our study raises additional questions about whether or

when it may be optimal for participants to conceal or reveal their own participation in a group

contest. For instance, are organizations that conceal their lobbying efforts from the public eye

acting optimally, or could they improve their expected payoff by publicly declaring their support

(or intended support) to encourage increased participation? Our investigation provides an initial

foundation for future analysis of these kinds of questions.
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A Proofs

Proof of Lemma 1 Without loss, consider players 11 and 12 in group 1. Let Y−1 =
∑n

h=2X
r
h

denote the aggregate output of groups other than group 1 for a given realization of other groups’

sizes k−1. Note that, for a given k−1, Y−1 is still random because different combinations of players

can be drawn in each group, potentially leading to different group investments Xh if individual

investments within groups are not the same. We will use E−1 to denote expectation over all

such draws, for a given k−1. Further, we will use E1j
k1

to denote expectations over possible draws

of k1 players in group 1 that include player 1j, which we will write out explicitly.
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Using this notation, Eq. (3) for the payoff of player 11 becomes

π11 =
1

k̄1

∑
k−1

[
p1k−1E−1

xr11

xr11 + Y−1
+ 2p2k−1E−1E11

2

(x11 + x1j)
r

(x11 + x1j)r + Y−1

+3p3k−1E−1E11
3

(x11 + x1j + x1l)
r

(x11 + x1j + x1l)r + Y−1
+ . . .

]
− x11. (22)

Here,

E11
2

(x11 + x1j)
r

(x11 + x1j)r + Y−1
=

1

m1 − 1

∑
2≤j≤m1

(x11 + x1j)
r

(x11 + x1j)r + Y−1
, (23)

E11
3

(x11 + x1j + x1l)
r

(x11 + x1j + x1l)r + Y−1
=

2

(m1 − 1)(m1 − 2)

∑
2≤j,l≤m1,j 6=l

(x11 + x1j + x1l)
r

(x11 + x1j + x1l)r + Y−1
,

etc. That is, for each realization of k1, expectation E11
k1

is the average over all equally likely

draws of k1 players from group 1 that include player 11.

Payoff function (22) is strictly concave in x11; therefore, ∂π11∂x11
≤ 0 in any (pure) equilibrium,

with equality for x11 > 0. Suppose first that x11, x12 > 0. Equation (22) and a similar equation

for π12, the payoff of player 12, then give

r

k̄1

∑
k−1

[
p1k−1E−1

xr−1
11 Y−1

(xr11 + Y−1)2
+ 2p2k−1E−1E11

2

(x11 + x1j)
r−1Y−1

[(x11 + x1j)r + Y−1]2
(24)

+3p3k−1E−1E11
3

(x11 + x1j + x1l)
r−1Y−1

[(x11 + x1j + x1l)r + Y−1]2
+ . . .

]
= 1,

r

k̄1

∑
k−1

[
p1k−1E−1

xr−1
12 Y−1

(xr12 + Y−1)2
+ 2p2k−1E−1E12

2

(x12 + x1j)
r−1Y−1

[(x12 + x1j)r + Y−1]2

+3p3k−1E−1E12
3

(x12 + x1j + x1l)
r−1Y−1

[(x12 + x1j + x1l)r + Y−1]2
+ . . .

]
= 1.

Here, expectations E12
k1

are defined similar to (23).

Next, we set the left-hand sides of first-order conditions (24) equal to each other. Note that

expectation E11
2 and E12

2 both contain a term with the sum (x11 + x12), which will cancel out.

Similarly, expectations E11
3 and E12

3 both contain terms with the sum (x11 + x12 + x1l) for all

l > 2, which will cancel out as well. Generally, terms of the form (x11 + x12 + x1l3 + . . .+ x1lk1
)

will cancel each other out in E11
k1

and E12
k1

for each k1 = 2, . . . ,m1 − 1. Finally, the terms with

k1 = m1 will cancel out completely.

The remaining terms in E11
k1

will only contain sums (x11 +x1l2 +. . .+x1lk1
) for l2, . . . , lk1 > 2,

and similarly the remaining terms in E12
k1

will only contain sums (x12 + x1l2 + . . . + x1lk1
) for

l2, . . . , lk1 > 2. Thus, as long as K1 is non-degenerate, i.e., it is not equal m1 with certainty,

we have an equality of the form G(x11, ·) = G(x12, ·), where G is strictly decreasing in the first

argument. This implies x11 = x12.
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Suppose now that x11 = 0 and x12 > 0. Then the first of the first-order conditions (24)

holds with inequality ≤, while the second still holds with equality. This implies the left-hand

side of the first condition is less than the left-hand side of the second one, i.e., using the notation

above, G(0, ·) ≤ G(x12, ·). But this is impossible because G is strictly decreasing in the first

argument. Finally, if x11 = x12 = 0, we have the result as well.

Proof of Lemma 2 It is sufficient to show that the payoff function πij(xij , (x
∗
h)nh=1) in Eq. (4)

is globally strictly concave in xij . This follows immediately from the observation that function
x

x+a is strictly concave in x for any a > 0, function (x + b)r is concave in x for any b ≥ 0 and

r ∈ (0, 1], and a composition of a strictly concave and concave functions is strictly concave. It

then follows that if (x∗i )
n
i=1 is an interior solution to the system of n equations in (5), setting

xij = x∗i is a best response for player ij, and hence (x∗i )
n
i=1 is a Nash equilibrium.

Proof of Proposition 2 Since Var[Si] = E[S2
i ] + 1

n2 , we will show that E[S2
i ] behaves as

stated in the proposition. By the law of iterated expectations, E[S2
i ] = EZ [EY [S2

i |Z]], where

the inner expectation is taken over the realizations of Y = (Y1, . . . , Yn) for a given Z and the

outer expectation is with respect to Z. In order to prove the result stated in the proposition,

it is sufficient to establish that EY [S2
i |Z = z] is decreasing (increasing) in z when g(z+1,y)

g(z,y) is

decreasing (increasing). Using the definition of Si and symmetry, we have

EY [S2
i |Z = z + 1]− EY [S2

i |Z = z] =
1

n

∑
i

(
EY [S2

i |Z = z + 1]− EY [S2
i |Z = z]

)
=

1

n
EY

∑
i

(
g(z + 1, Yi)

2

(
∑

j g(z + 1, Yj))2
− g(z, Yi)

2

(
∑

j g(z, Yj))2

)
=

1

n
EY A1(z,Y ) +

1

n
EY A2(z,Y ),

where

A1(z,y) =
∑
i

g(z + 1, yi)∑
j g(z + 1, yj)

(
g(z + 1, yi)∑
j g(z + 1, yj)

− g(z, yi)∑
j g(z, yj)

)
,

A2(z,y) =
∑
i

g(z, yi)∑
j g(z, yj)

(
g(z + 1, yi)∑
j g(z + 1, yj)

− g(z, yi)∑
j g(z, yj)

)
.

We will establish that A1(z,y) ≤ (≥)0 and A2(z,y) ≤ (≥)0 provided g(z+1,y)
g(z,y) is decreasing

(increasing) in y. The sign of A1(z,y) is determined by the sign of the expression

B1(z,y) =
∑
i

g(z + 1, yi)

g(z + 1, yi)
∑
j

g(z, yj)− g(z, yi)
∑
j

g(z + 1, yj)


=
∑
i,j

g(z + 1, yi)g(z, yi)g(z, yj)

[
g(z + 1, yi)

g(z, yi)
− g(z + 1, yj)

g(z, yj)

]
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Suppose, for concreteness, that g(z+1,y)
g(z,y) is decreasing in y. Then

∑
i,j

[g(z + 1, yi)− g(z + 1, yj)]g(z, yi)g(z, yj)

[
g(z + 1, yi)

g(z, yi)
− g(z + 1, yj)

g(z, yj)

]
≤ 0,

because the two expressions in square brackets have opposite signs. This gives

B1(z,y) =
∑
i,j

g(z + 1, yi)g(z, yi)g(z, yj)

[
g(z + 1, yi)

g(z, yi)
− g(z + 1, yj)

g(z, yj)

]

≤
∑
i,j

g(z + 1, yj)g(z, yi)g(z, yj)

[
g(z + 1, yi)

g(z, yi)
− g(z + 1, yj)

g(z, yj)

]

=
∑
j,i

g(z + 1, yi)g(z, yj)g(z, yi)

[
g(z + 1, yj)

g(z, yj)
− g(z + 1, yi)

g(z, yi)

]
= −B1(z,y),

which implies B1(z,y) ≤ 0. The derivation for A2(z,y) and the case when g(z+1,y)
g(z,y) is increasing

in y is similar.

Proof of Corollary 1 Suppose, for concreteness, that φ is log-concave. This implies that φ(t+x)
φ(x)

is decreasing in x for any t ≥ 0. Letting x = x2 + y and t = x1 − x2 + y, where x1 ≥ x2, it

follows that φ(x1+y)
φ(x2+y) is decreasing in y for any x1 ≥ x2. Therefore, for any y1 ≥ y2 we have

φ(x1+y1)
φ(x2+y1) ≤

φ(x1+y2)
φ(x2+y2) . Setting x1 = a(z + 1), x2 = a(z), y1 = b(y + 1) and y2 = b(y), obtain that

g(z+1,y)
g(z,y) is decreasing in y. The case of log-convex φ is similar.

Proof of Proposition 3 From equation (14),

E[X∗1 ] = E[X∗2 ] = r
∑
k

pk
(k1k2k̄1k̄2)r

((k1k̄2)r + (k̄1k2)r)2
.

Thus, E[X∗] = 2E[X∗1 ]. Next, we show that for any k1, k2,

(k1k2k̄1k̄2)r

((k1k̄2)r + (k̄1k2)r)2
≤ 1

4
.

Using the fact that ((k1k̄2)r − (k̄1k2)r)2 ≥ 0,

0 ≤ (k1k̄2)2r + (k̄1k2)2r − 2(k1k2k̄1k̄2)r

= ((k1k̄2)r + (k̄1k2)r)2 − 4(k1k2k̄1k̄2)r.

Rearranging yields the desired result. Furthermore, the inequality is strict if k1k̄2 6= k̄1k2. Then,

taking expectations over all possible k = (k1, k2),

E[X∗] = 2r
∑
k

pk
(k1k2k̄1k̄2)r

((k1k̄2)r + (k̄1k2)r)2
≤ 2r

∑
k

pk
1

4
=
r

2
,
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with strict inequality if there is some k such that k1k̄2 6= k̄1k2 and pk > 0. Thus, equality is

reached if pk > 0 only for points (k1, k2) with k1
k2

= k̄1
k̄2

; that is, it must be that K1 = aK2 for

some a > 0.
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