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Appendix A - The Participation Game with Preference Uncertainty

This appendix provides a description and Bayesian-Nash equilibria of the participation games with
and without allied voters when polls are prohibited (meaning the electorate’s preferences are
uncertain). We derive pure strategy equilibria (propositions Al and A2) and present numerical
estimations of totally quasi-symmetric mixed strategy equilibria for varying choices of parameters.
We also indicate how one can derive the logit equilibria for this game. We begin with an outline of
the group structure that we use to introduce allied and floating voters, followed by a description of the
PU-participation game. Our presentation continues with Bayesian-Nash equilibria for the PU-

participation game without allied voters and then proceeds to the case with allied voters.

Group structure

Consider a democracy in which elections are decided by simple majority rule and ties are broken by a
coin-toss. The electorate consists of two groups, each supporting one of two exogenous candidates.
We will distinguish between two scenarios. In the first, there are no alliances between voters and
candidates. Each voter can belong to one supporter group in one election and to the other group in the
next. The second scenario is where there is a (same) number of fixed voters in each group. This
number is commonly known. One interpretation is that these are ‘allied’ voters, whereas the others are
“floating’ voters. Because of this asymmetry within a group, our model will allow allied and floating

voters to follow distinct decision rules.

Al. The game

The players in the participation game (PR83) are the E (risk neutral) voters in an electorate, each
seeking to maximize the own payoff. Each voter belongs to one of two supporter groups i=A,B. Let
integer N, >1, i=A, B, be the number of voters in i, with N, + N, = E . The notation j., i=AB,
will be used to represent voter j i . Each voter j, faces a strategy set consisting of two pure strategies
v, €{0,1}, where v, =1 denotes participation in favor of candidate i and Vi, =0 denotes abstention.
A mixed strategy profile for j; is given by the probabilities of participation q, and abstention 1-q, ,
where 0<q, <1. All voters in the electorate make their decisions simultaneously. Aggregate

participation in i=A,B is
V, = zj‘ v, (A1)
and, for later use, aggregate participation by other voters in i than j, is denoted by

Vi’Ji =V, -v, .

Ji

(A2)



Payoffs are determined by the outcome of the election and the cost of voting. Normalizing the
individual benefit from having one’s preferred candidate win (lose) the election to 1 (0), the election

outcome determines an (expected) benefit for voter j,, i=A,B, given by

0 if V<V,
w,(V.V,)=1% if V=V, (A3)
1 if V. >V,
where V_ denotes aggregate participation in the group j, does not belong to. We also define total
aggregate participation by V =V, +V, . Note that w, (V,,V.) is non-decreasing (non-increasing) in its
first (second) argument and symmetric to the groups, w, (.,.)=1-w,(..). Furthermore, assume

identical participation costs to all voters within the range

ce(0)), (A4)
Vj,, i=A,B. The payoff for any voter j , i=A,B, is then given by

r,o=w (V,V,)-v.c. (A5)

We now introduce preference uncertainty (PU) to the participation game, thus creating a Bayesian

game. PU is formally characterized by common knowledge about:

(i) an (equal) minimal group size, N, >1, for each group i= A, B, implying a maximal group size
E-N,,and;

(if) a discrete probability distribution over all possible electoral compositions (N,,N_), i=—i, from
the set {(N,,E—-N,),(N, +LE—-N,-1),..,(E-N,,N,)}, with prob(.,.)>0 for each element in
the set.

Throughout, we will only consider the symmetric case, where N, =N, >1.

A2. Bayesian-Nash equilibria in pure strategies; only floating voters

The derivation of equilibria for the PU-participation game is a straightforward modification of that in
Palfrey and Rosenthal (1983, 1985). Throughout, we assume risk neutrality.

In the equilibrium analysis, the central condition is that a player will vote with certainty if the
expected payoff is higher than the expected payoff of abstaining. Formally, voter j., i=A,B, will
vote with probability 1 iff



Exp,,, [Expml [ﬂ'j‘ |vji :1]] > Exp,, [EXPM [”n|Vn = 0]], (A6)

and will abstain with probability 1 if the reverse is true. Expectation operators refer to strategic

uncertainty (strat ) and PU ( size )." Elaboration gives
Z prob(x)[prob(\/i”" =V |x)+ prob(V, +1:V4|x)] > 2c, (A7)

where prob(x) is the probability that electoral composition (x,E—x) occurs, and
prob(V, :V7i|x)+ prob(v, ™" +1:V7i|x) gives voter j;’s probability of being pivotal, given i’s own
group size x. The first of these terms gives the probability that j; can turn a tie into a victory, and the
second the probability that she can turn a defeat into a tie. For fixed x, (A7) simply reduces to the
equilibrium conditions for the ‘standard’ participation game (cf. Palfrey and Rosenthal 1983). Note
that the expected payoff from voting is always negative for ¢ >1/2, implying that a risk neutral voter
will abstain in this case. Hence, for high costs, the only Bayesian-Nash equilibrium is for every voter
to abstain.

Condition (A7) can be used to determine pure strategy Bayesian-Nash equilibria for the PU-
participation game with ¢ <1/2. The following proposition will give a comprehensive overview of

these equilibria for various values of c.

PROPOSITION Al (pure strategy Bayesian-Nash equilibria in the PU-participation game without

allied voters):?

(i) If c>1/2, the only Bayesian-Nash equilibrium in pure strategies is v, =0, Vj,, i=AB
(nobody participates).

(i) If c<prob(N, =N;)/2 {c< prob(N; =N, +1)/2} for E even {odd}, there is a Bayesian-Nash
equilibrium in pure strategies with v, =1, Vj;, i=A B (everybody participates).

(iii) If c=prob(x=V/2)/2 {c=prob(x=[V/2])/2rc< prob(x=|V/2])/2} for E even {odd},
there are Bayesian-Nash equilibria in pure strategies with v, =1, Vj;, and v; =1 for some or
none of the voters in —i, i = —i (everybody in i participates and possibly some in —i).

(iv) If c<1/2, then for E even {odd} and any symmetric group size distribution, any turnout level
V, 0<V <E {0<V <E/2}, is an outcome of a Bayesian-Nash equilibrium in pure strategies

if ce[c(V),, V), ] With c(V),,, (c(V),.) is 1/2 times the probability that an abstainer (a

! palfrey and Rosenthal (1985) refer to the uncertainty about group sizes (preferences) as 'strategic', because it
enters the participation decision of voters. We agree and only use a different terminology for notational clarity.
2 The trivial but laborious cases with ¢ =1/2 are not discussed in this appendix.



participant) can change the election outcome by participating (abstaining) {for turnout levels

E/2 <V < E such equilibria exist for some specification of symmetric group size distributions}.

(v) No other Bayesian-Nash equilibria in pure strategies exist.

Proof:

The proof is a straightforward probabilistic extension of Palfrey and Rosenthal (1983). Note that in our case we

assume N, >1,i=AB.

(i): Itis easy to see [cf. condition (A7) ]thatif ¢ >1/2, participation is too costly for any voter and full

abstention is the only equilibrium.

(i) to(iv): If c<1/2, inorder for turnout V =0,1,...,E, V =V, +V_,, to be a pure strategy Bayesian-Nash

equilibrium outcome, no (non-)participant may receive a strictly higher expected payoff by deviating to
abstention (participation).

For V even, every decision is pivotal when V, =V . In all other cases, nobody is pivotal because
\V, =V_;| > 2. This implies that for V, =V_; changing one’s decision affects revenues and for V, =V, it
does not. Using this, we can derive necessary and sufficient conditions for pure strategy Bayesian-Nash

equilibria with even turnout V to exist.

First, the expected increase in revenue if a non-participant decides to vote must be equal to or smaller than
the costs:

CD(V,VJ.IZO)%SC, (A8)

where ®(V V= 0) is the probability that the vote will affect the outcome, which (because V is even)

only occurs if there is a tie:
(V,v, =0) = prob(V, =V, =V /2V,v, =0)

min[N;,E-V /2]
= > prob(x)prob(V, =V, =V /2V,v, =0,X).
x=max[N; .V /2+1] I
Second, the expected decrease in revenue if a participant decides to abstain must be equal to or larger than

the costs saved:

(D(V,vjlzl)%ZC, (A9)

where ®(V A% =1) denotes the probability that the switch will affect the outcome, which (because V is

even) only occurs if there is a tie:



O(V,v, =1) = prob(V, =V, =V /2V,v, =1)

min[N;,E-V /2]
= > prob(x)prob(V, =V, =V/2V,v, =1,X).
x=max[N; V /2] I
For V odd, we first establish the cases where an abstainer is pivotal. This occurs when V, =V, -1,
implying that j; can force a tie. If, however, j, is one of the V participants, (s)he is pivotal if
V, =V, +1, because a switch to abstention would reduce a victory to a tie. In all other cases |Vi —V7i| >3
and changing one’s decision has no effect on revenues. Using this, we can derive necessary and sufficient

conditions for pure strategy Bayesian-Nash equilibria with (odd) turnout V to exist.

First, for a non-participant, (A8) must hold. Now, ®(V,v; =0) is given by the probability that j; isina
group with a one-vote defeat to the other group:
@(V,v; =0) = prob(V, =V, -1=|V/2]V,v, =0)

min[N;, E-[V /2]
= Y prob(x)prob(V, =V, -1=|V/2]V,v;, =0,x).

x=max[N; [V /2]]

Second, for a participant, (A9) must hold. Here, ®(V,v, =1) is the probability that j; is in a group

with a one-vote victory over the other group:

DV,v, =1) = prob(V, =V, +1=[V/2]|V,v, =1)

min[N; E-|V /2]
= Y. prob(x)prob(V, =V, +1=[V/2]V,v, =1x).

x=max[N; [V /2]]

Next, we investigate whether and which pure strategy Bayesian-Nash equilibria exist that fulfill ( A8) and

(A9) . We consider all possible cases 0<V < E .

Full abstention (V =0):

Full abstention cannot be an equilibrium. We only need to consider (A8), because v, =0, vj;,

i = A, B. This reduces to

prob(V; =V, =0V =0,v, =0)= 3™ prob(x)-1=1< 2c, (A10)

since prob(V, =V = O|V =0,v; =0,x) =1, VX, which contradicts our assumption that ¢ <1/2.



Full abstention in one group and positive participation in the other group (V; =0;V_, > 0):

Full abstention V; =0 in i and positive participation V ; >0 in —i cannot be an equilibrium. This is easy
to see. Given the pure strategy of abstention followed by everyone in i, for any V , >1, every participant in
—i has an incentive to abstain until V, =1, which suffices to win the election. But if V=1, it is
advantageous for every abstainer in i to participate, because the value from turnout is 1/2 , which exceeds
c<1/2.

Full participation (V = E):

For some c<1/2, equilibria with full participation exist. We only need to consider (A9), because

v; =1, Vj,, i=AB.For E even {odd} this reduces to
prob(V, =V, =E/2V =E,v, =1) = prob(x = E/2)-1> 2c (A11)

{prob(V, =V, +1=[E/2|V =E,v; =1) = prob(x =[E/2])-1>2c}.
Hence, (A9) is satisfied for ¢ < prob(x = E/2)/2 = prob(N, =N_)/2 {c < prob(x=[E/2])/2=
prob(N, = N +1)/23}, which proves (ii) of the proposition.

Full participation in one group and possibly some in the other group (V, =X, V;, < E —X):

V =V, =x =1 cannot be an equilibrium because voters in —i have an incentive to switch to voting. For
1<V < E, there exist equilibria for some ¢ <1/2 with full participation V, = x in i and possibly some

participation V; < E—x in —i.For V even {odd}, (A8) appliedto —i gives

prob(V, =V, = x|V =2x,v; =0)= prob(x=V/2)-1<2c
{prob(V; =V, +1=x|V =2x-1v, =0)= prob(x=[V/2])-1<2c}
and (A9) appliedto i gives
prob(V, =V, =xV =2x,v, =1) = prob(x =V /2)-1> 2c
{prob(V, =V, +1=x|V =2x-1v, =1) = prob(x=[V/2])-1>2c }
andto —i
prob(V, =V, =xV =2x,v; =1)=prob(x=V/2)-1>2c

{prob(V, =V, -1=xV =2x+1yv; =1)=prob(x=|V/2))-1>2c}. (A12)



Hence, ¢ = prob(x=V/2)/2 {c=prob(x=[V/2])/2 nc< prob(x=|V/2))/2} are the only

cases where (A8) and (A9) can be jointly fulfilled, which proves (iii) of the proposition.

Other equilibria with 0<V < E :
Note that by assuming symmetrically distributed group sizes, we can restrict our analysis to voters in i .
For such equilibria to exist, we need to show that there is some ¢ that jointly fulfills (A8) and (A9):

OV,v, =O)%SCS(D(\/,Vji :1)%. (A13)

We give examples for V =1,2 before providing a general proof that ¢ exist that fulfill (A13).

Example V =1:

For a given X €[N,, l\_li], the probability that the only vote cast is in the other group, as perceived by an

E - —X N,
< Zlm, prob(x) =1.

Furthermore, for the only participant, the probability that the own group has one more vote than the other is

abstainer in i, is

’1‘31. Then, ®@Lv, =0)= " prob(x)i

1. Hence, ®(lv, =1)=1. Therefore we have ®(lv, :1)%:%>CD(1’VL :O)% and for any

ce [(D(l,v = 0) ) (A13) holds and E pure strategy Bayesian-Nash equilibria exist with exactly

one voter turning out to vote.

Example V =2:

From (A13) it follows that V =2 is an equilibrium outcome for any 2¢c € [®(2,v, =0),®(2,v; =1)].
What needs to be shown is that this set is non-empty. For a given X €[N, N,], the probability that the two
votes are divided equally across the two groups, given that j,  abstains, is
(E-x)(x-1)

. Similarly,
(E-)(E-2)

D(2,v, :0|x) = prob{lvotein —i, 1voteini|vjl =0,x}=2

q>(2,vj|=14x)=%. The set is non-empty, iff A®=d(2,v, =1)-®(2,v; =0) 20. Then,

B sz " prob(x) (E-x)(x-1)

assuming for the moment N, =1, we have AD = z;lprob(x) E E-DE-2)

Since the probability distribution of X is symmetric around x = E/2, this gives

L(E -1)/2] X X (E-x)(x-1) X(E-x-1)
Zprob(X){E 1 EL 2(5_1)(E—2)_2(E—1)(E—2)}



(E-1)(-1)
(E-D(E-2)

+ prob(x :1){2

}+ orob(x = Elz){E—E/2_2(E—E/2)(E/2—l)},

E-1 (E-1)(E-2)
or, after some rearrangements and because the last two terms of the sum are equal to zero,

~ [(E-1)/2] (E —2X)2
AD = ; prob(x)m.

Next, note that the fraction is positive for x < E/2. Hence, A® >0. It is easy to see that this still holds
when we give up our assumption that N; =1. A® >0 shows that the range [®(2,v, = 0),®(2,v; =1)]
is non-empty, so all combinations of strategies yielding V =2 constitute pure strategy Bayesian-Nash

equilibria for 2c in this range.

We now turn to the general case of turnout V' being an equilibrium outcome.

1) 0<V <E and V even:

Similar to the argument in our examples, (Al13) is used to determine a range
[@(V,v;, =0),®(V,v; =1)] in which 2c should lie to make V an equilibrium outcome. We then
proceed to show this range is non-empty. Once again, consider group sizes X and E-—X,
X e [max[ﬂi V/2],min[N,,E -V /2]]. For x outside of this range, the probability of a tie at V/2 is 0, and
drops out of the calculation of ®(-). For given X in this range, the probability that the V votes are split

equally, given that j; abstains, is

®(V,v, =0x) = prob{V /2 votesin —i,V /2 votesini|vjl =0,x}
(Vv ‘{E—X'E—X—l_ .E—x—V/2+1H x-1  x-2 'x—VIZ}
V/i2) |[E-1 E-2 = E-VI/2 E-V/2-1 E-V/2-2 =~ E-V

(v ) E-X[T,S E-x-9)x-0) x-v/2
“\vi2 [T.(E-h) E-V

(A14)

Similarly, ®(V,v, :1|x): prob{V /2 votesin —i,V /2 votesini|vjl =1x}

(V-1 _ E—x E—x—l_ _E—x—V/2+1 x—1 X—2 Xx=V/2+1
lvi2-1

E-1 E-2 =~ E-V/2 E-V/2-1 E-V/2-2 "~ E-V+1
v-1 ) E-0[L} (E-x-g)x-0)
“lvi2-1) v ' ()
[T..(E-h)



E-[T, (E-x-g)(x-9)

Defining ¢(V,x) = T >0, gives
[T..(E-h
Vv - V-1
OV,v; = O|X) = (V/2j¢(\/,x)- XE Y\jz and  @(V,v, =1x) = (V /2_J¢(\/,X) :

V -equilibria exist for some c¢ iff ADP=d(V,v, =1)-®(V,v, =0)=0. Then, assuming

N, <V /2+1 for the moment, we have

B2 V-1 E-V/2 v C\/ /2
AD = rob(x X) — rob(x X)-
X;Zp ( )(V / 2—J¢(V ) x:VZ/2+E’ ( )(V /2J¢(V ) E_V

\Y B2 1 x-V/2
= [V IZJ : {X;Zprob(xw(\/ : X)[E “Ev }}
VI2-V/I2

+prob(x:VIZ)(X/quﬁ(\/,V/Z)'?, (A16)

Vi2-1)" 2|V /2
shows that assuming N. <V /2 +1 so far is innocent. Now using max[N,,V /2 +1] instead and because
the distribution of X is symmetric around X = E /2, we have:

\ e 1 x-V/2 1 E-x-V/2
A (v /2l_max[ZN,,wa pmb(x){(’w ' X){E Y } e X)[E ) ?}}

V-1 \Y
where we use ( j L ( J Obviously, the second term disappears since V /2—-V /2 =0. This

+ prob(x = EIZ)[z /2J¢(\/,E/2)[1 w}

2 E-V

\VJ L(E/2] _ _
:(VIZJ > prOb(X){¢(\/,x).M+¢(\/,E_X) ﬂ}

x=max[N, V /2] 2(E-V) . 2(E-V)
(V) Ry [p(V. %) — (v, E - x)|(E - 2X)
- [v /2l-max%,,vm pmb(x){ 2(E—-V) >0, (AL7)

because ¢(V,x) > @(V,E—X) for x<E/2.

Hence, for every PU-participation game with symmetrically distributed group sizes, we can find some ¢
such that a pure strategy Bayesian-Nash equilibrium exists in which an even number V of voters from

either group participates and all others abstain, with 0<V < E.
2) 0<V <E and V odd:

Similarly, we use (AL5) to determine [®(V,v; =0),®(V,v; =1)] asarange in which 2c should lie to

make V an equilibrium outcome, and proceed to show that this range is non-empty. Consider group sizes



X and E-X, Xe [maxmi JV /2], min[N;,E - |V /2J]]. Once again, if x is outside of the range, the
probability of a tie is 0.

For given X, the probability that the V votes are split such that there is one vote less in i, given that j;

abstains, is

@(V,v; =0[x) = prob{V /2] votesin—i, |V /2] votesini |va =0,x}

:(\L/V /ZJJ'{EE:)l( ' EE_Sl E;EVL\//;{JHE —()\(/_/;1—1' E —()\(/_/;—2 X_EL\—/\;ZJ}

_(v )H“”“(E x-9)x-9-1 E-x|vr2|
“vi2] [T (E-h) E-V

(A18)

And, given X and that j; participates, the probability that the V votes are split such that there is one vote

morein i is

®(V,v; =1x) = probflV /2] votesin—i,[V /2] votesini|v, =1,x}

:(V—lJ‘{E—x'E—x—l_m'E—x—|_V/2J+1H x-1  x-2 X—LVIZJ}

Iv/2]) |E-1 E-2 E-[V/2]+1 [|E-[V/2] E-[V/2]-1 " E-V+1

\_V/zjl
:(V—l J (E- 1>< 9)(x—g 1). (AL9)
lvi2] [T.(E-h)

[ E-x-g)(x-g-1)
Hh:l(E_h)

Defining ¢(V,x) =

>0, gives

vV x_
c1>(v,vj=0|x)=(LV/2J¢(\/,x)-E+k\/”2J and DV ,v, =1x) = (LV/ZJ}/)(V X).

V -equilibria exist for some ¢ iff AD=®(V,v, =1)-®(V,v; =0)>0. Then, assuming N, < |_V /2J

for the moment, we have

E-|v/2] E-v/2]

= 2 prob(X)(LV i JJ‘”(V SR prob(x)(LV . JJ(p(v . Eox=lvi2)

x4V /2] x=|V /2] E-V

10



(v Wl _E-x-|v/2|
_[LV/zjj{ & Prop(detv. X)(z N E-V )}

+ prob(x =E - |V IZJ)(\L/V_/ZJ}D(V'E ~|v/2]),

Voo[e E-x-V/i2 1 1
:(LV/zj]{x;ﬂpmb(x)q’(v X)[" E-V v 2(E —V)j}

+ prob(x=E - LV/ZJ)(LV/ZJ} (V,E-|[V/2),(A20)

-1 V
where we use 1 1 . Note that the second term of (A20) is positive and
Lv 12])/ \[vi2]) 2" 2v

disappears if we drop the assumption ﬂi < |_V /2J. Because the distribution of X is symmetric around
x=E/2,we have:

Y L2 1 E-x-V/2 1 x-V/2
AD > rob X E—-x)|=-
(LV /ijx—max%(vlz]] p (X){¢(V X)|:2 E —V :| - (p(v X)|:2 E —V il}

+Pf°b(X—E/2)[L Vo J}o(\/ EIZ)[l w}

2 E-V
\V/ E-[v/2] 1
+(Lv /2Jj{ _%‘Z?mb(x) o X)(zv 2(E - V))}

(Vv e [o(V.E —X) - p(V ., X)|(E - 2x)
i (LV /ZJ]xmamew/zn pmb(x){ 2E-V) }

\V Jvi2] 1
+[|_V/2JJ{ _r;zﬁ)rob(x)(p(v X)(ZV 2EV) V)J} (A21)

Note that the first term in ( A21) is positive, since @(V,E —X) > @(V,x) for X< E/2. But the second
term is positive or zero only if V < E/2. If this is the case, then AD >0 . However, if V > E/2, both
terms in (A21) have to be evaluated, inclusive the possible second term in (A20) . Whether AD is
positive or zero depends on the symmetric probability distribution at hand, which we have not specified

further.

Hence, for every PU-participation game with any symmetrically distributed group sizesand 0 <V <E/2,
there is some range for ¢ such that a pure strategy Bayesian-Nash equilibrium exists, in which an odd
number V of voters from either group participates and all others abstain. For E >V > E/2, these

equilibria may exist, depending on the specification of the symmetric group size distribution.

11



Together 1) and 2) prove (iv) of the proposition.

An interesting property of the V -equilibria just described is that the ranges for adjacent turnouts V are
adjacent too and the C-values for which V-equilibria exist are non-increasing in V . To see this, look at

CV)pin =®(V,v, =0)/2 and c(V +1),, =DV +1v, =1)/2. Obviously, c<c(V =1),, =1/2

max ) max

gives the upper value. It is readily verified that (:(V|x)min =c(V +:Ijx)max holds for V' even, for which we

have
~ X — V/2 1((V +12) B
C(V|X)m|r| - [V /2j¢(\/ ) - (I_(V +1)/2JJ (V +1’ X) - C(V +1|X)max !
and for V' odd, for which we have (A22)
1V E-x-|V/2] 1({(V+])-1 ~
SV [X)in _E[LV /ZJ}D(V’X)'T _E((\/ +1)/2_1j¢(\/ +1,X) =C(V +1X),,.y -

Using this, it is easy to see that the difference c(V),,, —c(V +1),.. isalso equal to zero, since for V even

min

we have
E-V/2 E-[(V+1)/2]
2 Prob(X)c(V[x) s, = > prob(x)ec(V +1x),, =0
x=V /241 x=[ (V+1)/2]
and for V' odd we have (A23)
E-{v/2] E-(V+1)/2
prob(x)c(V[X),, = > Prob(x)e(V +1x),, =0
x=[V /2] x=(V+1)/2

Hence, we established that the ranges of possible equilibrium costs ¢ for adjacent V are adjacent as well

and that the costs are non-increasing in V .

To (v): Conditions (A8) are (A9) are necessary and sufficient for the existence of pure strategy
Bayesian-Nash equilibria.
Q.E.D.

A3. Bayesian-Nash equilibria in mixed strategies; only floating voters

Next, consider equilibria in totally quasi-symmetric mixed strategies, where voter i (—i) participates

with probability g, €(01) (g, €(01)). A necessary and sufficient condition for Bayesian-Nash

equilibria in such strategies to exist is that each voter j,, i = A, B, is indifferent between participation

and abstention (i.e., condition (A7) holds as an equality). Since in the experiment we use a
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symmetric group size distribution we focus on symmetric (q,q) -equilibria, where q=q, and q=q,.

Then, elaboration and specification of (A7) implicitly defines best response ¢ :

N min[x-1,E—x] X_l E_X
) prob(X){ 2 (k j(k Jq“(l—q)““

min[x-LE-x-1] ( ¥ _1 E —X
+ 2k+1 1_ E-2-2k — 20
£ (e e

The first term in the large square brackets gives the (binomial) probability that there is a tie of k

(A24)

votes between the E —X members in the other group and the x—1 other members of j.’s own
group ( J; can turn a tie into a victory). The second term gives the (binomial) probability that the other
group outvotes J,’s co-members by one vote ( J; can turn a defeat into a tie). Below, numerical
calculations will show that these equilibria exist for a variety of parameter values.

Totally quasi-symmetric mixed strategy equilibria ((g,q)-equilibria) can be derived numerically
using eq. (A24). Figure Al depicts examples of such equilibria for the PU-participation game
without allied voters. The left panel varies the electorate size E e{11,12,...,25}, using fixed and equal
minimal group sizes of 5 voters in each group (N, =N, =5) and an equal probability of being in

either group for each voter (binomial distribution with p = 0.5).

FIGURE Al:  (q,q)-EQUILIBRIA IN THE PU-PARTICIPATION GAME WITHOUT ALLIED VOTERS AND
WITH BINOMIAL GROUP SIZE DISTRIBUTION

VARYING ELECTORATE SIZES VARYING MINIMAL GROUP SIZES
AND N, =N, =5 AND E =20
10 10
a 2
Zos ° E 0.8 °
5 3
g 06 g_O-G
o c
é 04 ;95 04
g 2
S o2 E 02
g | — g
o+ 00 . . . . . . . .
1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9
Electorate size Minimal group size
[ c=US(low) o c=US5 (high) —c=U3(low) a c=U3 (high)] \ c=U5(low) o c=U5 (high) c=13

Participation probabilities are shown for voting costs ¢=1/5 and ¢ =1/3. Participation is quite low
for ¢=1/3 and slightly decreasing in E. For c=1/5, we find (q,q) -equilibria only for E >13.
With lower voting cost, participation is always higher as compared to higher costs and also decreasing
in E. Aside from these equilibria with low levels of participation, we find two ‘high’-participation

(a,q) -equilibria: one for E =11 when ¢=1/3 and one for E =13 when ¢=1/5. The right panel of
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figure Al shows equilibrium participation probabilities when the electorate size is kept constant
(E =20), but the minimal group sizes are varied and equal across groups (N, =N, =12,...,9). Asin
the left panel, we use p = 0.5 and show participation for c¢=1/5 and ¢c=1/3. We observe higher
participation for the lower voting costs. Moreover, participation appears quite constant across
different minimal group sizes. Again, we find a ‘high-participation’ (q,q) -equilibrium, in this case

for N, =N, =9,when c=1/5.

A4. Bayesian-Nash equilibria in pure strategies; allied and floating voters

Until now, we have allowed for PU without distinguishing between allied and floating voters. All
voters were assumed to choose a candidate on election eve, under the condition that at least N; voters
would choose i. This describes a world with only floating voters. To allow for allied voters, we
assume that the minimal group of N; voters has determined their choice beforehand. Hence, a situation
of PU appears, with the minimal group representing the number of allied voters in i. There is a
subtle, but important difference in the information set of the two voter types: each floating voter has
private information about the candidate she supports, which she can use to (subjectively) update the
probability distribution of the electorate’s composition. Allied voters, on the other hand, must rely on
the common prior distribution. Because of this difference, we consider mixed strategy equilibria with
distinct voting probabilities for the two voter types.

In our analysis (and experiments) we use a binomial distribution in which a priori each floating
voter belongs to i=A,B with equal probability p=0.5. We restrict our analysis to the symmetric
case with an equal number of allied voters in each group: N, =N_>1.3

Next, we consider pure and totally quasi-symmetric mixed strategy equilibria for the PU-
participation game with allied voters. Let F denote the number of floating voters: F=E -2N,.
Proposition A2 gives pure strategy equilibria using a binomial group size distribution (p = .5). Itis a
straightforward extension of proposition Al. We only need to account for the differences in beliefs

that allied and floating voters have about group sizes.

® The generalization to asymmetric cases through unequal minimal group sizes or p #5 is straightforward,
however, more laborious best response conditions and notations are needed.
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PROPOSITION A2 (pure strategy Bayesian-Nash equilibria in the PU-participation game with allied
voters):

Assume an equal number of allied voters N, =N, >1, and binomially distributed floating voters
with p=.5.

(i) If c>1/2, the only Bayesian-Nash equilibrium in pure strategies is Vi =V

B =0, vji,av vji,f '
i = A,B (nobody participates).

(i) Ifc< (||_:F lzjj(l/Z)F”, the only Bayesian-Nash equilibrium in pure strategies is v; , = vj . =1,
Viiar Vii¢» 1=A,B (everybody participates).

(iii) Other, more specific Bayesian-Nash equilibria in pure strategies exist.

Proof:

The proof is a straightforward extension of the proof of proposition Al. Because a floating voter knows her
preference (group), she can update the probability distribution of X (group sizes), so generally:
prob(x|j, ,) # prob(xj, ), except for the case E even with prob(x=E/2|j,) = prob(x=E/2[j;,).
Due to symmetry prob(x|j, ) = prob(x|j ) and prob(xj, ;) = prob(xj ), hence, all allied (floating)
voters have the same posterior probability distribution of group sizes. Contrary to that of floating voters, the
preferences (group memberships) of allied voters are ‘identifiable’. Define total aggregate participation of allied
(floating) voters by V, =V, +V_, . (V, =V, +V ), and the difference in participation between both allied
groups by AV, =V, -V, ..

To (i): See proof of proposition AL(i).

To (i) and (iii):  If c<1/2, in order for V =01,...,E, V =V, +V,, votes to be a pure strategy Bayesian-
Nash equilibrium, no participant (hon-participant) may receive a strictly higher expected payoff by deviating to
abstention (participation). Then, it is necessary and sufficient for equilibria with V turnouts to exist that the

following conditions hold for all allied and floating (non-) participants:

No non-participant j,, and j, ;, i = A, B, will change her decision if
1 1
Q)(V'VJM:O)ESC’ oV, :O)Egc, (A25)
and no participant j,, and j; ,, i = A, B, will change her decision if
1 1
q)(v'vi.,a=1)520’ OV,v; =1)EZC, (A26)
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where the probabilities ®(-) of being pivotal for allied and floating voters are similar to those in (A8) and
(A9), except that we now use updated probabilities of group sizes only for floating voters (cf. proof of

proposition Al).

Next, we establish whether and which pure strategy Bayesian-Nash equilibria exist that fulfill (A25) and
(A26) . We consider all possible cases 0<V <E.

Due to the binomial distribution of group sizes with p=0.5 the probability of being pivotal of a floating

(allied) non-participant j; ; ( j;,) and an allied participant j,, for V, —AV, even is given by

V, v
S5 if VvV, >|AV
DN ,v,, =) =DV, =0)=0V,v, =) - ((\/f—AVa)/Z) L (a2
0 otherwise,

where AV, corrects for the ‘identifiable’ participations of allied voters. Obviously, the strict inequalities in

(A25) and (A26) cannot be fulfilled simultaneously, because floating and allied non-participants as well as

allied participants have the same probability of being pivotal.

Hence, for an equilibrium to exist, it must hold that ®(V,v; =0)=®(V,v; =0)= ®(V,v; =1)=2c.
We investigate whether these equalities can be fulfilled jointly with d)(\/,vj” =1)>2c for floating
participants. A floating participant j; ; ’s probability of being pivotal is given by

V, -1

oV,v;, =1)= [(vf —AV,)/2-
0

Vi1 .
1].5 if Vv, 2|AV,|+2 (A28)

otherwise,

which is, given that the probability of all other voters is equal to 2, larger than (smaller than; equal to) 2c for
floating participants in the group with AV, <0 (AV, >0;AV, =0). It follows that for V, —AV, even,
(A25) and (A26) being fulfilled jointly can only occur if ®(V,v; =0)=
OV,v; =0)=®(V,v; =1)=2c and all floating participants are members of a group with AV, <0. For
AV, <0, however, since it is known that only floating voters in i participate, they are only pivotal if
V, =AV,. But then allied non-participants in i would prefer to vote (yielding V, —AV, odd, which is
discussed below). Hence, these cases cannot be equilibria. Note further that for AV, =0, the trivial cases with

all voters having probabilities of being pivotal equal to 2c occur. These equilibria are not further discussed here.
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No other pure strategy Bayesian-Nash equilibria exist for V, — AV, even, in which abstainers and participants

coexist.

For V; — AV, odd, we can write the probability for an allied non-participant j; , as

V, v
ST if Vv, > |AV

OV v, =0)= [L(vf —AVa)IZJJ ¢ z[av) (A29)

0 otherwise,
and that for an allied participant j; , as

U 5" if V, 2|Av,|

oV,v, =D=1[(v, -av,)/2] (A30)
0 otherwise.

It is readily verified that (A30) and (A31) are equal for allied non-participants j,, and allied participants
J_i .- But the probability of allied participants j,, being pivotal is larger than (smaller than; equal to) that of
allied non-participants j,, if AV, >0 (AV, <0, AV, =0). It follows that allied participants and allied
abstainers cannot coexist in the same group, respectively (A29) and (A30) cannot be fulfilled jointly,
unless AV, =0 or every allied voter in i participates and none in —i. Discussing AV, =0 first, it is easy to

see that (A29), (A30), and the probability of floating non-participants j; , being pivotal are the same, or

OV, =0)=0V,v, =0)=0(V,v, =1) :ﬁt /ij.sv' , (A31)

which is similar to (A27) for V,—AV, even. As before, we investigate next whether
OV,v;, =0)=d(V,v;, =0)=0(,v; =1)=2c and ®(V,v; =1)22c for floating participants can
be fulfilled jointly for AV, =0, where the probability of being pivotal of a floating participant j; , is given by

OV, =1)= A R (A32)
b v, 12]-1 :

The expression in (A32) is always larger than that in (A31). Hence, for V, —AV, odd, pure strategy
Bayesian-Nash ~ equilibria  with  abstainers and  participants  together  indeed exist for

CD(\/,ij =1> cI)(V,vJ.” =0) = CD(V,VJ.I@ =0)= CD(V'VL,a =1)=2c.
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With respect to the second case, it is readily verified that it cannot be an equilibrium with AV, >0 and all
allied voters in i participating and all allied voters in —i abstaining. This is because the probability of being

pivotal of required floating participants j, , is given by

it 5" if V, 2[AV,[+2
oW,V =D=14([v, —av,)/2]-1) =13V (A33)
0 otherwise,
which is smaller than that of allied abstainers in —i, ®(V,v; =0). Hence, such equilibria cannot exist. No

other pure strategy Bayesian-Nash equilibria exist in which abstainers and participants coexist.

This leads us to the analysis of the two possible equilibria left:

Full abstention (V =0):

Full abstention cannot be an equilibrium, because any single voter can raise payoff by 1/2 by turning out,

which is larger than the participation costs (¢ <1/2).

Full participation (V = E):

Equilibria with full participation exist for V, = F even {odd}, with F = E - 2N, as long as

F-1 F
OV =E,v, =) :(F/Z—J'SH =@V =E,v, =1) :(F/ZJ'SF >2c

F-1) ., B . (F .
{CD(\/:E,vj':l):(LF/ZJJ.S >q>(v_E,vja_1)_[LF/2Jj.5 >2c}  (A34)

To (iii): Conditions (A25) to (A26) are necessary and sufficient for the existence of pure strategy
Bayesian-Nash equilibria. Q.E.D.

Similar to proposition A1(i), proposition A2(i) states that all voters abstain if the voting costs are too high. As
proposition Al(ii), A2(ii) is an intuitive extension of the full participation equilibrium for N, = N ; analyzed in
Palfrey and Rosenthal (1983). If all voters have high enough (compared to costs) expectations that both groups
are of equal size respectively that there is one voter more in the own group, a full participation equilibrium

exists.
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AS5. Bayesian-Nash equilibria in mixed strategies; allied and floating voters

For mixed strategy equilibria, we focus on totally quasi-symmetric cases were all allied voters
participate with the same probability g, €(0,1) and all floating voters with the same probability
g, €(0,1) . A necessary and sufficient condition for Bayesian-Nash equilibria in such strategies to
exist is that each allied voter and each floating voter is indifferent between participation and
abstention. Elaboration and specification of (A7) as an equality gives implicit functions for the best

responses (|, (A35a) and g, (A35Db):
i(FJ(-S)V(-S)”
y=o\ Y

min[N;+y-1,N;+F-y] min[y,k] min[F-y k] Mi _1 y Mi F _ y
g RSN lty 1 )
k=0 ki=max[0,k-N;+1] k_ ;=max[0,k-N;] i i —i —i

» qazk—k,—k,, (l— qa)ZNﬁJerH(ﬁrk,i qfk,+k,, (l— a, )F—k,—k_,

min[N;+y-LN;+F-y-1]  min[y k] min[F—y,k+1] Ni -1 y Ni F- y
" 2 2 [k—k J(k j[k +1-k j[k j
k=0 k;=max[0,k—N;+1]  k_;j=max[0,k+1-N;] i i —i _i

% qaZkJrl—kl—lgI (1_ qa)ZNfoZkH(ﬁrk,‘ qfk‘+k7‘ (l— qf )F—k,—k i :| — 2C (A35&)

E(F-1), ) ey
Z[y_lj(.s) (5)

y=1
min[N;+y—-LN;+F-y] min[y-1k] min[F -y k] Mi y—l Ni F—y
| N ety i (et )
k=0 ki =max[0,k-N;] k_;=max[0,k-N;] i i _i _i

y qazk—k,—k,, (1_ q )2ﬂ‘72k+ki+k,i q, k+k_, (1_ a, )F—l—ki—k,i

a

max[N; +y-1L,N; +F-y-1]  min[y-1,k] min[F -y, k+1] Ni y -1 Ni F - y
" 2 2 2 (k—kj[k j(kﬂ—k J[k j
k=0 k=max[0,k—N;]1 k_=max[0,k+1-N;] i i —i —i

% qaZkJrl—k‘—k,I (1_ qa)ZN‘—Zk—hk,H@I qfkﬁrk,I (1_ qf )F—l—k,—k‘ :| — ZC . (A35b)

To understand theses conditions, consider (A35a) ((A35b) is a similar application to floating
voters). The equation elaborates the condition that the probability of being pivotal is equal to 2c for a
mixed strategy to be a best response. The left-hand side of (A35a) shows this probability for an

allied voter. The term outside of the square brackets gives the probabilities of y (F —y) floating
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voters being ‘allocated’ to the same (other) group as this allied voter. For each y, the first (second)
term inside the square brackets gives the probability that this voter can break (create) a tie by
participating. In the first term, all ties with k votes are considered. In the allied voter’s own group,
the k votes consist of k, votes by floating voters and k —k; by the other allied voters. In the other
group Kk, (k -k ) of the floating (allied) voters turn out. The first term gives the probability for each
event (k,k;,k_, ), given the best responses. In a similar way, the second term inside the square brackets
represents the probabilities of all events where k other voters in the allied voter’s own group vote and
k +1 in the other group.

Once again, these equilibria cannot be derived analytically. Numerical estimations show that they
do exist for a wide range of parameter values, however. Figure A2 shows numerical examples of such
‘(9,.9;.9,.9; ) -equilibria’ for a fixed electorate size E =40 and varying numbers of allied and
floating voters. The number of allied voters per group is from the set N, €{,,2,....19} and equal
across groups (N, =N;). We present participation probabilities for allied and floating voters for
voting costs ¢ =.40 (upper left panel), ¢=.25 (upper right panel), and ¢=.10 (lower panel). The
figure indicates very high (low) participation for allied (floating) voters for both higher costs cases.
Only for ¢ =.10, equilibrium participation is in the middle range and similar for the two types. We

find no equilibrium for these costs for N, >8.

FIGURE A2: (4,,9;,0,,d;) -EQUILIBRIA IN THE PU-PARTICIPATION GAME WITH ALLIED VOTERS,
BINOMIAL GROUP SIZE DISTRIBUTION, E =40,AND N, =N, €(1,2,...19)
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A6. Quantal response equilibria

Goeree and Holt (2005) and Cason and Mui (2005) show that quantal response (logit) equilibria,
predict behavior in experimental participation games better than (Bayesian) Nash equilibria do. Here,
we show how such equilibria can be derived for the PU-participation game.

Starting point for the quantal response analysis is the comparison of expected payoffs for voting
and abstaining described in condition (A6). A stochastic term e, is added to the expected payoff
of each decision (vote or abstain) to allow for the possibility that voters perceive these payoffs subject
to noise. It includes an error parameter x>0 common to all and ¢&; as a realization of J’s
individually specific random variable, which is identically and independently distributed per voter and
decision (cf. Goeree and Holt 2005). Voter j, will participate iff the expected payoff from voting is
higher than that of abstaining:

Exp,.. [Expstrat [ﬂ'h |vJ‘ :1]]+ ue, > Exp,, [Expmt [ﬂ'jl |le = O]]+ ue; (A36)

where ¢&’s superscript 1’ (*0”) refers to the realization of the random variable in the stochastic term
that is added to the payoff from voting (abstaining). In the absence of noise (xz = 0), (A36) reduces
to condition (A6) for a Bayesian-Nash equilibrium. Hence, the equilibria described above are a limit
case of the quantal response equilibria described here (McKelvey and Palfrey 1995; Goeree and Holt
2005).

For x> 0 it follows from (A36) that voter j, will vote iff

Exp,,, [Expslral [ﬂ'jl v, = 1]]— Exp,, [Expm [ﬂj‘ v, = O]]

£, 78, <
y7,

(A37)

Denoting the distribution function of the difference &, —¢, by F, this gives the probability g that

voter j, will vote:
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(A38a)

_ F{ Exp,, [Expm [;rji |in = 1]]— Exp,, [Expslrat [ﬂ'h |vh = 0]]]
U

or, after elaboration (cf. condition A7),

q= F[Z prob(x){ pmb(v‘; Vi, pmb(viji;l:”x)}—c} /u. (A38b)

This equation describes the voting probability g as a ‘noisy best response’ to the expected payoff
difference between voting and abstaining. Assuming symmetry not only within but also between
groups (because all voters face exactly the same decisions) and using the binomials in eq. (A24), the
right hand side of (A38b) is a function of the probability, g, that a randomly drawn other voter will
vote. A quantal response equilibrium (McKelvey and Palfrey 1995) for some specification of error
distribution F occurs if the participation probability on the right hand side is equal to the g that shows
up on the left hand side. This can be found numerically for specific values of the error parameter z.
The quantal response equilibrium for the case with allied and floating voters can be derived in a
similar way. Each type is symmetric across groups due to the symmetric group size distribution. Then,
to calculate the noisy best responses for allied and floating voters, g, respectively q,, two equations

similar to (A38b) have to be solved simultaneously.
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Appendix B — Experimental Instructions

This appendix presents the read-aloud instructions for treatment UF. Variations for the other
treatments are presented in square brackets [UM, IF, IM] These instructions have been

translated from

Welcome to our experiment on decision-making. Depending on your own choices and the choices of
other participants, you may earn money today. Your earnings in the experiment are expressed in

tokens. 4 tokens are worth one Guilder. At the end of the experiment your total earnings in tokens will

be exchanged into Guilders and paid to you in cash. The payment will remain anonymous. No other

participant will be informed about your payment.
Please remain quiet and do not communicate with other participants during the entire
experiment. Raise your hand if you have any questions. One of us will come to you to answer

them.

Rounds, ‘your group’ and the “‘other group’

The experiment consists of 100 rounds. At the beginning of the experiment the computer program will

randomly split all participants into two different populations of 12 participants. In addition, at the

beginning of each round the computer program will randomly divide the participants in each

population into two groups. The group you are part of will be referred to as your group and the group
in your population which you are not part of will be called the other group. You will not know which
of the participants belongs to the other group and which to your group. You will have nothing to do

with participants in the other population in this experiment.

Number of participants in ‘“your group’ and the ‘other group’

At the beginning of each round the computer program will randomly determine the number of
participants in your group and the number of participants in the other group. At no point in time will
you or anybody else receive information about the number of participants in your group and

the number of participants in the other group. [In IF and IM instead: You and all other
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participants in both groups will then receive information about the number of participants in

your group and the number of participants in the other group.]

However, you and all other participants know that [in IF and IM: There is the following structure of

group sizes]:

(1) Independent of the round, the sum of participants in both groups (your group and the other group)
is always 12.

(2) Both groups contain a minimum of 3 participants and a maximum of 9 participants.

Because the sum of participants in both groups is always twelve, there are the following 7 possible

combinations of group sizes:

(3-9) (4-8) (5-7) (6-6) (7-5) (8-4) (9-3),

whereby the first number represents the group size of the first group and the second number the group

size of the second group.

The arrangement of a population (12 participants) into two groups by the computer program proceeds

in the following two steps:

(1) Both groups are randomly filled with 3 participants, the minimal number of participants per group
(in total 6 participants). Each participant has the same chance of being selected.

(2) Each of the remaining 6 participants is randomly put into one of the two groups, with a chance of

50% for each group.

[For UM and IM instead:

(1) At the beginning of the first round both groups are randomly filled with 3 participants, the
minimal number of participants per group (in total 6 participants). Each participant has the same
chance of being selected. The chosen participants will be called *FIX’-participants, because they
will not change groups during the whole experiment.

(2) At the beginning of each round each of the remaining 6 participants is randomly put into one of
the two groups, with a chance of 50% for each group. These participants will be called "VAR’-

(=variable) participants, because they will randomly change groups during the whole experiment.

At the beginning of the first round you will receive information about your own type FIX or

VAR. Your own type will not change during the whole experiment.]
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The following figure shows for all seven possible combinations of group sizes the chance that a

particular combination occurs.
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Chance

Combinations of possible group sizes

Note again that group sizes will be randomly determined at the beginning of each round. Hence,

the group sizes may change from one round to another.

Choices and earnings

In each round you and all other participants will face an identical choice problem. You will be asked

to make one choice. You can choose between the following two alternatives:

e ‘Choice A’: no costs involved (0 tokens).

e ‘Choice B’: costs are 1 token.

When making your choice, nobody else in your group or in the other group will know this choice.
After all participants have made their choices, the computer program will count the number of B-
choices in your group and in the other group and will compare the numbers in both groups. There are
3 possible outcomes that are relevant for your revenue in the following way. You will receive the

revenue irrespective of the choice you made.

(1) The number of B-choices in your group exceeds the number of B-choices in the other group. In

this case each participant in your group (including yourself) will get revenue of 4 tokens. Each
participant in the other group will get 1 token.

(2) The number of B-choices in your group is smaller than the number of B-choices in the other

group. In this case each participant in your group (including yourself) will get revenue of 1 token.

Each participant in the other group will get 4 tokens.
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(3) The number of B-choices in your group is equal to the number of B-choices in the other group. In

this case the computer program will randomly determine the group in which each participant gets
revenue of 4 tokens (each group has the same chance of 50% of being chosen). Each participant in
the group that is not chosen will get 1 token.

Your round earnings are calculated in the following way: round earnings = round revenue — round

costs. Your total earnings are the sum of all of your round earnings.

The following table gives your possible round earnings:

Your possible round earnings:

Your choice Your group_has Your group has Equal _number of B-choices
more B-choices less B-choices in both groups
Choice A 4 tokens 1 token 4 or 1 token (50% chance each)
Choice B 3 tokens 0 token 3 or 0 token (50% chance each)

Computer screen

The computer screen has four main windows.
(1) The Status window shows [for UM and IM: your type (FIX or VAR),] the actual round number and
the total earnings up to the previous round.
(2) The Previous round window depicts the following information about the previous round:
(@) The number of B-choices in your group [in IF and IM: and, in brackets, the size of your
group].
(b) The number of B-choices in the other group [in IF and IM: and, in brackets, the size of
the other group].
(c) Your choice.
(d) Your revenue.
(e) Your costs.
(f) Your round earnings.
Note that no information about the group sizes will be given [this sentence not for IF and
IM].
(3)In the Choice window you will find two buttons. Press the button “Choice A” or the button
“Choice B” with the mouse, or press the key “A” or “B”. When you have chosen you will have to

wait until all participants have made their choices.
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(4) The Result window shows the result of the current round, hence after each participant has made a
choice. Each yellow rectangle shown represents one B-choice of your group and each blue
rectangle represents one B-choice of the other group. After a few seconds the result will also
appear in numbers.

At the top of the screen you will find a Menu bar. You can use this to access the Calculator and

History functions. The calculator can be handled with the numerical pad on the right side of your

keyboard or with the mouse buttons. The function ‘history’ shows all information of the last sixteen

rounds as this had appeared in the window ‘Previous round’. At the bottom of your screen the

Information bar is located. There you are told the current status of the experiment.

Further procedures

Before the 100 rounds of the experiment start, we will ask you to participate in three training-rounds.

You will have to answer questions in order to proceed further in these training-rounds. In the training-
rounds you are not matched to other participants but to the computer program. You cannot draw
conclusions about choices of other participants based on the results in the training-rounds. The

training-rounds will not count for your payment.

We will now start with the three trainings-rounds. If you have any questions, please raise your hand.

One of us will come to you to answer them.

27



Appendix C — Procedures

TABLE C: SEQUENCE OF ELECTORAL COMPOSITIONS

Round Elect. Round Elect. Round Elect. Round Elect. Round Elect.
comp. comp. comp. comp. comp.
1 6-6 21 5-7 41 6-6 61 7-5 81 4-8
2 7-5 22 6-6 42 6-6 62 7-5 82 6-6
3 6-6 23 4-8 43 7-5 63 5-7 83 6-6
4 5-7 24 7-5 44 6-6 64 6-6 84 6-6
5 6-6 25 6-6 45 4-8 65 4-8 85 5-7
6 4-8 26 9-3 46 5-7 66 5-7 86 5-7
7 6-6 27 6-6 47 7-5 67 5-7 87 6-6
8 7-5 28 7-5 48 7-5 68 6-6 88 8-4
9 7-5 29 5-7 49 6-6 69 6-6 89 6-6
10 5-7 30 5-7 50 8-4 70 5-7 90 6-6
11 5-7 31 5-7 51 6-6 71 5-7 91 7-5
12 7-5 32 8-4 52 5-7 72 6-6 92 6-6
13 4-8 33 8-4 53 6-6 73 8-4 93 5-7
14 7-5 34 6-6 54 7-5 74 5-7 94 8-4
15 7-5 35 7-5 55 7-5 75 7-5 95 7-5
16 8-4 36 5-7 56 4-8 76 7-5 96 3-9
17 6-6 37 6-6 57 6-6 77 4-8 97 5-7
18 5-7 38 5-7 58 3-9 78 5-7 98 6-6
19 4-8 39 6-6 59 6-6 79 6-6 99 6-6
20 9-3 40 7-5 60 7-5 80 8-4 100 8-4
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Appendix D — Equilibrium Predictions

TABLE D: OVERVIEW OF EQUILIBRIUM PREDICTIONS, OBSERVED TURNOUT RATES FOR ROUNDS 21 TO 100, AND MAXIMUM LIKELIHOOD
ESTIMATES OF THE NOISE PARAMETERS

Predictions
HEVEE Observed | (Bayesian) QRE Estimated | # obser- HegRl G
Treatment of Nash -
turnout rates 7 vations .
support -0 —04 ~08 (Bayesian) ORE Random
H el Eatihs Nash play
UF - .297 .098 .302 381 .39 5616 -4286.62 -3418.01 | -3892.71
Allied: .426 934 .306 .382 .05 0r 1.38 2880 -4576.80 -1964.64 | -1996.26
UM Floating: .293 123 299 380 .38 2880 -2033.92 | -1741.13 | -1996.26
All .359 529** .303** | .381** .65 5760 -4094.34 -3761.61 | -3992,53
3 .296 .256 .306 341 .08 54 -33.04 -32.82 -37.43
4 .301 173 .320 .369 .29 336 -221.73 -205.42 -232.90
5 .329 132 331 .395 .39 1050 -798.61 -664.82 -727.80
IE 6 481 107* 329 404 4.28 2016 -2285.99 -1395.95 | -1397.38
7 437 .091 .306 .384 1.58 1470 -1619.11 -1007.13 | -1018.93
8 .281 .080 271 .349 A4 672 -517.75 -399.26 -465.79
9 241 .074 234 313 43 162 -111.11 -89.41 -112.29
All .400 .109** 313** | .385** .95 5760 -5501.26 -3875.74 | -3992.53
3 .296 .256 .306 341 .08 54 -33.04 -32.82 -37.43
4 .286 173 .320 .369 22 336 -213.92 -201.02 -232.90
5 .393 132 331 .395 .79 1050 -926.74 -703.73 -727.80
IM 6 .585 107* 329 404 0 2016 -2731.49 -1397.38 | -1397.38
7 448 .091 .306 .384 1.96 1470 -1658.27 -1011.05 | -1018.93
8 341 .080 271 .349 74 672 -615.48 -431.12 -465.79
9 .302 .074 234 313 73 162 -136.43 -99.30 -112.29
All 459 .109** 313** | .385*%* 2.55 5760 -6215.60 -3972.84 | -3992.53

* Or, .893; **weighted overall participation probability.
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Appendix E — Electoral Efficiency

The voting and victory probabilities from appendix D can be used to calculate voters’
expected payoffs, which determine the electoral efficiencies in equilibrium (Palfrey and
Rosenthal 1983). Figure E shows these efficiencies per treatment, noise-level, and level of
disagreement. Efficiency is calculated as the electorate’s aggregate payoff in equilibrium,
divided by its socially optimal (efficient) total payoff. For unequal group sizes, surplus is
maximized when one voter in the majority participates and all other voters abstain. For
example, for electorates with group sizes (3-9) or (9-3), the efficient aggregate payoff is
3x14+9x4-1=38 [similarly, 35 for (4-8)/(8-4), and 32 for (5-7)/(7-5)]. For equal group
sizes (6-6), it is efficient if nobody participates, in which case total payoff is
6x1+6x4=30.

FIGURE D: EQUILIBRIUM EFFICIENCY

IF/IM UF UM

1.0 1.0 1.0

0.9 1 0.9 0.9

0.8 1 0.8 0.8

0.7 w w w 07 . ‘ ‘ 0.7

Level of disagreement
—_— =0 — —-p=04 ..-.-p=08

Note from figure E that once again the treatment effect is strongest in the Bayesian-Nash
equilibrium (« =0). When voters are informed about group sizes, efficiency is lowest (73%)
when the level of disagreement is lowest and monotonically increases with the size of the
minority to 96% when there are 6 voters in each group. This pattern occurs for noise level

1 =0, because overall expected participation decreases and the majority’s probability of
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winning increases in the level of disagreement. Compare this to the treatments with PU. In
UF efficiency for x =0 is very high (96%) for equal levels of support, whereas intermediate
values of efficiency between 85% and 87% are observed for all other levels of disagreement.
In UM, efficiency for x =0 is low (between 73% and 79%) for all levels of disagreement.
This is because allied voters participate extensively. When noise is introduced, the
differences across treatments are minor. In all cases the efficiency curves are U-shaped and
show intermediate values (83-88% for x =0.4 and 82-86% for 1 =0.8).

Table E gives realized efficiencies and their standard deviations. The data are pooled
across the two voter alliance treatments, since virtually no differences in patterns are

observed for this variable.

TABLE E: ELECTORAL EFFICIENCY

Treatment Without poll releases With poll releases
Level of 3 4 5 6 3 4 5 6
disagreement
Efficiency .854 .842 831 .867 .887 .861 .835 .786
(standard dev.) | (.081) | (.051) | (.046) | (.042) | (.066). | (.042) | (.045) | (.059)
Weighted 846 826
average
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