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Appendix A - The Participation Game with Preference Uncertainty 
 

This appendix provides a description and Bayesian-Nash equilibria of the participation games with 

and without allied voters when polls are prohibited (meaning the electorate’s preferences are 

uncertain). We derive pure strategy equilibria (propositions A1 and A2) and present numerical 

estimations of totally quasi-symmetric mixed strategy equilibria for varying choices of parameters. 

We also indicate how one can derive the logit equilibria for this game. We begin with an outline of 

the group structure that we use to introduce allied and floating voters, followed by a description of the 

PU-participation game. Our presentation continues with Bayesian-Nash equilibria for the PU-

participation game without allied voters and then proceeds to the case with allied voters. 
 

Group structure 

Consider a democracy in which elections are decided by simple majority rule and ties are broken by a 

coin-toss. The electorate consists of two groups, each supporting one of two exogenous candidates. 

We will distinguish between two scenarios. In the first, there are no alliances between voters and 

candidates. Each voter can belong to one supporter group in one election and to the other group in the 

next. The second scenario is where there is a (same) number of fixed voters in each group. This 

number is commonly known. One interpretation is that these are ‘allied’ voters, whereas the others are 

‘floating’ voters. Because of this asymmetry within a group, our model will allow allied and floating 

voters to follow distinct decision rules. 
 
A1. The game 
The players in the participation game (PR83) are the E (risk neutral) voters in an electorate, each 

seeking to maximize the own payoff. Each voter belongs to one of two supporter groups BAi ,= . Let 

integer 1≥iN , BAi ,= , be the number of voters in i , with ENN BA =+ . The notation ij , BAi ,= , 

will be used to represent voter ij∈ . Each voter ij  faces a strategy set consisting of two pure strategies 

}1,0{∈
ij

v , where 1=
ij

v  denotes participation in favor of candidate i  and 0=
ij

v  denotes abstention. 

A mixed strategy profile for ij  is given by the probabilities of participation 
ij

q  and abstention 
ij

q−1 , 

where 10 ≤≤
ij

q . All voters in the electorate make their decisions simultaneously. Aggregate 

participation in BAi ,=  is 

     ∑≡
i ij ji vV           ) 1A (  

 and, for later use, aggregate participation by other voters in i  than ij  is denoted by 

   
i

i

ji
j

i vVV −≡− .          ) A2 (  
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Payoffs are determined by the outcome of the election and the cost of voting. Normalizing the 

individual benefit from having one’s preferred candidate win (lose) the election to 1 (0), the election 

outcome determines an (expected) benefit for voter ij , BAi ,= , given by 
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where iV−  denotes aggregate participation in the group ij  does not belong to. We also define total 

aggregate participation by ii VVV −+≡ . Note that ),( iij VVw
i −  is non-decreasing (non-increasing) in its 

first (second) argument and symmetric to the groups, (.,.)1(.,.)
ii jj ww −=

−
. Furthermore, assume 

identical participation costs to all voters within the range 
 

          )1,0(∈c ,             ) 4A (  

ij∀ , BAi ,= . The payoff for any voter ij , BAi ,= , is then given by 
 
 

          cvVVw
iii jiijj −= − ),(π .         ) 5A (  

 

We now introduce preference uncertainty (PU) to the participation game, thus creating a Bayesian 

game. PU is formally characterized by common knowledge about: 
 

(i) an (equal) minimal group size, 1≥iN , for each group BAi ,= , implying a maximal group size 

iNE − , and; 

(ii) a discrete probability distribution over all possible electoral compositions ),( ii NN − ,  ii −≠ , from 

the set }{ ),(),...,1,1(),,( iiiiii NNENENNEN −−−+− , with 0) . , . ( >prob  for each element in 

the set. 
 

Throughout, we will only consider the symmetric case, where 1≥= −ii NN . 
 

A2. Bayesian-Nash equilibria in pure strategies; only floating voters 

The derivation of equilibria for the PU-participation game is a straightforward modification of that in 

Palfrey and Rosenthal (1983, 1985). Throughout, we assume risk neutrality. 

 In the equilibrium analysis, the central condition is that a player will vote with certainty if the 

expected payoff is higher than the expected payoff of abstaining. Formally, voter ij , BAi ,= , will 

vote with probability 1 iff 
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  [ ][ ] [ ][ ], 0      1 =>=
iiii jjstratsizejjstratsize vExpExpvExpExp ππ     ) 6A (  

and will abstain with probability 1 if the reverse is true. Expectation operators refer to strategic 

uncertainty ( strat ) and PU ( size ).1 Elaboration gives 

 

[ ] cxVVprobxVVprobxprob
i

i

ii

N

Nx
i

j
ii

j
i 2      )1()()( >=++=∑

=
−

−

−

− ,   ) A7 (  

where )(xprob  is the probability that electoral composition ),( xEx −  occurs, and 

)1()( xVVprobxVVprob i
j

ii
j

i
ii

−

−

−

− =++=  gives voter ij ’s probability of being pivotal, given i’s own 

group size x . The first of these terms gives the probability that ij  can turn a tie into a victory, and the 

second the probability that she can turn a defeat into a tie. For fixed x, ) 7A (  simply reduces to the 

equilibrium conditions for the ‘standard’ participation game (cf. Palfrey and Rosenthal 1983). Note 

that the expected payoff from voting is always negative for 21>c , implying that a risk neutral voter 

will abstain in this case. Hence, for high costs, the only Bayesian-Nash equilibrium is for every voter 

to abstain. 

 Condition ) 7A (  can be used to determine pure strategy Bayesian-Nash equilibria for the PU-

participation game with 2/1<c . The following proposition will give a comprehensive overview of 

these equilibria for various values of c. 
 

PROPOSITION A1 (pure strategy Bayesian-Nash equilibria in the PU-participation game without 

allied voters):2 

(i) If 21>c , the only Bayesian-Nash equilibrium in pure strategies is 0=
ij

v , ij∀ , BAi ,=  

(nobody participates). 

(ii) If 2)( ii NNprobc −=≤  { 2)1( +=≤ −ii NNprobc } for E  even {odd}, there is a Bayesian-Nash 

equilibrium in pure strategies with 1=
ij

v , ij∀ , BAi ,=  (everybody participates). 

(iii) If 2)2/( Vxprobc ==  { ⎡ ⎤ ⎣ ⎦ 2)2/(2)2/( VxprobcVxprobc =≤∧== } for E  even {odd}, 

there are Bayesian-Nash equilibria in pure strategies with 1=
ij

v , ij∀ , and 1=
−ijv  for some or 

none of the voters in i− , ii −≠  (everybody in i participates and possibly some in i− ). 

(iv) If 21<c , then for E  even {odd} and any symmetric group size distribution, any turnout level 

V , EV <<0  { 2/0 EV ≤< }, is an outcome of a Bayesian-Nash equilibrium in pure strategies 

if ])(,)([ maxmin VcVcc∈  with min)(Vc  ( max)(Vc ) is 2/1  times the probability that an abstainer (a 

                                                 
1 Palfrey and Rosenthal (1985) refer to the uncertainty about group sizes (preferences) as 'strategic', because it 
enters the participation decision of voters. We agree and only use a different terminology for notational clarity. 
2 The trivial but laborious cases with 2/1=c  are not discussed in this appendix. 
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participant) can change the election outcome by participating (abstaining) {for turnout levels 

EVE <<2/  such equilibria exist for some specification of symmetric group size distributions}. 

(v) No other Bayesian-Nash equilibria in pure strategies exist. 
 
 
Proof: 

The proof is a straightforward probabilistic extension of Palfrey and Rosenthal (1983). Note that in our case we 

assume 1≥iN , BAi ,= . 

(i): It is easy to see [cf. condition ) A7 ( ] that if 2/1>c , participation is too costly for any voter and full 

abstention is the only equilibrium. 

(ii) to (iv): If 2/1<c , in order for turnout EV ,...,1,0= , ii VVV −+= , to be a pure strategy Bayesian-Nash 

equilibrium outcome, no (non-)participant may receive a strictly higher expected payoff by deviating to 

abstention (participation). 

For V  even, every decision is pivotal when ii VV −= . In all other cases, nobody is pivotal because 

2≥− −ii VV . This implies that for ii VV −=  changing one’s decision affects revenues and for ii VV −≠  it 

does not. Using this, we can derive necessary and sufficient conditions for pure strategy Bayesian-Nash 

equilibria with even turnout V  to exist. 
 

First, the expected increase in revenue if a non-participant decides to vote must be equal to or smaller than 

the costs: 

    cvV
ij

≤=Φ
2
1)0,( ,         ) 8A (  

 

where )0,( =Φ
ij

vV  is the probability that the vote will affect the outcome, which (because V  is even) 

only occurs if there is a tie: 
 

)0,2/()0,( =====Φ − ii jiij vVVVVprobvV  
 

∑
−

+=
− ====

   ]2/,min[       

]12/,max[

),0,2/()(     
VEN

VNx
jii

i

i

i
xvVVVVprobxprob . 

 

Second, the expected decrease in revenue if a participant decides to abstain must be equal to or larger than 

the costs saved: 

    cvV
ij

≥=Φ
2
1)1,( ,         ) 9A (  

 

where )1,( =Φ
ij

vV  denotes the probability that the switch will affect the outcome, which (because V  is 

even) only occurs if there is a tie: 
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)1,2/()1,( =====Φ − ii jiij vVVVVprobvV  
 

      ∑
−

=
− ====

   ]2/,min[  

]2/,max[
),1,2/()(    

VEN

VNx
jii

i

i

i
xvVVVVprobxprob . 

 
For V  odd, we first establish the cases where an abstainer is pivotal. This occurs when 1−= −ii VV , 

implying that ij  can force a tie. If, however, ij  is one of the V  participants, (s)he is pivotal if 

1+= −ii VV , because a switch to abstention would reduce a victory to a tie. In all other cases 3≥− −ii VV  

and changing one’s decision has no effect on revenues. Using this, we can derive necessary and sufficient 

conditions for pure strategy Bayesian-Nash equilibria with (odd) turnout V  to exist. 
 

First, for a non-participant, ) 8A (  must hold. Now, )0,( =Φ
ij

vV  is given by the probability that ij  is in a 

group with a one-vote defeat to the other group: 

 

⎣ ⎦ )0, 2/1()0,( ==−===Φ − ii jiij vVVVVprobvV  
 

⎣ ⎦
⎡ ⎤

⎡ ⎤

∑
−

=
− ==−==

]2/,min[

]2/,max[

),0, 2/1()(     
VEN

VNx
jii

i

i

i
xvVVVVprobxprob . 

 

Second, for a participant, ) 9A (  must hold. Here, )1,( =Φ
ij

vV  is the probability that ij  is in a group 

with a one-vote victory over the other group: 

 

⎡ ⎤ )1, 2/1()1,( ==+===Φ − ii jiij vVVVVprobvV  
 

       ⎡ ⎤
⎡ ⎤

⎣ ⎦

∑
−

=
− ==+==

]2/,min[

]2/,max[

),1, 2/1()(     
VEN

VNx
jii

i

i

i
xvVVVVprobxprob . 

 

Next, we investigate whether and which pure strategy Bayesian-Nash equilibria exist that fulfill ) 8A (  and 

) 9A ( . We consider all possible cases EV ≤≤0 . 

 

Full abstention ( 0=V ): 
 

Full abstention cannot be an equilibrium. We only need to consider ) 8A ( , because 0=
ij

v , ij∀ , 

BAi ,= . This reduces to 
 

cxprobvVVVprob i

ii

N

Nxjii 211)()0,0 0( ≤=⋅===== ∑ =− ,    ) 01A (  

 

since 1),0,0 0( ===== − xvVVVprob
ijii , x∀ , which contradicts our assumption that 2/1<c . 
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Full abstention in one group and positive participation in the other group ( 0;0 >= −ii VV ): 
 

Full abstention 0=iV  in i  and positive participation 0>−iV  in i−  cannot be an equilibrium. This is easy 

to see. Given the pure strategy of abstention followed by everyone in i, for any 1>−iV , every participant in 

i−  has an incentive to abstain until 1=−iV , which suffices to win the election. But if 1=−iV , it is 

advantageous for every abstainer in i  to participate, because the value from turnout is 2/1 , which exceeds 

2/1<c . 
 
 
Full participation ( EV = ): 
 

For some 2/1<c , equilibria with full participation exist. We only need to consider ) A9 ( , because 

1=
ij

v , ij∀ , BAi ,= . For E  even {odd} this reduces to 
 

       cE/xprobvEVE/VVprob
ijii 21)2()1,2( ≥⋅====== −     ) 11A (  

 
{ ⎡ ⎤ ⎡ ⎤ cE/xprobvEVE/VVprob

ijii 21)2 ()1, 21( ≥⋅=====+= − }. 

Hence, ) 9A (  is satisfied for 2/)(2/)2/( ii NNprobExprobc −===≤  { ⎡ ⎤ ==≤ 2/)2/( Exprobc  

2/)1( += −ii NNprob }, which proves (ii) of the proposition. 

 
Full participation in one group and possibly some in the other group ( xEVxV ii −<= −  , ): 
 

1=== xVV i  cannot be an equilibrium because voters in i−  have an incentive to switch to voting. For 

EV <<1 , there exist equilibria for some 2/1<c  with full participation xVi =  in i  and possibly some 

participation xEV i −<−  in i− . For V  even {odd}, ) 8A (  applied to i−  gives 

 
       cVxprobvxVxVVprob

ijii 21)2/()0,2 ( ≤⋅======
−−        

 
{ ⎡ ⎤ cVxprobvxVxVVprob

ijii 21)2/()0,12 1( ≤⋅===−==+=
−− } 

 

and ) 9A (  applied to i  gives 
 

       cVxprobvxVxVVprob
ijii 21)2/()1,2( ≥⋅====== −        

 
{ ⎡ ⎤ cVxprobvxVxVVprob

ijii 21)2/ ()1,12 1( ≥⋅===−==+= − } 
 

and to i−  
 

       cV/xprobvxVxVVprob
ijii 21)2()1,2( ≥⋅======

−−         
 

 { ⎣ ⎦ cVxprobvxVxVVprob
ijii 21)2/ ()1,12 1( ≥⋅===+==−=

−− }.   ) 21A (  
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Hence, 2/)2/( Vxprobc ==  { ⎡ ⎤ 2/)2/( Vxprobc == ⎣ ⎦ 2/)2/( Vxprobc =≤∧ } are the only 

cases where ) 8A (  and ) 9A (  can be jointly fulfilled, which proves (iii) of the proposition. 
 

 

Other equilibria with EV <<0 : 
 
Note that by assuming symmetrically distributed group sizes, we can restrict our analysis to voters in i . 
 
For such equilibria to exist, we need to show that there is some c  that jointly fulfills ) 8A (  and ) 9A ( : 

            
2
1)1,(

2
1)0,( =Φ≤≤=Φ

ii jj vVcvV .      ) 31A (  

 

We give examples for 2,1=V  before providing a general proof that c  exist that fulfill ) 31A ( . 

 

 
Example 1=V : 
 
For a given ],[ ii NNx∈ , the probability that the only vote cast is in the other group, as perceived by an 

abstainer in i , is 1
1
≤

−
−

E
xE

. Then, ==Φ )0,1(
ij

v <
−
−∑ = 1

)(
E

xExprobi

i

N

Nx
1)( =∑ =

i

i

N

Nx
xprob . 

Furthermore, for the only participant, the probability that the own group has one more vote than the other is 

1. Hence, 1)1,1( ==Φ
ij

v . Therefore we have 
2
1)0,1(

2
1

2
1)1,1( =Φ>==Φ

ii jj vv  and for any 

⎟
⎠
⎞

⎢⎣
⎡ =Φ∈

2
1,

2
1)0,1(

ij
vc  ) 31A (  holds and E  pure strategy Bayesian-Nash equilibria exist with exactly 

one voter turning out to vote. 

 
Example 2=V : 
 
From ) 31A (  it follows that 2=V  is an equilibrium outcome for any )]1,2(),0,2([2 =Φ=Φ∈

ii jj vvc . 

What needs to be shown is that this set is non-empty. For a given ],[ ii NNx∈ , the probability that the two 

votes are divided equally across the two groups, given that ij  abstains, is 

==Φ )0,2( xv
ij

},0 in   vote1  ,in   vote1{ xviiprob
ij
=−

)2)(1(
)1)((2

−−
−−

=
EE
xxE

. Similarly, 

==Φ )1,2( xv
ij 1−

−
E

xE
. The set is non-empty, iff ≡ΔΦ )0,2()1,2( =Φ−=Φ

ii jj vv 0≥ . Then, 

assuming for the moment 1=iN , we have 
1

)(1

1 −
−

=ΔΦ ∑ −

= E
xExprobE

x )2)(1(
)1)(()(2 1

2 −−
−−

− ∑ −

= EE
xxExprobE

x
. 

Since the probability distribution of x  is symmetric around 2/Ex = , this gives 
 

⎣ ⎦

⎭
⎬
⎫

⎩
⎨
⎧

−−
−−

−
−−
−−

−
−

+
−
−

=ΔΦ ∑
−

= )2)(1(
)1(2

)2)(1(
)1)((2

11
)(

2/)1(

1 EE
xEx

EE
xxE

E
x

E
xExprob

E

x
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⎭
⎬
⎫

⎩
⎨
⎧

−−
−−

=+
)2)(1(

)11)(1(2)1(
EE

Exprob
⎭
⎬
⎫

⎩
⎨
⎧

−−
−−

−
−

−
=+

)2)(1(
)12/)(2/(2

1
2/)2/(

EE
EEE

E
EEExprob , 

 
or, after some rearrangements and because the last two terms of the sum are equal to zero, 
 

⎣ ⎦

)2)(1(
)2()(

22/)1(

1 −−
−

=ΔΦ ∑
−

= EE
xExprob

E

x
. 

Next, note that the fraction is positive for 2/Ex < . Hence, 0>ΔΦ . It is easy to see that this still holds 

when we give up our assumption that 1=iN . 0>ΔΦ  shows that the range )]1,2(),0,2([ =Φ=Φ
ii jj vv  

is non-empty, so all combinations of strategies yielding 2=V  constitute pure strategy Bayesian-Nash 

equilibria for c2  in this range. 

 

We now turn to the general case of turnout V  being an equilibrium outcome. 

 
1) EV <<0  and V  even: 
 

Similar to the argument in our examples, ) A13 (  is used to determine a range 

)]1,(),0,([ =Φ=Φ
ii jj vVvV  in which c2  should lie to make V  an equilibrium outcome. We then 

proceed to show this range is non-empty. Once again, consider group sizes x  and xE − , 

[ ]]2/,min[],2/,max[ VENVNx ii −∈ . For x outside of this range, the probability of a tie at V/2 is 0, and 

drops out of the calculation of )(⋅Φ . For given x  in this range, the probability that the V  votes are split 

equally, given that ij  abstains, is 
 

==Φ )0,( xvV
ij

},0 in    votes2/ ,in    votes2/{ xviViVprob
ij
=−  

 

     
⎭
⎬
⎫

⎩
⎨
⎧
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−
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⋅
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−

⎭
⎬
⎫

⎩
⎨
⎧

−
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⋅⋅
−
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⋅
−
−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
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VE
x
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VxE

E
xE

E
xE
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V 2/...

22/
2

12/
1

2/
12/...

2
1

12/
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Vx
hE

gxgxExE

V
V

V

h

V

g

−
−

⋅
−

−−−−
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∏
∏

−

=

−

= 2/
)(

))(()(

2/ 1

1

12/

1 .                       ) 41A (  

 
Similarly, ==Φ )1,( xvV

ij
},1 in    votes2/ ,in    votes2/{ xviViVprob

ij
=−  

 

⎭
⎬
⎫

⎩
⎨
⎧

+−
+−

⋅⋅
−−

−
⋅

−−
−

⎭
⎬
⎫

⎩
⎨
⎧

−
+−−
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−−

⋅
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−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

1
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22/
2

12/
1

2/
12/...

2
1

112/
1
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Vx

VE
x

VE
x

VE
VxE

E
xE

E
xE

V
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∏
∏
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−
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⋅⎟⎟
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Defining 0
)(

))(()(
),( 1

1

12/

1 ≥
−

−−−−
≡

∏
∏

−

=

−

=
V

h

V

g

hE

gxgxExE
xVφ , gives 

 

==Φ )0,( xvV
ij VE

VxxV
V
V

−
−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 2/),(
2/
φ     and     ==Φ )1,( xvV

ij
),(

12/
1

xV
V
V

φ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
. 

 

V -equilibria exist for some c  iff 0)0,()1,( ≥=Φ−=Φ≡ΔΦ
ii jj vVvV . Then, assuming 

12/ +<VN i  for the moment, we have 
 

=ΔΦ ),(
12/

1
)(

2/

2/
xV

V
V

xprob
VE

Vx
φ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
∑
−

= VE
VxxV

V
V

xprob
VE

Vx −
−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− ∑

−

+=

2/),(
2/

)(
2/

12/
φ  

 

       
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

−
−

−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

−

= VE
VxxVxprob

V
V VE

Vx

2/
2
1),()(

2/

2/

2/
φ  

   
VE
VVVV

V
V

Vxprob
−
−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+

2/2/)2/,(
2/

)2/( φ ,  ) 61A (  

where we use ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
2/2

1
12/

1
V
V

V
V

. Obviously, the second term disappears since 02/2/ =−VV . This 

shows that assuming 12/ +<VN i  so far is innocent. Now using ]12/,max[ +VN i  instead and because 
the distribution of x  is symmetric around 2/Ex = , we have: 
 

⎣ ⎦

∑
−

= ⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡
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⎤

⎢⎣
⎡

−
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ΔΦ

2/)1(

]2/,max[
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2
1),(2/

2
1),()(

2/

E

VNx i
VE
VxExEV
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VxxVxprob

V
V

φφ  
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−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+

VE
VEEV

V
V

Exprob 2/2/
2
1)2/,(

2/
)2/( φ  

 

 
⎣ ⎦

∑
−

= ⎭
⎬
⎫

⎩
⎨
⎧

−
−

⋅−+
−
−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2/)1(

]2/,max[ )(2
2),(

)(2
2),()(

2/

E

VNx i
VE
ExxEV

VE
xExVxprob

V
V

φφ  

 

 
[ ]⎣ ⎦

0
)(2

)2(),(),()(
2/

2/)1(

]2/,max[

>
⎭
⎬
⎫

⎩
⎨
⎧

−
−−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

−

=

E

VNx i
VE

xExEVxVxprob
V
V φφ

,                   ) 71A (  

 
because ),(),( xEVxV −> φφ  for 2/Ex < . 
 

Hence, for every PU-participation game with symmetrically distributed group sizes, we can find some c  

such that a pure strategy Bayesian-Nash equilibrium exists in which an even number V  of voters from 

either group participates and all others abstain, with EV <<0 . 
2) EV <<0  and V odd: 
 

Similarly, we use ) 51A (  to determine )]1,(),0,([ =Φ=Φ
ii jj vVvV  as a range in which c2  should lie to 

make V  an equilibrium outcome, and proceed to show that this range is non-empty. Consider group sizes 
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x  and xE − , ⎡ ⎤ ⎣ ⎦[ ]]2/,min[],2/,max[ VENVNx ii −∈ . Once again, if x is outside of the range, the 

probability of a tie is 0. 

 

For given x , the probability that the V  votes are split such that there is one vote less in i , given that ij  

abstains, is 
 

==Φ )0,( xvV
ij ⎡ ⎤ ⎣ ⎦ },0 in    votes2/ , in    votes2/{ xviViVprob

ij
=−  

 

⎣ ⎦
⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎣ ⎦

⎭
⎬
⎫

⎩
⎨
⎧

−
−

⋅⋅
−−

−
⋅

−−
−

⎭
⎬
⎫

⎩
⎨
⎧

−
−−

⋅⋅
−
−−

⋅
−
−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

VE
Vx

VE
x

VE
x

VE
VxE

E
xE

E
xE

V
V 2/...

22/
2

12/
1

2/
2/...

2
1

12/
 

 

⎣ ⎦

⎣ ⎦
⎣ ⎦
VE
VxE

hE

gxgxE
V

V
V

h

V

g

−
−−

⋅
−

−−−−
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∏
∏

−

=

−

= 2/
)(

)1)((
2/ 1

1

12/

0 .            ) 81A (  

 

And, given x  and that ij  participates, the probability that the V  votes are split such that there is one vote 

more in i  is 
 

==Φ )1,( xvV
ij ⎣ ⎦ ⎡ ⎤ },1 in    votes2/ , in    votes2/{ xviViVprob

ij
=−  

 

⎣ ⎦
⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎣ ⎦

⎭
⎬
⎫

⎩
⎨
⎧

+−
−

⋅⋅
−−

−
⋅

−
−

⎭
⎬
⎫

⎩
⎨
⎧

+−
+−−

⋅⋅
−
−−

⋅
−
−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

1
2/...

12/
2

2/
1

12/
12/...

2
1

12/
1

VE
Vx

VE
x

VE
x

VE
VxE

E
xE

E
xE

V
V

 

 

⎣ ⎦

⎣ ⎦

∏
∏

−

=

−

=

−

−−−−
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= 1

1

12/

0

)(

)1)((
2/
1

V

h

V

g

hE

gxgxE
V

V
.                ) 91A (  

 
 

Defining 
⎣ ⎦

0
)(

)1)((
),( 1

1

12/

0 ≥
−

−−−−
≡

∏
∏

−

=

−

=
V

h

V

g

hE

gxgxE
xVϕ , gives 

 

==Φ )0,( xvV
ij ⎣ ⎦

⎣ ⎦
VE
VxExV

V
V

−
−−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 2/),(
2/

ϕ     and    ==Φ )1,( xvV
ij ⎣ ⎦

),(
2/
1

xV
V

V
ϕ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
. 

 

V -equilibria exist for some c  iff 0)0,()1,( ≥=Φ−=Φ≡ΔΦ
ii jj vVvV . Then, assuming ⎣ ⎦2/VN i <  

for the moment, we have 
 

     =ΔΦ
⎡ ⎤

⎣ ⎦

⎣ ⎦
),(

2/
1

)(
2/

2/

xV
V

V
xprob

VE

Vx

ϕ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∑
−

= ⎡ ⎤

⎡ ⎤

⎣ ⎦
⎣ ⎦
VE
VxExV

V
V

xprob
VE

Vx −
−−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− ∑

−

=

2/),(
2/

)(
2/

2/

ϕ  
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⎣ ⎦ ⎡ ⎤

⎡ ⎤ ⎣ ⎦
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

−
−−

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

−

= VE
VxE

V
xVxprob

V
V VE

Vx

2/
2
1

2
1),()(

2/

2/

2/

ϕ  

     ⎣ ⎦
⎣ ⎦

⎣ ⎦)2/,(
2/
1

)2/( VEV
V

V
VExprob −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−=+ ϕ ,     

 

           
⎣ ⎦ ⎡ ⎤

⎡ ⎤

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+
−
−−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

−

= )(2
1

2
12/

2
1),()(

2/

2/

2/ VEVVE
VxExVxprob

V
V VE

Vx

ϕ  

⎣ ⎦
⎣ ⎦

⎣ ⎦)2/,(
2/
1

)2/( VEV
V

V
VExprob −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−=+ ϕ , ) 02A (  

 

where we use 
⎣ ⎦ ⎣ ⎦ VV

V
V

V
2
1

2
1

2/2/
1

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
. Note that the second term of ) 02A (  is positive and 

disappears if we drop the assumption ⎣ ⎦2/VN i < . Because the distribution of x  is symmetric around 
2/Ex = , we have: 

 

⎣ ⎦ ⎡ ⎤

⎣ ⎦

∑
−

= ⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

−
−

−−+⎥⎦
⎤

⎢⎣
⎡

−
−−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥ΔΦ

2/)1(

]2/,max[

2/
2
1),(2/

2
1),()(

2/

E

VNx i
VE

VxxEV
VE
VxExVxprob

V
V

ϕϕ  

 

⎣ ⎦ ⎥⎦
⎤

⎢⎣
⎡

−
−−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+

VE
VEEEV

V
V

Exprob 2/2/
2
1)2/,(

2/
)2/( ϕ    

 

⎣ ⎦ ⎡ ⎤

⎡ ⎤

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ∑

−

= )(2
1

2
1),()(

2/

2/

2/ VEV
xVxprob

V
V VE

Vx

ϕ     

 
 

      
⎣ ⎦

[ ]
⎡ ⎤

⎣ ⎦

∑
−

= ⎭
⎬
⎫

⎩
⎨
⎧

−
−−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2/)1(

]2/,max[ )(2
)2(),(),()(

2/

E

VNx i
VE

xExVxEVxprob
V

V ϕϕ
 

 

 
⎣ ⎦ ⎡ ⎤

⎡ ⎤

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ∑

−

= )(2
1

2
1),()(

2/

2/

2/ VEV
xVxprob

V
V VE

Vx

ϕ .  ) 12A (  

 

Note that the first term in ) 12A (  is positive, since ),(),( xVxEV ϕϕ >−  for 2/Ex < . But the second 

term is positive or zero only if 2/EV ≤ . If this is the case, then 0>ΔΦ . However, if 2/EV > , both 

terms in ) 12A (  have to be evaluated, inclusive the possible second term in ) 02A ( . Whether ΔΦ  is 

positive or zero depends on the symmetric probability distribution at hand, which we have not specified 

further. 
 

Hence, for every PU-participation game with any symmetrically distributed group sizes and 2/0 EV ≤< , 

there is some range for c  such that a pure strategy Bayesian-Nash equilibrium exists, in which an odd 

number V  of voters from either group participates and all others abstain. For 2/EVE >> , these 

equilibria may exist, depending on the specification of the symmetric group size distribution. 
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Together 1) and 2) prove (iv) of the proposition. 
 

An interesting property of the V -equilibria just described is that the ranges for adjacent turnouts V  are 

adjacent too and the c -values for which V-equilibria exist are non-increasing in V . To see this, look at 

2/)0,()( min =Φ≡
ij

vVVc  and 2/)1,1()1( max =+Φ≡+
ij

vVVc . Obviously, max)1( =< Vcc 2/1=  

gives the upper value. It is readily verified that maxmin )1()( xVcxVc +=  holds for V  even, for which we 

have 
 

⎣ ⎦ maxmin )1(),1(
2/)1(
1)1(

2
12/),(

2/2
1)( xVcxV

V
V

VE
VxxV

V
V

xVc +=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−+
=

−
−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ϕφ , 

 
and for V  odd, for which we have                    ) 22A (  
 

⎣ ⎦
⎣ ⎦

maxmin )1(),1(
12/)1(

1)1(
2
12/),(

2/2
1)( xVcxV

V
V

VE
VxExV

V
V

xVc +=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−+
=

−
−−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= φϕ . 

 

Using this, it is easy to see that the difference maxmin )1()( +− VcVc  is also equal to zero, since for V  even 

we have 
 

⎡ ⎤

⎣ ⎦
0)1()(   )()( max

2/)1(

2/)1(
min

2/

12/
=+− ∑∑

+−

+=

−

+=

xVcxprobxVcxprob
VE

Vx

VE

Vx
 

and for V  odd we have                      ) 32A (  
 

⎡ ⎤

⎡ ⎤
0)1()(   )()( max

2/)1(

2/)1(

2/

2/
min =+− ∑∑

+−

+=

−

=

xVcxprobxVcxprob
VE

Vx

VE

Vx
. 

 

Hence, we established that the ranges of possible equilibrium costs c  for adjacent V  are adjacent as well 

and that the costs are non-increasing in V . 

 

To (v): Conditions ) 8A (  are ) 9A (  are necessary and sufficient for the existence of pure strategy 

Bayesian-Nash equilibria.  

                           Q.E.D. 

 

A3. Bayesian-Nash equilibria in mixed strategies; only floating voters 

Next, consider equilibria in totally quasi-symmetric mixed strategies, where voter i (−i) participates 

with probability )1,0(∈iq  ( )1,0(∈−iq ). A necessary and sufficient condition for Bayesian-Nash 

equilibria in such strategies to exist is that each voter ij , BAi ,= , is indifferent between participation 

and abstention (i.e., condition ) 7A (  holds as an equality). Since in the experiment we use a 
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symmetric group size distribution we focus on symmetric ),( qq -equilibria, where iqq ≡  and iqq −≡ . 

Then, elaboration and specification of ) 7A (  implicitly defines best response q : 
 

.2      )1(
1

1
                          

)1(
1

 )(

2212
]1,1min[

0

212
],1min[

0

cqq
k

xE
k
x

qq
k

xE
k
x

xprob

kEk
xEx

k

N

Nx

kEk
xEx

k

i

i

=⎥
⎦

⎤
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−−+
−−−

=

=

−−
−−

=

∑

∑ ∑
       ) A24 (  

The first term in the large square brackets gives the (binomial) probability that there is a tie of k  

votes between the xE −  members in the other group and the 1−x  other members of ij ’s own 

group ( ij  can turn a tie into a victory). The second term gives the (binomial) probability that the other 

group outvotes ij ’s co-members by one vote ( ij  can turn a defeat into a tie). Below, numerical 

calculations will show that these equilibria exist for a variety of parameter values. 

Totally quasi-symmetric mixed strategy equilibria ((q,q)-equilibria) can be derived numerically 

using eq. ) A24 ( . Figure A1 depicts examples of such equilibria for the PU-participation game 

without allied voters. The left panel varies the electorate size }25,...,12,11{∈E , using fixed and equal 

minimal group sizes of 5 voters in each group ( 5== BA NN ) and an equal probability of being in 

either group for each voter (binomial distribution with p = 0.5). 
 
FIGURE A1: ),( qq -EQUILIBRIA IN THE PU-PARTICIPATION GAME WITHOUT ALLIED VOTERS AND 

WITH BINOMIAL GROUP SIZE DISTRIBUTION 
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Participation probabilities are shown for voting costs 5/1=c  and 3/1=c . Participation is quite low 

for 3/1=c  and slightly decreasing in E . For 5/1=c , we find ),( qq -equilibria only for 13≥E . 

With lower voting cost, participation is always higher as compared to higher costs and also decreasing 

in E. Aside from these equilibria with low levels of participation, we find two ‘high’-participation 

),( qq -equilibria: one for 11=E  when 3/1=c  and one for 13=E  when 5/1=c . The right panel of 
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figure A1 shows equilibrium participation probabilities when the electorate size is kept constant 

( 20=E ), but the minimal group sizes are varied and equal across groups ( 9,...,2,1== BA NN ). As in 

the left panel, we use p = 0.5 and show participation for 5/1=c  and 3/1=c . We observe higher 

participation for the lower voting costs. Moreover, participation appears quite constant across 

different minimal group sizes. Again, we find a ‘high-participation’ ),( qq -equilibrium, in this case 

for 9== BA NN , when 5/1=c . 

 

 

A4. Bayesian-Nash equilibria in pure strategies; allied and floating voters 

Until now, we have allowed for PU without distinguishing between allied and floating voters. All 

voters were assumed to choose a candidate on election eve, under the condition that at least Ni voters 

would choose i. This describes a world with only floating voters. To allow for allied voters, we 

assume that the minimal group of Ni voters has determined their choice beforehand. Hence, a situation 

of PU appears, with the minimal group representing the number of allied voters in i . There is a 

subtle, but important difference in the information set of the two voter types: each floating voter has 

private information about the candidate she supports, which she can use to (subjectively) update the 

probability distribution of the electorate’s composition. Allied voters, on the other hand, must rely on 

the common prior distribution. Because of this difference, we consider mixed strategy equilibria with 

distinct voting probabilities for the two voter types. 

 In our analysis (and experiments) we use a binomial distribution in which a priori each floating 

voter belongs to BAi ,=  with equal probability 5.0=p . We restrict our analysis to the symmetric 

case with an equal number of allied voters in each group: 1≥= BA NN .3  

 Next, we consider pure and totally quasi-symmetric mixed strategy equilibria for the PU-

participation game with allied voters. Let F denote the number of floating voters: iNEF 2−≡ . 

Proposition A2 gives pure strategy equilibria using a binomial group size distribution (p = .5). It is a 

straightforward extension of proposition A1. We only need to account for the differences in beliefs 

that allied and floating voters have about group sizes. 

 

 

 

                                                 
3 The generalization to asymmetric cases through unequal minimal group sizes or p ≠.5 is straightforward, 
however, more laborious best response conditions and notations are needed. 
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PROPOSITION A2 (pure strategy Bayesian-Nash equilibria in the PU-participation game with allied 

voters): 

Assume an equal number of allied voters 1≥= BA NN , and binomially distributed floating voters 

with 5.=p . 

(i) If 21>c , the only Bayesian-Nash equilibrium in pure strategies is 0
,,
==

fiai jj vv , aij ,∀ , fij ,∀ , 

BAi ,=  (nobody participates). 

(ii) If 
⎣ ⎦

1)21 (
2/

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤ F

F
F

c , the only Bayesian-Nash equilibrium in pure strategies is =aji
v ,  1

,
=

fijv , 

aij ,∀ , fij ,∀ , BAi ,=  (everybody participates). 

(iii) Other, more specific Bayesian-Nash equilibria in pure strategies exist. 

 
Proof: 
The proof is a straightforward extension of the proof of proposition A1. Because a floating voter knows her 

preference (group), she can update the probability distribution of x  (group sizes), so generally: 

)(
,ai

jxprob )(
, fi

jxprob≠ , except for the case E  even with )2/( ,aijExprob =  )2/( , fijExprob == . 

Due to symmetry )(
,ai

jxprob )(
,ai

jxprob
−

=  and )(
, fi

jxprob  )(
, fi

jxprob
−

= , hence, all allied (floating) 

voters have the same posterior probability distribution of group sizes. Contrary to that of floating voters, the 

preferences (group memberships) of allied voters are ‘identifiable’. Define total aggregate participation of allied 

(floating) voters by aiaia VVV ,, −+≡  ( fifif VVV ,, −+≡ ), and the difference in participation between both allied 

groups by aiaia VVV ,, −−≡Δ . 

 

To (i): See proof of proposition A1(i). 

To (ii) and (iii):   If 2/1<c , in order for EV ,...,1,0= , fa VVV += , votes to be a pure strategy Bayesian-

Nash equilibrium, no participant (non-participant) may receive a strictly higher expected payoff by deviating to 

abstention (participation). Then, it is necessary and sufficient for equilibria with V  turnouts to exist that the 

following conditions hold for all allied and floating (non-) participants: 
 

No non-participant aij ,  and fij , , BAi ,= , will change her decision if 
 

   cvV
aij

≤=Φ
2
1)0,(

,
,    cvV

fij
≤=Φ

2
1)0,(

,
,     ) 52A (  

 

and no participant aij ,  and fij , , BAi ,= , will change her decision if 
 

   cvV
aij

≥=Φ
2
1)1,(

,
,    cvV

fij
≥=Φ

2
1)1,(

,
,     ) 62A (  
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where the probabilities )  ( ⋅Φ  of being pivotal for allied and floating voters are similar to those in ) 8A (  and 

) 9A ( , except that we now use updated probabilities of group sizes only for floating voters (cf. proof of 

proposition A1). 

 

Next, we establish whether and which pure strategy Bayesian-Nash equilibria exist that fulfill ) 52A (  and 

) 62A ( . We consider all possible cases EV ≤≤0 . 

 

Due to the binomial distribution of group sizes with 5.0=p  the probability of being pivotal of a floating 

(allied) non-participant fij ,  ( aij , ) and an allied participant aij ,  for af VV Δ−  even is given by 
 
 

)1,()0,()0,(
,,,
=Φ==Φ==Φ

aiaifi jjj vVvVvV
⎪
⎩

⎪
⎨

⎧
Δ≥⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ−=

,0

   5. 
2/)(

otherwise

VVif
VV

V
af

V

af

f f

        ) 27A (  

 

where aVΔ  corrects for the ‘identifiable’ participations of allied voters. Obviously, the strict inequalities in 

) 52A (  and ) 62A (  cannot be fulfilled simultaneously, because floating and allied non-participants as well as 

allied participants have the same probability of being pivotal. 

 
Hence, for an equilibrium to exist, it must hold that ==Φ==Φ )0,()0,(

,, aifi jj vVvV  cvV
aij

2)1,(
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which is, given that the probability of all other voters is equal to c2 , larger than (smaller than; equal to) c2  for 

floating participants in the group with 0<Δ aV  ( 0>Δ aV ; 0=Δ aV ). It follows that for af VV Δ−  even, 

) 52A (  and ) 62A (  being fulfilled jointly can only occur if ==Φ )0,(
, fij

vV  

cvVvV
aiai jj 2)1,()0,(

,,
==Φ==Φ  and all floating participants are members of a group with 0≤Δ aV . For 

0<Δ aV , however, since it is known that only floating voters in i participate, they are only pivotal if 

af VV Δ= . But then allied non-participants in i would prefer to vote (yielding af VV Δ−  odd, which is 

discussed below). Hence, these cases cannot be equilibria. Note further that for 0=Δ aV , the trivial cases with 

all voters having probabilities of being pivotal equal to 2c occur. These equilibria are not further discussed here. 
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No other pure strategy Bayesian-Nash equilibria exist for af VV Δ−  even, in which abstainers and participants 

coexist. 

 

For af VV Δ−  odd, we can write the probability for an allied non-participant aij ,  as 
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and that for an allied participant aij ,  as 
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It is readily verified that ) 03A (  and ) 13A (  are equal for allied non-participants aij ,  and allied participants 

aij ,− . But the probability of allied participants aij ,  being pivotal is larger than (smaller than; equal to) that of 

allied non-participants aij ,  if 0>Δ aV  ( 0<Δ aV , 0=Δ aV ). It follows that allied participants and allied 

abstainers cannot coexist in the same group, respectively ) 92A (  and ) 03A (  cannot be fulfilled jointly, 

unless 0=Δ aV  or every allied voter in i  participates and none in i− . Discussing 0=Δ aV  first, it is easy to 

see that ) 92A ( , ) 03A ( , and the probability of floating non-participants fij ,  being pivotal are the same, or 
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which is similar to ) 72A (  for af VV Δ−  even. As before, we investigate next whether 
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,, aifi jj vVvV cvV

aij
2)1,(

,
==Φ  and cvV

fij
2)1,(

,
≥=Φ  for floating participants can 

be fulfilled jointly for 0=Δ aV , where the probability of being pivotal of a floating participant fij ,  is given by 
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The expression in ) 23A (  is always larger than that in ) 13A ( . Hence, for af VV Δ−  odd, pure strategy 

Bayesian-Nash equilibria with abstainers and participants together indeed exist for 

>=Φ )1,(
, fij

vV ==Φ )0,(
, fij

vV ==Φ )0,(
,aij

vV cvV
aij
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With respect to the second case, it is readily verified that it cannot be an equilibrium with 0>Δ aV  and all 

allied voters in i participating and all allied voters in i−  abstaining. This is because the probability of being 

pivotal of required floating participants fij ,−  is given by 
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which is smaller than that of allied abstainers in i− , )0,(
,
=Φ

− aijvV . Hence, such equilibria cannot exist. No 

other pure strategy Bayesian-Nash equilibria exist in which abstainers and participants coexist. 

 

This leads us to the analysis of the two possible equilibria left: 

 
Full abstention ( 0=V ): 
 

Full abstention cannot be an equilibrium, because any single voter can raise payoff by 2/1  by turning out, 

which is larger than the participation costs ( 2/1<c ). 

 
Full participation ( EV = ): 
 
Equilibria with full participation exist for FVf =  even {odd}, with ≡F iNE 2− , as long as 
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To (iii): Conditions ) 52A (  to ) 62A (  are necessary and sufficient for the existence of pure strategy 

Bayesian-Nash equilibria.                     Q.E.D. 

 

Similar to proposition A1(i), proposition A2(i) states that all voters abstain if the voting costs are too high. As 

proposition A1(ii), A2(ii) is an intuitive extension of the full participation equilibrium for ii NN −=  analyzed in 

Palfrey and Rosenthal (1983). If all voters have high enough (compared to costs) expectations that both groups 

are of equal size respectively that there is one voter more in the own group, a full participation equilibrium 

exists. 
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A5. Bayesian-Nash equilibria in mixed strategies; allied and floating voters 

For mixed strategy equilibria, we focus on totally quasi-symmetric cases were all allied voters 

participate with the same probability )1,0(∈aq  and all floating voters with the same probability 

)1,0(∈fq . A necessary and sufficient condition for Bayesian-Nash equilibria in such strategies to 

exist is that each allied voter and each floating voter is indifferent between participation and 

abstention. Elaboration and specification of ) 7A (  as an equality gives implicit functions for the best 

responses aq  ) A35a(  and fq  ) A35b ( : 
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To understand theses conditions, consider ) A35a (  ( ) A35b (  is a similar application to floating 

voters). The equation elaborates the condition that the probability of being pivotal is equal to c2  for a 

mixed strategy to be a best response. The left-hand side of )A35a (  shows this probability for an 

allied voter. The term outside of the square brackets gives the probabilities of y  )( yF −  floating 
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voters being ‘allocated’ to the same (other) group as this allied voter. For each y , the first (second) 

term inside the square brackets gives the probability that this voter can break (create) a tie by 

participating. In the first term, all ties with k  votes are considered. In the allied voter’s own group, 

the k  votes consist of ik  votes by floating voters and ikk −  by the other allied voters. In the other 

group ik−  ( ikk −− ) of the floating (allied) voters turn out. The first term gives the probability for each 

event ( ii kkk −,, ), given the best responses. In a similar way, the second term inside the square brackets 

represents the probabilities of all events where k  other voters in the allied voter’s own group vote and 

1+k  in the other group. 

 Once again, these equilibria cannot be derived analytically. Numerical estimations show that they 

do exist for a wide range of parameter values, however. Figure A2 shows numerical examples of such 

‘ ),,,( fafa qqqq -equilibria’ for a fixed electorate size 40=E  and varying numbers of allied and 

floating voters. The number of allied voters per group is from the set }19,...,2,,1{∈iN  and equal 

across groups ( BA NN = ). We present participation probabilities for allied and floating voters for 

voting costs 40.=c  (upper left panel), 25.=c  (upper right panel), and 10.=c  (lower panel). The 

figure indicates very high (low) participation for allied (floating) voters for both higher costs cases. 

Only for 10.=c , equilibrium participation is in the middle range and similar for the two types. We 

find no equilibrium for these costs for 8>iN .  

 
FIGURE A2: ),,,( fafa qqqq -EQUILIBRIA IN THE PU-PARTICIPATION GAME WITH ALLIED VOTERS, 

BINOMIAL GROUP SIZE DISTRIBUTION, 40=E , AND ( )19,...,2,1∈= BA NN  
 
          40.=c           25.=c  
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A6. Quantal response equilibria 

Goeree and Holt (2005) and Cason and Mui (2005) show that quantal response (logit) equilibria, 

predict behavior in experimental participation games better than (Bayesian) Nash equilibria do. Here, 

we show how such equilibria can be derived for the PU-participation game.  

 Starting point for the quantal response analysis is the comparison of expected payoffs for voting 

and abstaining described in condition ) 6A ( . A stochastic term 
ij

με  is added to the expected payoff 

of each decision (vote or abstain) to allow for the possibility that voters perceive these payoffs subject 

to noise. It includes an error parameter 0≥μ  common to all and 
ij

ε  as a realization of ij ’s 

individually specific random variable, which is identically and independently distributed per voter and 

decision (cf. Goeree and Holt 2005). Voter ij  will participate iff the expected payoff from voting is 

higher than that of abstaining: 

 

[ ][ ] [ ][ ] 01 0    1
iiiiii jjjstratsizejjjstratsize vExpExpvExpExp μεπμεπ +=>+= ,   ) 63A (  

where ε ’s superscript ‘1’ (‘0’) refers to the realization of the random variable in the stochastic term 

that is added to the payoff from voting (abstaining). In the absence of noise (μ = 0), ) A36 (  reduces 

to condition ) 6A (  for a Bayesian-Nash equilibrium. Hence, the equilibria described above are a limit 

case of the quantal response equilibria described here (McKelvey and Palfrey 1995; Goeree and Holt 

2005). 

 For μ > 0 it follows from (A36) that voter ij  will vote iff 
 

     
[ ][ ] [ ][ ]

μ

ππ
εε
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    10

=−=
<− iiii

ii

jjstratsizejjstratsize

jj

vExpExpvExpExp
.   ) 73A (  

Denoting the distribution function of the difference 10

ii jj εε −  by F, this gives the probability q that 

voter ij  will vote: 
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or, after elaboration (cf. condition A7), 
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This equation describes the voting probability q as a ‘noisy best response’ to the expected payoff 

difference between voting and abstaining. Assuming symmetry not only within but also between 

groups (because all voters face exactly the same decisions) and using the binomials in eq. ) A24 ( , the 

right hand side of ) A38b (  is a function of the probability, q, that a randomly drawn other voter will 

vote. A quantal response equilibrium (McKelvey and Palfrey 1995) for some specification of error 

distribution F occurs if the participation probability on the right hand side is equal to the q  that shows 

up on the left hand side. This can be found numerically for specific values of the error parameter μ. 

The quantal response equilibrium for the case with allied and floating voters can be derived in a 

similar way. Each type is symmetric across groups due to the symmetric group size distribution. Then, 

to calculate the noisy best responses for allied and floating voters, aq  respectively fq , two equations 

similar to ) A38b (  have to be solved simultaneously. 
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Appendix B − Experimental Instructions 
 
This appendix presents the read-aloud instructions for treatment UF. Variations for the other 

treatments are presented in square brackets [UM, IF, IM] These instructions have been 

translated from _______ .  

 

Welcome to our experiment on decision-making. Depending on your own choices and the choices of 

other participants, you may earn money today. Your earnings in the experiment are expressed in 

tokens. 4 tokens are worth one Guilder. At the end of the experiment your total earnings in tokens will 

be exchanged into Guilders and paid to you in cash. The payment will remain anonymous. No other 

participant will be informed about your payment. 

 

Please remain quiet and do not communicate with other participants during the entire 

experiment. Raise your hand if you have any questions. One of us will come to you to answer 

them. 

 

Rounds, ‘your group’ and the ‘other group’ 

 

The experiment consists of 100 rounds. At the beginning of the experiment the computer program will 

randomly split all participants into two different populations of 12 participants. In addition, at the 

beginning of each round the computer program will randomly divide the participants in each 

population into two groups. The group you are part of will be referred to as your group and the group 

in your population which you are not part of will be called the other group. You will not know which 

of the participants belongs to the other group and which to your group. You will have nothing to do 

with participants in the other population in this experiment. 

 

Number of participants in ‘your group’ and the ‘other group’ 

 

At the beginning of each round the computer program will randomly determine the number of 

participants in your group and the number of participants in the other group. At no point in time will 

you or anybody else receive information about the number of participants in your group and 

the number of participants in the other group. [In IF and IM instead: You and all other 
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participants in both groups will then receive information about the number of participants in 

your group and the number of participants in the other group.] 

 

However, you and all other participants know that [in IF and IM: There is the following structure of 

group sizes]: 

(1) Independent of the round, the sum of participants in both groups (your group and the other group) 

is always  12. 

(2) Both groups contain a minimum of 3 participants and a maximum of 9 participants. 

 

Because the sum of participants in both groups is always twelve, there are the following 7 possible 

combinations of group sizes: 
 

(3-9)   (4-8)   (5-7)   (6-6)   (7-5)   (8-4)   (9-3), 
 

whereby the first number represents the group size of the first group and the second number the group 

size of the second group. 

The arrangement of a population (12 participants) into two groups by the computer program proceeds 

in the following two steps: 

(1) Both groups are randomly filled with 3 participants, the minimal number of participants per group 

(in total 6 participants). Each participant has the same chance of being selected. 

(2) Each of the remaining 6 participants is randomly put into one of the two groups, with a chance of 

50% for each group. 

 

[For UM and IM instead: 

(1) At the beginning of the first round both groups are randomly filled with 3 participants, the 

minimal number of participants per group (in total 6 participants). Each participant has the same 

chance of being selected. The chosen participants will be called ’FIX’-participants, because they 

will not change groups during the whole experiment. 

(2) At the beginning of each round each of the remaining 6 participants is randomly put into one of 

the two groups, with a chance of 50% for each group. These participants will be called ’VAR’-

(=variable) participants, because they will randomly change groups during the whole experiment. 

 

At the beginning of the first round you will receive information about your own type FIX or 

VAR. Your own type will not change during the whole experiment.] 



 25

 

The following figure shows for all seven possible combinations of group sizes the chance that a 

particular combination occurs. 
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Note again that group sizes will be randomly determined at the beginning of each round. Hence, 

the group sizes may change from one round to another. 

 

Choices and earnings 

 

In each round you and all other participants will face an identical choice problem. You will be asked 

to make one choice. You can choose between the following two alternatives: 

 

• ‘Choice A’:   no costs involved (0 tokens). 

• ‘Choice B’:   costs are 1 token. 

 

When making your choice, nobody else in your group or in the other group will know this choice. 

After all participants have made their choices, the computer program will count the number of B-

choices in your group and in the other group and will compare the numbers in both groups. There are 

3 possible outcomes that are relevant for your revenue in the following way. You will receive the 

revenue irrespective of the choice you made. 

 

(1) The number of B-choices in your group exceeds the number of B-choices in the other group. In 

this case each participant in your group (including yourself) will get revenue of 4 tokens. Each 

participant in the other group will get 1 token. 

(2) The number of B-choices in your group is smaller than the number of B-choices in the other 

group. In this case each participant in your group (including yourself) will get revenue of 1 token. 

Each participant in the other group will get 4 tokens. 
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(3) The number of B-choices in your group is equal to the number of B-choices in the other group. In 

this case the computer program will randomly determine the group in which each participant gets 

revenue of 4 tokens (each group has the same chance of 50% of being chosen). Each participant in 

the group that is not chosen will get 1 token. 

Your round earnings are calculated in the following way: round earnings = round revenue – round 

costs. Your total earnings are the sum of all of your round earnings. 

 

The following table gives your possible round earnings: 

 
Your possible round earnings: 

 

Your choice Your group has 
more B-choices 

Your group has 
less B-choices 

Equal number of B-choices 
in both groups 

Choice A 4 tokens 1 token 4 or 1 token (50% chance each) 
Choice B 3 tokens 0 token 3 or 0 token (50% chance each) 

 

Computer screen 

 

The computer screen has four main windows. 

(1) The Status window shows [for UM and IM: your type (FIX or VAR),] the actual round number and 

the total earnings up to the previous round. 

(2) The Previous round window depicts the following information about the previous round: 

(a) The number of B-choices in your group [in IF and IM: and, in brackets, the size of your 

group]. 

(b) The number of B-choices in the other group [in IF and IM: and, in brackets, the size of 

the other group]. 

(c) Your choice. 

(d) Your revenue. 

(e) Your costs. 

(f) Your round earnings. 

Note that no information about the group sizes will be given [this sentence not for IF and 

IM]. 

(3) In the Choice window you will find two buttons. Press the button “Choice A” or the button 

“Choice B” with the mouse, or press the key “A” or “B”. When you have chosen you will have to 

wait until all participants have made their choices. 



 27

(4) The Result window shows the result of the current round, hence after each participant has made a 

choice. Each yellow rectangle shown represents one B-choice of your group and each blue 

rectangle represents one B-choice of the other group. After a few seconds the result will also 

appear in numbers. 

At the top of the screen you will find a Menu bar. You can use this to access the Calculator and 

History functions. The calculator can be handled with the numerical pad on the right side of your 

keyboard or with the mouse buttons. The function ‘history’ shows all information of the last sixteen 

rounds as this had appeared in the window ‘Previous round’. At the bottom of your screen the 

Information bar is located. There you are told the current status of the experiment. 

 

Further procedures 

 

Before the 100 rounds of the experiment start, we will ask you to participate in three training-rounds. 

You will have to answer questions in order to proceed further in these training-rounds. In the training-

rounds you are not matched to other participants but to the computer program. You cannot draw 

conclusions about choices of other participants based on the results in the training-rounds. The 

training-rounds will not count for your payment. 

 

We will now start with the three trainings-rounds. If you have any questions, please raise your hand. 

One of us will come to you to answer them. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28

Appendix C − Procedures 
 

TABLE C: SEQUENCE OF ELECTORAL COMPOSITIONS 

Round Elect. 
comp. Round Elect. 

comp. Round Elect. 
comp. Round Elect. 

comp. Round Elect. 
comp. 

1 6-6 21 5-7 41 6-6 61 7-5 81 4-8 
2 7-5 22 6-6 42 6-6 62 7-5 82 6-6 
3 6-6 23 4-8 43 7-5 63 5-7 83 6-6 
4 5-7 24 7-5 44 6-6 64 6-6 84 6-6 
5 6-6 25 6-6 45 4-8 65 4-8 85 5-7 
6 4-8 26 9-3 46 5-7 66 5-7 86 5-7 
7 6-6 27 6-6 47 7-5 67 5-7 87 6-6 
8 7-5 28 7-5 48 7-5 68 6-6 88 8-4 
9 7-5 29 5-7 49 6-6 69 6-6 89 6-6 

10 5-7 30 5-7 50 8-4 70 5-7 90 6-6 
11 5-7 31 5-7 51 6-6 71 5-7 91 7-5 
12 7-5 32 8-4 52 5-7 72 6-6 92 6-6 
13 4-8 33 8-4 53 6-6 73 8-4 93 5-7 
14 7-5 34 6-6 54 7-5 74 5-7 94 8-4 
15 7-5 35 7-5 55 7-5 75 7-5 95 7-5 
16 8-4 36 5-7 56 4-8 76 7-5 96 3-9 
17 6-6 37 6-6 57 6-6 77 4-8 97 5-7 
18 5-7 38 5-7 58 3-9 78 5-7 98 6-6 
19 4-8 39 6-6 59 6-6 79 6-6 99 6-6 
20 9-3 40 7-5 60 7-5 80 8-4 100 8-4 

 

 



 29

Appendix D − Equilibrium Predictions 
 
TABLE D:  OVERVIEW OF EQUILIBRIUM PREDICTIONS, OBSERVED TURNOUT RATES FOR ROUNDS 21 TO 100, AND MAXIMUM LIKELIHOOD 
ESTIMATES OF THE NOISE PARAMETERS 

Predictions 
(Bayesian) 

Nash QRE Log-likelihood 
Treatment 

Levels 
of 

support 

Observed 
turnout rates 

μ = 0 μ = 0.4 μ = 0.8

Estimated 
μ 

# obser-
vations (Bayesian) 

Nash QRE Random 
play 

UF - .297 .098 .302 .381   .39 5616 -4286.62 -3418.01 -3892.71 

     Allied: .426 .934 .306 .382 .05 or 1.38 2880 -4576.80 -1964.64 -1996.26 
- 

Floating: .293 .123 .299 .380   .38 2880 -2033.92 -1741.13 -1996.26 UM 

All .359   .529** .303** .381**   .65 5760 -4094.34 -3761.61 -3992,53 
3 .296 .256 .306  .341    .08     54     -33.04     -32.82     -37.43 
4 .301 .173 .320  .369    .29   336   -221.73   -205.42   -232.90 
5 .329 .132 .331  .395    .39 1050   -798.61   -664.82   -727.80 
6 .481   .107* .329 .404 4.28 2016 -2285.99 -1395.95 -1397.38 
7 .437 .091 .306 .384 1.58 1470 -1619.11 -1007.13 -1018.93 
8 .281 .080 .271 .349   .44   672   -517.75   -399.26   -465.79 
9 .241 .074 .234 .313   .43   162   -111.11     -89.41   -112.29 

IF 

All .400   .109** .313** .385**   .95 5760 -5501.26 -3875.74 -3992.53 
3 .296 .256 .306  .341    .08    54     -33.04     -32.82     -37.43 
4 .286 .173 .320  .369    .22   336   -213.92   -201.02   -232.90 
5 .393 .132 .331  .395    .79 1050   -926.74   -703.73   -727.80 
6 .585   .107* .329 .404    ∞ 2016 -2731.49 -1397.38 -1397.38 
7 .448 .091 .306 .384 1.96 1470 -1658.27 -1011.05 -1018.93 
8 .341 .080 .271 .349   .74   672   -615.48   -431.12   -465.79 
9 .302 .074 .234 .313   .73   162   -136.43     -99.30   -112.29 

IM 

All .459   .109** .313** .385** 2.55 5760 -6215.60 -3972.84 -3992.53 
* Or, .893; **weighted overall participation probability. 
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Appendix E − Electoral Efficiency 
 

The voting and victory probabilities from appendix D can be used to calculate voters’ 

expected payoffs, which determine the electoral efficiencies in equilibrium (Palfrey and 

Rosenthal 1983). Figure E shows these efficiencies per treatment, noise-level, and level of 

disagreement. Efficiency is calculated as the electorate’s aggregate payoff in equilibrium, 

divided by its socially optimal (efficient) total payoff. For unequal group sizes, surplus is 

maximized when one voter in the majority participates and all other voters abstain. For 

example, for electorates with group sizes (3-9) or (9-3), the efficient aggregate payoff is 

14913 −×+× 38=  [similarly, 35 for (4-8)/(8-4), and 32 for (5-7)/(7-5)]. For equal group 

sizes (6-6), it is efficient if nobody participates, in which case total payoff is 

304616 =×+× . 
 

FIGURE D: EQUILIBRIUM EFFICIENCY 
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Note from figure E that once again the treatment effect is strongest in the Bayesian-Nash 

equilibrium ( 0=μ ). When voters are informed about group sizes, efficiency is lowest (73%) 

when the level of disagreement is lowest and monotonically increases with the size of the 

minority to 96% when there are 6 voters in each group. This pattern occurs for noise level 

0=μ , because overall expected participation decreases and the majority’s probability of
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winning increases in the level of disagreement. Compare this to the treatments with PU. In 

UF efficiency for 0=μ  is very high (96%) for equal levels of support, whereas intermediate 

values of efficiency between 85% and 87% are observed for all other levels of disagreement. 

In UM, efficiency for 0=μ  is low (between 73% and 79%) for all levels of disagreement. 

This is because allied voters participate extensively. When noise is introduced, the 

differences across treatments are minor. In all cases the efficiency curves are U-shaped and 

show intermediate values (83-88% for 4.0=μ   and 82-86% for 8.0=μ ). 

 Table E gives realized efficiencies and their standard deviations. The data are pooled 

across the two voter alliance treatments, since virtually no differences in patterns are 

observed for this variable. 
 

TABLE E: ELECTORAL EFFICIENCY 

Treatment Without poll releases With poll releases 

Level of 
disagreement 3 4 5 6 3 4 5 6 

Efficiency 
(standard dev.) 

.854 
(.081) 

.842 
(.051) 

.831 
(.046) 

.867 
(.042) 

.887 
(.066). 

.861 
(.042) 

.835 
(.045) 

.786 
(.059) 

Weighted 
average .846 .826 

 

 


