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Appendix A  Polity game and Nash equilibria 

The polity game has two stages. At stage 1 two candidates BAi ,  compete for election by 

simultaneously announcing binding policy offers to the public. At stage 2 the electorate   of finite 

size E  determines a winner by simple majority voting (with a coin toss in case of a tie). We 

distinguish between elections with compulsory and voluntary voting. In the former case, each voter 

},...,2,1{ Ej   must participate at costs and decides whether to vote for A, B, or ‘blank’ (i.e. for 

neither candidate). In the latter case, each voter decides whether to participate at costs and vote for A 

or B, or to abstain and bear no costs. After all voters have simultaneously made their decisions the 

election outcome is made public. The winning candidate i gets a payoff of 1i  and the opponent i  

nothing, 0i . There are no costs related to making policy offers.41 Voters receive their benefits 

according to the victor’s policy offer. Candidates and voters are assumed to be rational (risk neutral) 

players who aim at maximizing their own expected payoffs. 

 
A.1   Policy offers, voter preferences, and group formation 

A policy offer )  ...    ...(   1 Ej iiii pppp   by candidate BAi ,  is a vector that represents a distribution of 

a given budget BA WWW  , assumed the same for both candidates, across voters. Voter j is either 

selected by candidate i ( 1
jip ) or not ( 0

jip ). Denote the number of selected voters by BAi ,  as 
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A policy offer can consist of any combination of selected voters for which EPi 1  holds. Thus, 

each candidate can choose from 12 E  possible combinations. We assume that voters are a priori 

identical, with zero-income and -endowment for each. Then, each voter j’s benefit promised by 

candidate BAi ,  is given by 
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Hence, a selected voter’s benefit 
jiw  is decreasing in iP . 

 

Next, we describe voters’ preferences with respect to their own pecuniary payoffs, which are derived 

in the same way for compulsory and voluntary voting. Define the benefit-differential for voter j by 
 

jj BAj www  .          ) 3A. (  

 

                                                 
41 Hence, candidates face a winner-takes-all situation in a constant sum game. 
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Let  0,, BAd j   be j ’s preference for either candidate BAi , , or neither. This is given by 
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We denote voters with a strict preference ( 0 jw ) for either candidate i by ij  and indifferent voters 

( 0 jw ) by 0j . Then, define supporter group iG  as set of the iN  voters { ij , BAi , }, and the 

group of indifferent voters 0G  as the 0N  voters 0j . In summary, groups and their sizes are 

endogenously formed by voters’ preferences, which are based on their benefit-differentials as 

generated by both policy offers. The electorate   is split in AN  voters in AG , BN  voters in BG  and 

0N  voters in 0G , with ENNN BA  0 . 
 

Denote the vector sum of both policy offers as BA ppp ˆ . This sum gives a first grasp of 

possible group patterns: 
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Voter Ej ,...,2,1  may encounter three different situations: he may be selected (i) by neither 

candidate, 0ˆ jp , yielding 0 jw ; (ii) by only candidate i, 1ˆ jp , yielding 0
jij ww ; (iii) by 

both candidates, 2ˆ jp , yielding 0 jw . Note that 0 jw  can not only arise in (i) but also in (iii), 

in case both candidates select identical numbers iP  of voters. 

Lemmas 1 and 2 give an exhaustive description of the existence of groups and benefit-

differentials. In brief, as a result of both policy offers up to four distinct benefit-differentials may arise 

across voters. Note that at most one group can consist of voters with distinct differentials. This group 

supports the candidate i who selects fewer voters, ii PP  , BAi , . Moreover, the number of distinct 

benefit-differentials within a group cannot exceed two. 

 

The following can be said about groups and their patterns: 
 
LEMMA 1 (existence of groups): 
 

(a) BA pp   (identity)        BA GG . 

(b) BA pp   (difference)    BA GG  

  (b.1)  BA GG    0G . 

  (b.2)    BA GG  2EPP BA     0G . 

  (b.3)    BA GG  2EPP BA     0G . 

  (b.4)    BA GG  BA PP     0G . 
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LEMMA 2 (existence of benefit-differentials): 
 

(a) BA pp   (identity)       0 hw , h . 

(b) BA pp   (difference) 

  (b.1)    BA GG  

  (b.1.1) BA PP    BA GG  (separation) 

 h ; h ; h , hhh   s.t. 0 hw , 0 hw , 0 hw . 

  (b.1.2) BA PP    BA GG  (overlapping) 

 h ; h ; h ; h , hhhh   s.t. 0 hw , 

    0 hw , 0 hw , 0 hw . 

  (b.2)     BA GG  BA PP       BA GG  2EPP BA   

 h ; h , hh   s.t. 0 hw , 0 hw . 

  (b.3)    BA GG  

  (b.3.1) 2EPP BA     0 hw , h . 

  (b.3.2) BA PP    BA GG  (separation) 

  h ; h , hh   s.t. 0 hw , 0 hw . 

  (b.3.3) BA PP    BA GG  (overlapping) 

 h ; h ; h , hhh   s.t. 0 hw , 0 hw , 0 hw . 
 
Proofs straightforward 
 
 
Next, we show two examples following lemmas 2(b.1.1) and 2(b.1.2). Suppose 5E  and 5W  in 
both examples. 
 
 
Example 1 [cf. lemma 2(b.1.1)]: 
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     11110ˆ p        35535350w  

 

The numbers of selected voters are 1AP  and 3BP . Since no 2ˆ jp  occurs, policy offers do not 

overlap. There are two supporter groups: AG  (only voter 4, hence 1AN ) and BG  (voters 2, 3, and 5, 

hence 3BN ), and a group 0G  with one indifferent voter (voter 1, hence 10 N ). Moreover, we find 

three distinct benefit-differentials: 54 w , 3/5532  www , and 01 w . Each group 

contains just one differential. 

 

Example 2 [cf. lemma 2(b.1.2)]: 
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There are 3AP  and 2BP  selected voters. This time policy offers overlap since 2ˆ
3 p . Two 

supporter groups are formed: AG  (voters 1 and 2, hence 2AN ) and BG  (voters 3 and 5, hence 

2BN ), and a group 0G  with one indifferent voter (voter 4, hence 10 N ). This simple example 

suffices to show the maximal number of four distinct benefit-differentials: 255 w , 

3521  ww , 653 w , and 04 w . BG  contains two distinct differentials. 

 
A.2   Compulsory voting 

A.2.1 Voter behavior 

In elections with compulsory voting participation is required. We assume identical voting costs to all 

voters within the range )1,0(c 42. Voters who abstain must pay a penalty larger than c , making this 

decision a strictly dominated strategy. At the ballot box voters decide whether to vote for A, B, or 

neither candidate. Applying iterated weak dominance, voters will vote sincerely for the preferred 

candidate and assuming for the moment blank votes by indifferent voters, the election outcome is 

merely determined by the group sizes AN  and BN . In case of ii NN   candidate i  comes into power, 

and in case of ii NN   a coin toss selects the victor. Each voter ij ’s pecuniary payoff 
ij , BAi , , 

is given by 
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and that of each indifferent voter 0j  by cj 
0

  ( cPW ij  /
0

 ) if selected by neither (both) 

candidate(s). 

 

However, indifferent voters must participate in elections too and it is not obvious that they will all vote 

blank. Alternatively, suppose that voters have lexicographical preferences with own pecuniary 

concerns as the most important argument, followed by a second argument, e.g. concerns about equality 

or sympathy for candidates. For indifferent voters the value of the most important argument is zero, 

hence their second argument comes into play. In the following, we will discuss four alternative 

decision rules with respect to a (possible) second argument important for indifferent voters 0j  (for 

convenience, we define indifferent voters only based on the most important argument as those with 

0w ): 

 

                                                 
42 Since participation is compulsory, costs can be interpreted as ‘sunk’ costs. One may want to relate the upper 
bound of the costs to the budget W, but nothing would change in the presentation of our analysis. 
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1. Random rule: 
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This rule represents voters who derive no additional value from other than the most important 

argument, i.e. the benefit-differential. Hence, they choose each alternative with equal probability.43 
 

For the following rules, we suppose that the second most important argument matters. 

 

2. Neutral rule: 
0

0
jd .           ) A.7b (  

 

In this rule the concern is not to harm (privilege) any candidate or, indirectly, any other voter. Hence, 

0j  votes blank. 

 

3. Egalitarian rule: 
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This rule takes as second argument the budget distribution across other voters. The decision is to vote 

for the candidate who selects more voters (with lower benefit for each).44 

 

4. Elitist rule: 
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Our last rule is diametrically opposed to the egalitarian rule. Again, the second argument concerns the 

budget distribution across other voters, however, this time 0j  votes for the candidate who selects 

fewer voters (with higher benefit for each). 

 

                                                 
43 Of course, all possible distributions of prob(A), prob(B), and prob(0) are optimal. Equal probabilities are only 
chosen to stress the distinction with the systematic decision making in the following rules. 
44 With further, more elaborate assumptions on the impact of one’s vote on future policy offers, the egalitarian 
rule may also be interpreted as a ‘risk aversion rule’. In such a rule, voters prefer future benefits that are smaller 
but more likely to be offered to them over those which are larger but less likely. Candidates may tend to select 
more voters by realizing that otherwise indifferent voters may vote against them. 
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Note that for BA PP   the egalitarian and elitist rule leave voters 0j  indifferent concerning both the 

most important and the second most important argument. One could formulate decision rules for a 

third argument, and so on. For simplicity, however, we restrict our analysis to two arguments only. 

How these affect policy offers and election outcomes will be described next. 

 
A.2.2 Candidate behavior 

Each candidate BAi ,  seeks to maximize her own payoff i , or equivalently, her probability of 

winning the election )(winprobi . A pure strategy for i is a policy offer )(kpi  from the set   

)}12(),...,(),...,1({ E
iii pkpp  of all 12 E  possible offers in   of size E. A mixed strategy i  

)}12(),...,(),...,1({ E
iii k   is a probability distribution over all pure strategies, with )(ki  being the 

probability i assigns to kkpi ),( ,  




12

1
1)(

E

k i k . Candidate i ’s winning probability depends on the 

group sizes BA NN , , 0N , and the decision rule used by voters 0j . For simplicity, we assume the same 

lexicographical preferences for all voters, which is common knowledge. We now specify )(winprobi  

for each proposed decision rule in turn. 

 

1. )(winprobi  for the random rule ) a7A. ( : 
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      and )(1)()( winprobloseprobwinprob iii  , BAi ,  where 
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where i will (not) receive a vote by an indifferent voter with probability 1/3 (2/3), and the conditional 

probability that i  will receive a vote by an indifferent voter (given that i does not receive it) by 

(1/3)/(1/3 + 1/3)  1/2. From the middle line in ) a8A. ( , it follows that 0NN  . Note that ii NN   

is a special event of the middle case in ) A.8a ( , which gives )(winprobi 1/2. In the expression 

),(majorityprobi  lNk   votes for candidate i versus k votes for her opponent represents the event 

that there are 1l  more votes for i  than for i , which considers N , the difference in votes 

between both non-indifferent voter groups. If lNk   indifferent voters vote for i, then there are 
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lNkN 0  remaining to possibly vote for i . To account for this conditionality, we derived 1/2 

as the conditional probability of support for i  by indifferent voters. The expression for )(tieprobi  is 

developed similar to that for ),(majorityprobi  only l  is not considered. 

 

2. )(winprobi  for the neutral rule ) A.7b ( : 
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3. )(winprobi  for the egalitarian rule ) A.7c ( : 
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4. )(winprobi  for the elitist rule ) A.7d ( : 
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where   is derived in the same way as in ) c8A. ( . 

 

A.2.3 Nash equilibria 

In this section, we derive the subgame perfect Nash equilibria for the polity game with simultaneous 

policy offers and compulsory voting. At stage 2, applying iterative weak dominance, we only need to 

consider sincere votes that are cast for the preferred candidate and, in case of indifference, according 

to the decision rule at hand (cf. eqs ) a7A. (  to ) d7A. ( ).45 At stage 1, candidates anticipate these 

decisions. Then, we can construct for each of the four rules a constant sum normal form game for the 

candidate competition, with the cells representing all possible combinations of A’s and B’s policy 

offers and the cells’ entries the expected payoff )(][ winprobExp AA   of A. Because this is a constant 

                                                 
45 Sincere voting is a weakly dominant strategy. Applying iterative strict dominance yields a plethora of Nash 
equilibria with at least one voter up to everybody voting insincerely. Only in cases where a voter’s decision is 
pivotal, he strictly prefers voting sincerely. 
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sum game, B’s expected payoff is simply ][ BExp  ).(1 winprobA  We know by Nash’s Theorem 

that for such a game at least one Nash equilibrium exists. 

Appendix B gives numerical examples of subgame perfect Nash equilibria for electorate size 4. 

For the further analysis it is helpful to first introduce subsets of policy offers with equal numbers of 

selected voters and define (pure and mixed) balanced strategies. 

 

DEFINITION 1 (subsets of pure strategies with equal numbers of selected voters): 
 

For the set   of all 12 E  possible pure strategies ip , BAi , , we define subset e , Ee ,...,1 , 

as  ePp iie    and denote any eip   by eip , . In words, the subset e  is the set of pure 

strategies eip ,  which all select the same number e  of voters. 

 

DEFINITION 2 (pure and mixed balanced strategies for candidates): 
 

We define a pure balanced strategy eip , , Ee ,...,1 , for i as a mixed strategy on e  in which all eip ,  

are played with equal probability and all eip   are played with probability 0. Note that EiEi pp ,,  . 

And, a mixed balanced strategy for i is defined as a probability distribution i  ,...,1,i ei, Ei ,,..., , 

with ei ,  being the probability she assigns to eip , , e ,  
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Each eip ,  in eip ,  is therefore played with probability 
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and each eip ,  in ei ,  with probability 
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Moreover, we will refer to a pure unbalanced strategy eip ,
~ , Ee ,...,1 , as any (pure or mixed) strategy 

that can only result in e selected voters, except eip , . And, we will refer to a mixed unbalanced strategy 

i~  as any mixed strategy, except i . 

 

We now formulate and prove our proposition 2 for the polity game with compulsory (sincere) voting 

and 6E . Note that when we refer to dominance, it is sometimes stochastic dominance, as will be 

clear from the context. 
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PROPOSITION 2 (Nash equilibrium policy offers per decision rule for compulsory voting): 
 

For compulsory voting and 6E , 

(i) with the random and neutral rule, a) there exists at least one subgame perfect Nash equilibrium in 

which both candidates use mixed balanced strategies; b) no subgame perfect Nash equilibrium 

exists in strategies that can only result in a unique number of selected voters; c) no equilibrium 

strategy uses with strictly positive probability any policy offer which selects  4/E  voters or less; 

(ii) with the egalitarian rule, a) for E even (odd) any combination of strategies by both candidates that 

can only result in exactly 12/ E  (  2/E ) selected voters constitutes a subgame perfect Nash 

equilibrium; b) no other subgame perfect Nash equilibria survive iterated weak dominance; 

(iii) with the elitist rule, a) there exists at least one subgame perfect Nash equilibrium in which both 

candidates use mixed balanced strategies; b) no subgame perfect Nash equilibrium exists in 

strategies that can only result in a unique number of selected voters. 

 

Proof: 

Of (i): Note first that given i chooses a strategy that can only result in Ee ,...,1  selected voters, 

using eip ,  is at least as good for her as using any eip ,
~
 . This is because adding any further eip ,  with 

strictly positive probability may only make it more difficult but never easier for her opponent i to 

pursue overlapping (separation) of policy offers if choosing ii PP   ( ii PP  ). Moreover, i’s strategy 

should be balanced, i.e. all possible eip ,  should be played with equal probability. This is because 

otherwise her opponent i may increase but never decrease her winning probability through optimizing 

by putting more probability weight on overlapping with (separating from) those eip ,  that are played 

with higher probability. Then, if for every e there is a ip  against eip ,  which yields 

),,( , Eppwinprob eiii  2/1 , we know that no subgame perfect Nash equilibrium exists in strategies 

that can only result in a specific number of selected voters, including all eip ,
~
  (recall the ‘at least as 

good’ property of eip , ). For both the neutral and random rule, suppose i chooses 
iPip

 , , where 

 

a) 2/EP i   (  2/EP i  ); then i surely wins by selecting all E voters in the electorate; 

b) 12/  EP i  (  2/EP i  ); then i surely wins by selecting any 1 ii PP  voters. 

 

It remains to investigate the cases where 2/EP i   and 12/  EP i  (  2/EP i  ), for each of 

which we claim that i achieves 2/1),,( , 
 Eppwinprob

iPiii  by choosing any 1 ii PP  voters. To 

see that this is true, suppose without loss of generality that ii PP   (note that ii PP   always yields a 
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tie). With the neutral rule, i ties if both policy offers overlap with ii PP    voters and she gets a 

majority of votes if there is more overlap. Then, i’s probability of winning against 
iPeip

 ,  is given by 
 

  
) ,,,,( ,, ruleneutralEPPppwinprob iiPiPii ii
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The three binomials of the first term in the middle line of ) 12A. (  give the probability of a tie, in 

which case the probability of winning is 1/2. The first two of these binomials partition the electorate 

into the number of voters selected by i ( iP ), recall that these can be any voters, and the number of 

voters not selected by i ( iPE  ). The number of cases with   overlaps of both policy offers is then 

given by both binomials jointly. For the second binomial, note that ii PP  . The third binomial 

gives the probability with which each possible 
iPip

 ,  in 
iPip

 ,  is played (cf. ) 10A. ( ). The second term 

in the middle line gives i’s probability of getting a majority of votes and is essentially the same as the 

first term. However, now all possible numbers of overlap larger than   are considered. 
 

With the random rule, i’s probability of winning against 
iPeip

 ,  is given by 
 

  
) ,,,,( ,, rulerandomEPPppwinprob iiPiPii ii
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where l denotes the number of overlaps of both policy offers, 
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1
gives the conditional probability that i will receive a 

random vote by an indifferent voter but not i, and ir  denotes the number of random votes for i. Note 

that i’s probability of winning is derived similarly as in ) 12A. ( , however, this time the number of 

random votes by indifferent voters for both candidates are accounted for. The number of indifferent 
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voters depends on l and is equal to lPPE ii   . From this number ir  are randomly cast for i and 

from the remaining iii rlPPE    indifferent voters ir  votes are randomly cast for i. For i to tie 

(win) it must hold that iiii rPrlP   iiii rlPPr    ( iiii rlPPr   ). 

 For 6E , with both the neutral and random rule (cf. ) 12A. (  and ) 13A. ( ) it is readily verified 

that, according to our claim, if i selects any 1 ii PP  voters, 21)( winprobi  against 2/, EPi i
p  

, 

12/,   EPi i
p , and  2/, EPi i

p  
. Hence, together with a) and b), there is no subgame perfect Nash 

equilibrium in candidates’ strategies that can only result in a specific number of selected voters for 

6E  with both the neutral and random rule. 
 

 Next, we show that at least one subgame perfect Nash equilibrium in mixed balanced strategies 

exists for both rules.46 Note that the ‘at least as good’ property that we used for pure strategies cannot 

be applied easily to mixed strategies. But suppose both candidates use i . Then, a ‘reduced’ constant 

sum normal form can be derived with cells only representing all possible combinations eip ,  of A and 

B, hence compressing all eip , , and the cell’s entries A’s expected probability of winning. By Nash’s 

theorem and because we showed that there is no equilibrium in eip , , there exists at least one subgame 

perfect Nash equilibrium in i  for this reduced normal form game. Knowing this, we need to show 

that no candidate can increase her winning probability by switching to any i~ , hence returning to the 

original ‘non-reduced’ normal form game, given the opponent plays i . However, any ip~  yields the 

same probability of winning as eip ,  against any eip ,  used in i  (‘randomness’ can be produced with 

only one candidate). Hence, i cannot improve by unbalancing any part of her strategy. We conclude 

that with the neutral and the random rule at least one subgame perfect Nash equilibrium exists in 

which both candidates play mixed balanced strategies. 
 

Finally, we show (by applying iterated weak dominance) that no equilibrium strategy uses any policy 

offer which selects  4/EPi   voters. If i picks all EPi   voters, she surely wins [ties; loses] against 

any 
iPip

 ,  which selects  2/EP i   [ 2/EP i   and EP i  ;   EPE i  2/ ] voters. In 

comparison, if i picks  4/EPi   voters instead, she surely loses with the neutral rule [expects to lose 

more often with the random rule] against any 
iPip

 ,  which selects   12/  EP i  voters. And, if i 

picks 4/EPi  , she can at most tie with the neutral rule [expect to tie with the random rule] against 

2/,Eip . Hence, with the neutral and random rule Eip ,  (at least) weakly dominates any 
iPip

 ,  which 

selects  4/EPi   voters and the latter strategies are not used in any subgame perfect Nash 

equilibrium.                           � 

                                                 
46 Note that we do not elaborate on subgame perfect Nash equilibria in i

~ . We conjecture that such equilibria 
exist, however, only using minor unbalancing. 
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Of (ii): To demonstrate that with the egalitarian rule any combination of strategies that can only result 

in 12/  EPi  (  2/EPi  ) selected voters constitutes a subgame perfect Nash equilibrium but no 

other equilibria exist, we must show that these are the only strategies of i that yield 21)( winprobi  

against each possible strategy of i, after applying iterated weak dominance. Again, for all e, eip ,  is at 

least as good as any eip ,
~ . Then, suppose i selects any 12/ E  (  2/E ) voters and i chooses 

iPeip
 , , 

where 
 

a) 2/EP i   (  2/EP i  ); then, from her 12/  EPi  (  2/EPi  ) selected voters i 

automatically gains for every overlapping voter, whom she loses because ii PP  , one indifferent 

voter’s egalitarian vote, since EPP ii   . Hence, i always gets a majority of votes; 

b) 2/EP i  ; then, by a similar argument as in a), from her 12/ E  selected voters i loses one 

overlapping voter for whom she gains no indifferent voter’s egalitarian vote, since 

EEPP ii   1 . For every other overlapping voter whom i loses, however, she gains one 

indifferent voter’s vote. Hence, i always gets 2/E  votes and ties; 

c) 12/  EP i  (  2/EP i  ); this, of course, always results in a tie; 

d) 12/  EP i  (  2/EP i  ); then i always gets a majority of votes, because she receives at least 

the votes of her selected 12/ E  (  2/E ) voters due to ii PP  . 
 

a)-d) show that any 12/  EPi  (  2/EPi  ) selected voters achieve 21)( winprobi  against any 

 )2/( 12/2/, EEPEPi ii
p  

 and 21)( winprobi  against 2/,Eip  and 12/,  Eip  (  2/, Eip ). For E even, as 

12/, Eip , 2/,Eip  always wins [ties] against any 
iPip

 ,  which selects 2/EP i   [ 2/EP i   and 

12/  EP i ] voters, however, it only ties against any 
iPip

 ,  which selects 12/  EP i  voters, for 

which 12/, Eip  always wins. Hence, any 12/, Eip  weakly dominates any 2/,Eip . Applying iterated weak 

dominance, it follows that only strategies which select 12/  EPi  (  2/EPi  ) voters can be part of 

a subgame perfect Nash equilibrium.                     � 
 

For constructing the ‘reduced’ normal form game for the candidates with cells representing all possible 

combinations eip ,  of A and B, we next derive i’s victory probability for case (ii) in proposition 2. With 

the egalitarian rule, for ii PP   a tie occurs if iiii PPPEP   )(


2/EPi  , where 


 

denotes the number of overlapping voters. Note that the occurrence of a tie does not depend on 


. 

Then, i’s winning probability against 
iPeip

 ,  is given by 
 

       
) ,,,,( ,, rulenegalitariaEPPppwinprob iiPiPii ii
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Of (iii): To demonstrate that with the elitist rule no Nash equilibrium uses strategies that can only 

result in a specific number of selected voters, we must show that there is always a eip , , Ee ,...,1 , for 

which 21)( winprobi  against any possible strategy of i. Once again, for all e, eip ,  is at least as 

good as any eip ,
~ . Then, suppose i chooses 

iPeip
 , , where 

 

a) 2/EP i   (  2/EP i  ); then i surely wins by selecting all E voters in the electorate; 

b) 2/EP i  , then, by selecting any 12/  EPi  voters i never loses and expects to win more often 

than i, because she ties [wins] if policy offers do not overlap [overlap at least once]; 

c) 12/  EP i  (  2/EP i  ); then, by selecting any 2/EPi   (  2/EPi  ) voters i never loses 

and expects to win more often than i, because she ties [wins] if policy offers overlap once [at 

least twice] (loses only in the single case where policy offers do not overlap but ties [for the more 

frequent cases, wins] if policy offers overlap once [at least twice]). Hence, i expects to win more 

often than i; 

d) 12/  EP i  (  2/EP i  ); then, by selecting any 1 ii PP  voters i surely wins, because she 

receives at least the votes of her selected voters, who already constitute a majority. 
 

Hence, with the elitist rule no Nash equilibrium exists in strategies that can only result in a specific 

number of voters. Moreover, following the same argument as for the neutral and random rule, we 

know that at least one Nash equilibrium in mixed balanced strategies exists. 

 

It is tedious but straightforward to show by applying iterated weak dominance that no pure strategy is 

weakly dominated.                          � 

 
 

To construct the ‘reduced’ normal form game for the candidates with cells representing all possible 

combinations eip ,  of A and B, we next derive i’s victory probability for case (iii) in proposition 2. With 

the elitist rule, i ties if both policy offers overlap with 02/   EP i


 voters (which follows from 




iP  


iii PPEP ) and she gets a majority of votes if there is more overlap. Then, for 

ii PP   i’s probability of winning against 
iPeip

 ,  is given for E even by 
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and for E odd by 



 61

 

  
) ,,,( ,,, ruleeltitistEPPppwinprob iiPiPii ii
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Note that ) 15A. (  is derived in a similar way as ) 12A. (  for the neutral rule. 

 

A.3   Voluntary voting 

A.3.1 Voter behavior and Nash equilibria of the subgames at the election stage 

In this section we analyze elections with voluntary costly voting. Each voter must decide whether to 

participate at costs and vote for one of the candidates, or to abstain and bear no costs. Again, we 

assume identical voting costs to all voters within the range ).1,0(c  For the participation decision, 

each voter j has two pure strategies }1,0{jv , where 1jv  denotes participation and 0jv  

abstention. A mixed strategy profile of j is given by the probability of participation jq . Note that 

contrary to compulsory voting, the second argument of lexicographical preferences will never be used 

by indifferent voters. This is because voting costs are no longer sunk and indifferent voters rather 

avoid them than decrease the value of their most important argument. Hence, it is a strictly dominant 

strategy for voters 0j  to abstain ( 0
0
jv ). Moreover, for non-indifferent voters ij  the strategy to vote 

for candidate i  is strictly dominated by abstention ( 0
ij

v ). Thus, we can focus on participation 

decisions, with votes being cast sincerely for the preferred candidate. 

For the cases where in one group iG  two distinct benefit-differentials occur, we introduce further 

notations for subgroups: the HiN ,  denotes the number of voters Hij ,  with the higher (‘H’) differential 

in HiG ,  and the LiN ,  denotes the number of voters Lij ,  with the lower (‘L’) differential in LiG , , where 

iLiHi GGG  ,,  and iLiHi NNN  ,, . Then, a pure strategy for voter Hij ,  ( Lij , ) is denoted by 

}1,0{
,


Hij
v  ( }1,0{

,


Lij
v ). Mixed strategies are labeled Hiq ,  and Liq , , respectively. If iG , BAi , , 

contains a single benefit-differential, its aggregate participation is denoted by 
 


i ij ji vV            ) 16A. (  

and if it contains two benefit-differentials by 
 

    
i,L LiHi Hi j jj ji vvV

,, ,
.         ) 71A. (  

 

For later use, we denote aggregate participation by other voters in iG  than ij  by47 

                                                 
47 To avoid extensive notations, what will be said for ij  in the following will also hold for Hij ,  respectively Lij ,  

(by simply replacing the notations), unless stated otherwise. 
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Obviously, aggregate participation in 0G  is always 00 V . 

Candidate BAi ,   wins the election if ii VV  , and a coin toss determines the winner in the 

event of ii VV  . Hence, the payoff for a non-indifferent voter ij  is given by 
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and for an indifferent voter 0j  by iij PWp
j

/
0
 . 

 

Next, we will analyze participation decisions. Voter ij  will vote with probability 1 (0) if his expected 

payoff of participation is higher (lower) than that of abstention, or 
 

      . 0  
)(

   1 

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
iiii jjjj vExpvExp   

 

He will mix when the two are equal. Elaboration (cf. Palfrey and Rosenthal 1983) yields 
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where the left-hand side gives voter ij ’s probability of being pivotal (note that 0
ij

w ). It contains 

two components: the first gives the probability that his vote can turn a tie into a victory, and the second 

the probability that it can turn a defeat into a tie. Note that the expected benefit from voting is always 

negative for 2
ij

wc  , implying that a risk neutral voter will abstain. 

Voter ij ’s participation decision 
ij

v  depends on the actual group pattern that follows from the 

policy offers announced at the first stage. The results of lemmas 1 and 2 about the existence of groups 

and benefit-differentials are helpful in guiding the analysis of the participation decision for each 

possible group pattern. We distinguish between the following 3 (exhaustive) cases: 
 

Case 1: Only 0G  exists, since all voters are indifferent [  jwj ,0 ; lemma 2(a)]. 
 

Case 2: There are two supporter groups iG , BAi , , and possibly 0G . Both supporter groups contain 

a single benefit-differential [lemmas 2(b.1.1), 2(b.2), 2(b.3.1), and 2(b.3.2)]. The following situations 

may occur: 

(a) For ij  ij  we have cwj  2 . 

(b) For ij  we have cwj  2  and for ij  we have cwj  2 . 

(c) For ij  ij  we have cwj  2 . 
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Case 3: There are two supporter groups iG , BAi , , and possibly 0G . iG  contains two different 

benefit-differentials, hence two subgroups HiG ,  and LiG ,  exist [lemmas 2(b.1.2) and 2(b.3.3)]. The 

following situations may occur: 

(a) For Hij ,  Lij ,  ij  we have cwj  2 . 

(b) For Hij ,  we have cwj  2  and for Lij ,  ij  we have cwj  2 . 

(c) For Hij ,  Lij ,  we have cwj  2  and for ij  we have cwj  2 . 

(d) For Hij ,  ij  we have cwj  2  and for Lij ,  we have cwj  2 . 

(e) For Hij ,  Lij ,  ij  we have cwj  2 . 

 

Note that for case 3 there are only five different situations due the implicit restrictions that either 

HiiLi jjj www
,,




 or 
HiLii jjj www

,,



. Importantly, as indifferent voters 0j , non-indifferent 

voters ij  with cw
ij

 2  will abstain with certainty too. 

 

In the following, we derive (conditions for) the Nash equilibria of all possible subgames at the election 

stage with voluntary costly voting by specifying ) 02A. ( . We focus on totally quasi-symmetric mixed 

strategy equilibria (cf. Palfrey and Rosenthal 1983), i.e. state ) 02A. (  as equality, where )1,0(iq  and 

)1,0(iq . 

 

Group pattern 1: Cases 1, 2(a), and 3(a) are trivial: everybody abstains. 
 

Group pattern 2: Cases 2(b) and 3(b) are strategically equivalent to the volunteer’s dilemma game 

(Diekmann 1985). Because 0iV , the necessary and sufficient condition for iqq   to be a best 

response is given for 2(b) by 

i
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
  2

)1( 1 ,          ) A.21 (  

 

where the left-hand side gives ij ’s probability of being pivotal, i.e. only the probability of other group 

members’ decisions creating a tie. Note that the condition for 3(b) is derived analogous, only q  ( ij , 

iN ) must be replaced by HiH qq ,  ( Hij , , HiN , ). 
 

Group pattern 3: Case 3(c) is also strategically equivalent to the volunteer’s dilemma game, but two 

different benefit-differentials in iG  must be considered. Define HiH qq ,  and LiL qq , . Then, the 

necessary and sufficient condition for Hq  to be a best response is given by 
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and for Lq  by 
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where the left-hand sides give the probability of being pivotal, i.e. only the probability of other group 

members’ ( iG ) decisions creating a tie. Together, both conditions characterize all ( LH qq , )-equilibria. 
 

Group pattern 4: Cases 2(c) and 3(d) are strategically equivalent to the standard participation 

games (Palfrey and Rosenthal 1983). Define iqq   and iqq ~ . For 2(c), the necessary and sufficient 

condition for q  to be a best response is then given by 
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where the respective upper (lower) term on the left-hand side of each condition gives the probability of 

a tie (victory for one’s own group) created by all other voters’ decisions than i respectively i. Both 

best responses together characterize all )~,( qq -equilibria. The first term on the left hand side of each 

condition gives the (binomial) probability that there is a tie of k  votes between the iN  members in 

the other group and the 1iN  other members of ij ’s own group ( ij  can turn a tie into a victory). The 

second term gives the (binomial) probability that the other group outvotes ij ’s co-members by one 

vote ( ij  can turn a defeat into a tie). The conditions for 3(d) are derived analogous, only q  ( ij , iN ) 

must be replaced by HiH qq ,  ( Hij , , HiN , ). 
 

Group pattern 5: Case 3(e) is a straightforward modification of the standard participation game, 

which demands one extra condition as compared to ), A.23 (  because there are three distinct benefit-

differentials. Define HiH qq , , LiL qq , , and iqq ~ . Then, a necessary and sufficient conditions for 

Hq  to be a best response is given by 
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Together, the three conditions characterize all )~,,( qqq LH -equilibria. 

 

A.3.2 Candidate behavior and subgame perfect Nash equilibria 

Each candidate BAi ,  maximizes her own payoff i , respectively her winning probability 

)(winprobi . She anticipates that voters with cwj  2 , including the indifferent voters, will abstain. 

Then, given all remaining voters with cwj  2 , i’s winning probability is given by 
 

)(
2

1
)()( tieprobmajorityprobwinprob ii  ,      ) 52A. (  

 

where the elaboration of the right-hand side depends on the actual group pattern as described above. 

Of course, i ’s probability of winning is given by )(1)( winprobwinprob ii  . 

 

In the following we derive (conditions for) the winning probabilities of all possible subgames at the 

election stage with voluntary costly voting, for which we derived totally quasi-symmetric mixed 

strategy equilibria [cf. ) A.21 (  to ) A.24 ( ], by  specifying the right-hand side of ) 52A. ( . 
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Group pattern 1: Cases 1, 2(a), and 3(a) are trivial. A coin is tossed since nobody participates. 

Hence, 21)( winprobi , BAi , . 
 

Group pattern 2: For case 2(b), the volunteers’ dilemma game, )(winprobi  with iqq   has the 

components 
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For case 3(b), these probabilities are derived analogous, only q  ( iN ) must be replaced by HiH qq ,  

( HiN , ). 
 

Group pattern 3: For case 3(c), the modified volunteers’ dilemma game with two different benefit-

differentials in iG , )(winprobi  with HiH qq ,  and LiL qq ,  has the components 
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Group pattern 4: For cases 2(c) and 3(d), the standard participation games, )(winprobi  with iqq   

and iqq ~  has the components 
 

kNklkNlkii
kN

l

NN

k
i

ii

iii

qqqq
k

N

lk

N
majorityprob 



























  )~1(~)1(   )(
1

],min[

0

 

and 

kNkkNkii
NN

k

ii

ii

qqqq
k

N

k

N
tieprob 























  )~1(~)1(   )(

],min[

0

.    ) A.28 (  

 

For case 3(d), these probabilities are derived analogous, only q  ( iN ) must be replaced by HiH qq ,  

( HiN , ). 
 

Group pattern 5: For case 3(e), the modified participation game with two different benefit-

differentials in iG , )(winprobi  with HiH qq , , LiL qq , , and iqq ~  has the components 
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Finally, the subgame perfect Nash equilibria can be derived by using backwards induction. For all 

possible combinations of policy offers, the conditions for the totally quasi-symmetric mixed strategy 

equilibria at the election stage are described by ) A.21 (  to ) A.24 ( . These, or other Nash equilibria, 

are anticipated by the candidates at the first stage. Then, as for compulsory voting, constant sum 

normal forms can be derived for the candidate competition stage, with the cells representing all 

possible combinations of A’s and B’s policy offers and the cells’ entries the expected payoff 

)(][ winprobExp AA   of A, as described by ) 52A. (  to ) A.29 ( . Because the candidates play a 

constant sum game, ][ BExp   )(1 winprobA . Appendix B gives examples for 4,3,2WE  and 

different voting costs of c 0.2, 0.4, and 0.6. Because of computational complexity and multiple 

equilibria at the election stage we do not provide numerical solutions for larger electorates. 

 

 

 

Appendix B  Numerical equilibrium examples 

For compulsory voting, figures B.1a-d present for each of the decision rules we considered the normal 

form of the policy game with 4E  and 4W . Numbers in the cells are payoffs to the row player 

(candidate A). The payoffs of the column player (candidate B), which are not shown, are equal to 1 

minus A’s respective payoff. The 4 voters are labeled 1,2,3, and 4, respectively, and each candidate’s 

pure strategies are represented by all possible combinations {1},{2},…,{1,2,3,4} of specific voters. 

Subgame perfect Nash equilibria in pure strategies are shown by gray shaded cells. For the random and 

neutral rules (egalitarian rule) any possible combination of strategies that can only results in two 

(three, using iterated weak dominance) selected votes constitutes an equilibrium. There is no subgame 

perfect Nash equilibrium in pure strategies for the elitist rule. It has, among many others, one mixed 

strategy equilibrium where both candidates play combinations {1},{2},{3,4},{1,2,3}, and {1,2,4} with 

equal probability of 1/5 each and another one where both play combinations {1,3},{2,4}, and {1,2,3,4} 

with equal probability of 1/3 each.48 

 Similarly, for voluntary voting figures B.2a-c show examples for 3WE  and varying 

participation costs. For 2.0c  and 6.0c , any combination of strategies that can only result in two 

selected voters constitutes a subgame perfect Nash equilibrium at the candidate competition stage. For 

4.0c , the only subgame perfect Nash equilibrium is where both candidates choose the egalitarian 

policy offer. 

                                                 
48 We used Gambit (McKelvey et al. 2005) to compute the mixed strategy equilibria. 
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FIGURE B.1a: CANDIDATES’ (STAGE 1) NORMAL FORM FOR COMPULSORY VOTING: NEUTRAL RULE ( 4WE ) 
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{1} ½ ½ ½ ½ ½ ½ ½ 0 0 0 0 0 0 0 0 

{2} ½ ½ ½ ½ ½ 0 0 ½ ½ 0 0 0 0 0 0 

{3} ½ ½ ½ ½ 0 ½ 0 ½ 0 ½ 0 0 0 0 0 

{4} ½ ½ ½ ½ 0 0 ½ 0 ½ ½ 0 0 0 0 0 

{1,2} ½ ½ 1 1 ½ ½ ½ ½ ½ ½ 1 1 ½ ½ ½ 

{1,3} ½ 1 ½ 1 ½ ½ ½ ½ ½ ½ 1 ½ 1 ½ ½ 

{1,4} ½ 1 1 ½ ½ ½ ½ ½ ½ ½ ½ 1 1 ½ ½ 

{2,3} 1 ½ ½ 1 ½ ½ ½ ½ ½ ½ 1 ½ ½ 1 ½ 

{2,4} 1 ½ 1 ½ ½ ½ ½ ½ ½ ½ ½ 1 ½ 1 ½ 

{3,4} 1 1 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ 1 1 ½ 

{1,2,3} 1 1 1 1 0 0 ½ 0 ½ ½ ½ ½ ½ ½ 1 

{1,2,4} 1 1 1 1 0 ½ 0 ½ 0 ½ ½ ½ ½ ½ 1 

{1,3,4} 1 1 1 1 ½ 0 0 ½ ½ 0 ½ ½ ½ ½ 1 

{2,3,4} 1 1 1 1 ½ ½ ½ 0 0 0 ½ ½ ½ ½ 1 

{1,2,3,4} 1 1 1 1 ½ ½ ½ ½ ½ ½ 0 0 0 0 ½ 

 

Candidate B 

Candidate A 
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FIGURE B.1b: CANDIDATES’ (STAGE 1) NORMAL FORM FOR COMPULSORY VOTING: RANDOM RULE ( 4WE ) 
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{1} ½ ½ ½ ½ ½ ½ ½ 1/6 1/6 1/6 1/6 1/6 1/6 0 0 

{2} ½ ½ ½ ½ ½ 1/6 1/6 ½ ½ 1/6 1/6 1/6 0 1/6 0 

{3} ½ ½ ½ ½ 1/6 ½ 1/6 ½ 1/6 ½ 1/6 0 1/6 1/6 0 

{4} ½ ½ ½ ½ 1/6 1/6 ½ 1/6 ½ ½ 0 1/6 1/6 1/6 0 

{1,2} ½ ½ 5/6 5/6 ½ ½ ½ ½ ½ ½ 5/6 5/6 ½ ½ ½ 

{1,3} ½ 5/6 ½ 5/6 ½ ½ ½ ½ ½ ½ 5/6 ½ 5/6 ½ ½ 

{1,4} ½ 5/6 5/6 ½ ½ ½ ½ ½ ½ ½ ½ 5/6 5/6 ½ ½ 

{2,3} 5/6 ½ ½ 5/6 ½ ½ ½ ½ ½ ½ 5/6 ½ ½ 5/6 ½ 

{2,4} 5/6 ½ 5/6 ½ ½ ½ ½ ½ ½ ½ ½ 5/6 ½ 5/6 ½ 

{3,4} 5/6 5/6 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ 5/6 5/6 ½ 

{1,2,3} 5/6 5/6 5/6 1 1/6 1/6 ½ 1/6 ½ ½ ½ ½ ½ ½ 1 

{1,2,4} 5/6 5/6 1 5/6 1/6 ½ 1/6 ½ 1/6 ½ ½ ½ ½ ½ 1 

{1,3,4} 5/6 1 5/6 5/6 ½ 1/6 1/6 ½ ½ 1/6 ½ ½ ½ ½ 1 

{2,3,4} 1 5/6 5/6 5/6 ½ ½ ½ 1/6 1/6 1/6 ½ ½ ½ ½ 1 

{1,2,3,4} 1 1 1 1 ½ ½ ½ ½ ½ ½ 0 0 0 0 ½ 

 

Candidate B 

Candidate A 
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FIGURE B.1c: CANDIDATES’ (STAGE 1) NORMAL FORM FOR COMPULSORY VOTING: EGALITARIAN RULE ( 4WE ) 
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{1} ½ ½ ½ ½ 0 0 0 0 0 0 0 0 0 0 0 

{2} ½ ½ ½ ½ 0 0 0 0 0 0 0 0 0 0 0 

{3} ½ ½ ½ ½ 0 0 0 0 0 0 0 0 0 0 0 

{4} ½ ½ ½ ½ 0 0 0 0 0 0 0 0 0 0 0 

{1,2} 1 1 1 1 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ 

{1,3} 1 1 1 1 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ 

{1,4} 1 1 1 1 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ 

{2,3} 1 1 1 1 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ 

{2,4} 1 1 1 1 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ 

{3,4} 1 1 1 1 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ 

{1,2,3} 1 1 1 1 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ 1 

{1,2,4} 1 1 1 1 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ 1 

{1,3,4} 1 1 1 1 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ 1 

{2,3,4} 1 1 1 1 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ 1 

{1,2,3,4} 1 1 1 1 ½ ½ ½ ½ ½ ½ 0 0 0 0 ½ 

 

Candidate B 

Candidate A 
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FIGURE B.1d: CANDIDATES’ (STAGE 1) NORMAL FORM FOR COMPULSORY VOTING: ELITIST RULE ( 4WE ) 
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{4} ½ ½ ½ ½ ½ ½ 1 ½ 1 1 0 ½ ½ ½ 0 

{1,2} 0 0 ½ ½ ½ ½ ½ ½ ½ ½ 1 1 ½ ½ ½ 

{1,3} 0 ½ 0 ½ ½ ½ ½ ½ ½ ½ 1 ½ 1 ½ ½ 

{1,4} 0 ½ ½ 0 ½ ½ ½ ½ ½ ½ ½ 1 1 ½ ½ 

{2,3} ½ 0 0 ½ ½ ½ ½ ½ ½ ½ 1 ½ ½ 1 ½ 

{2,4} ½ 0 ½ 0 ½ ½ ½ ½ ½ ½ ½ 1 ½ 1 ½ 

{3,4} ½ ½ 0 0 ½ ½ ½ ½ ½ ½ ½ ½ 1 1 ½ 

{1,2,3} ½ ½ ½ 1 0 0 ½ 0 ½ ½ ½ ½ ½ ½ 1 

{1,2,4} ½ ½ 1 ½ 0 ½ 0 ½ 0 ½ ½ ½ ½ ½ 1 

{1,3,4} ½ 1 ½ ½ ½ 0 0 ½ ½ 0 ½ ½ ½ ½ 1 

{2,3,4} 1 ½ ½ ½ ½ ½ ½ 0 0 0 ½ ½ ½ ½ 1 

{1,2,3,4} 1 1 1 1 ½ ½ ½ ½ ½ ½ 0 0 0 0 ½ 

 

Candidate B 

Candidate A 
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FIGURE B.2a: CANDIDATES’ (STAGE 1) NORMAL FORM FOR VOLUNTARY VOTING 
( 3WE , 2.c ) 

 
 

 {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} 

{1} ½ ½ ½ ½ ½ .017 .038 

{2} ½ ½ ½ ½ .017 ½ .038 

{3} ½ ½ ½ .017 ½ ½ .038 

{1,2} ½ ½ .983 ½ ½ ½ .826 

{1,3} ½ .983 ½ ½ ½ ½ .826 

{2,3} .983 ½ ½ ½ ½ ½ .826 

{1,2,3} .962 .962 .962 .174 .174 .174 ½ 

 

 
 

FIGURE B.2b: CANDIDATES’ (STAGE 1) NORMAL FORM FOR VOLUNTARY VOTING 
( 3WE , 4.c ) 

 

 {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} 

{1} ½ ½ ½ ½ ½ .071 .174 

{2} ½ ½ ½ ½ .071 ½ .174 

{3} ½ ½ ½ .071 ½ ½ .174 

{1,2} ½ ½ .929 ½ ½ ½ 0 

{1,3} ½ .929 ½ ½ ½ ½ 0 

{2,3} .929 ½ ½ ½ ½ ½ 0 

{1,2,3} .826 .826 .826 1 1 1 ½ 

 

 

Candidate A 

Candidate A 

Candidate B 

Candidate B 
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FIGURE B.1C: CANDIDATES’ (STAGE 1) NORMAL FORM FOR VOLUNTARY VOTING 

( 3WE , 6.c ) 

 

 {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} 

{1} ½ ½ ½ ½ ½ .174 1 

{2} ½ ½ ½ ½ .174 ½ 1 

{3} ½ ½ ½ .174 ½ ½ 1 

{1,2} ½ ½ .826 ½ ½ ½ ½ 

{1,3} ½ .826 ½ ½ ½ ½ ½ 

{2,3} .826 ½ ½ ½ ½ ½ ½ 

{1,2,3} 0 0 0 ½ ½ ½ ½ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Candidate A 

Candidate B 
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Appendix C  Instructions for treatment VP [VS, CP] 

 
[Translation from Dutch] 

Welcome to our experiment on decision-making. Everybody receives 10 Guilders for participation in 

the experiment. Depending on your own choices and the choices of other participants, you may earn 

more money today. Your earnings in the experiment are expressed in tokens. 4 tokens are worth one 

Guilder. At the end of the experiment your total earnings in tokens will be exchanged into Guilders 

and paid to you in cash. The payment will remain anonymous. No other participant will be informed 

about your payment. 
 

Please remain quiet and do not communicate with other participants during the entire 

experiment. Raise you hand if you have any question. One of us will come to you to answer 

them. 

 
Rounds, ‘participants A’ and ‘participants B’ 

The experiment consists of 51 rounds. Each round consists of two parts, part A and part B. At the 

beginning of the experiment the computer program will randomly split all participants (14) [(18), (14)] 

into 2 [(6), (2)] participants A and 12 participants B. You will then receive information whether you 

are of type participant A or participant B. Note that your type will not change during the entire 

experiment. Each participant A will be asked to make decisions only in part A of each round and each 

participant B will be asked to make decisions only in part B of each round. You will not know who of 

the other participants is of type participant A and who participant B. 

 
Choices participants A 

At the beginning of part A in each round both [for VS: all] participants A will be asked to make 

choices. When a participant A makes choices, no other participant (neither A nor B) will know these 

choices. 
 

Each participant A will be asked to distribute a fixed round budget of 18 tokens across the participants 

B. This is done by selecting a number of 1, 2, …, 12 participants B (each participant A must select at 

least one participant B). The revenues for participants B are calculated as follows: 
 

1. Each participant B receives 1 token. 

2. Each selected participant B receives in addition 18 tokens divided by the number of selected 

participants B (18/number participants B = b). 
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There are the following possible revenues for participants B: 
 

 Number of selected participants B by one participant A 

Revenue participants B 1 2 3 4 5 6 7 8 9 10 11 12 

selected 19.0 10.0 7.0 5.5 4.6 4.0 3.6 3.3 3.0 2.8 2.6 2.5 

not selected 1 1 1 1 1 1 1 1 1 1 1 1 

 

The selection of participants B by participants A is made as follows. Each participant B is represented 

by a button (see the figure below). The position of a button for a participant B will not change 

during the entire experiment. If you want to select a specific participant B, then click the respective 

button with the mouse. The color of this button will then switch into purple. If you want to change 

your choice, click the button again with the mouse and the color switches back into gray. You can 

select all combinations of participants B in which at least one participant B is selected. The selected 

participants B are represented by all purple buttons. The participants B who are not selected are 

represented by all gray buttons. If you are ready with your choices, click the “OK!” button with the 

mouse or press the key “O”. 
 

 
Translation from Dutch: Round = ‘Ronde’; Total earnings = ‘TotaleVerd.’; Previous round = ‘Vorige 
ronde’; Choices = ‘Keuzes’; Own distribution = ‘Eigen verdeling’; Your round earnings = ‘Uw ronde 
verdiensten’; Yes = ‘Ja’; Choice participant A = ‘Keuze deelnemer A’; Revenue for each participant B 
selected by you = ‘Opbrengst voor iedere door u gekozen deelnemer B’; Make your choices! = ‘Maak 
uw Keuzes!’; Use the mouse to select a number of participants B = ‘Gebruik de muis om een aantal 
deelnemers B te kiezen’. 
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Division of participants A into participant X and participant Y 

From now on one participant A will be named participant X and the other participant Y. Their choices 

will be named distribution X and distribution Y. In part B of the current round, both participants A 

and all participants B will then receive information about the choices of participant X and 

participant Y. 

[In VS: After all 6 participants A have made their choices, 2 participants A will be randomly drawn by 

the computer program. Each participant A has the same chance of being drawn. The chosen 

participants will be named participant X and participant Y. Their choices will be named distribution X 

and distribution Y. In part B of the current round, all participants A and all participants B will then 

receive information about the choices of participant X and participant Y. The choices of the 

remaining 4 participants A will neither be announced to other participants A nor to participants B.] 

 
Distributions X and Y in the previous round 

The “X” and/or “Y” on the buttons indicate that these participants B were selected in the previous 

round by participant X and/or participant Y. If the button is blank, this participant was neither selected 

by participant X nor by participant Y. 

 
Earnings participants A 

The round earnings of each participant A for the respective round will be determined in the following 

way. One of the two participants X and Y receives 1 point in the current round. Each round-point may 

be worth 20 tokens. Who (participant X or participant Y) will receive the round-point depends on the 

choices of participants B in part B of the current round. How this works precisely will be explained 

below. At the end of the experiment, the computer program will randomly determine 17 of the 51 

rounds. For each round-point of these rounds a participant A will receive 20 tokens. The total earnings 

of each participant A is the sum of all her or his round-points in the 17 rounds determined multiplied 

by 20 tokens. 

[In VS:  The round earnings of each participant A for the respective round will be determined in the 

following way. Only one of the two participants X and Y receives 20 tokens in the current round. Who 

(participant X or participant Y) will receive these 20 tokens depends on the choices of participants B 

in part B of the current round. How this works precisely will be explained below. The remaining 

participants A will earn nothing (0 tokens) in the current round. The total earnings of each participant 

A is the sum of all her or his round earnings.] 
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Choices and earnings participants B 

In each round each participant B faces an identical choice problem. Each participant B will be asked to 

make one choice in each round. Participants B can choose between the following three alternatives: 
 

 ‘Choice 0’: no costs involved (0 tokens).  [In  CP: costs are 1 token.]  

 ‘Choice X’: costs are 1 token. 

 ‘Choice Y’: costs are 1 token. 
 

When participant B makes a choice, no other participant (neither B nor A) knows this choice. Only 

after all participants B have made their choices, the computer program will count the number of X-

choices and the number of Y-choices and will compare both numbers. There are 3 possible outcomes 

that are relevant for the revenues of participants B and for the earnings of participants X and Y. Each 

participant B will receive her or his revenue irrespective of the choice she or he made. 
 

(1) The number of X-choices exceeds the number of Y-choices: 

 Each participant B who is selected by participant X will get revenue of (bX + 1) tokens [see 

table page 2] and each participant B who is not selected by participant X will get 1 token. 

 Participant X will get 1 round-point [in VS: 20 tokens] and participant Y will get nothing (0 

round-points [in VS: 0 tokens]). 
 

(2) The number of Y-choices exceeds the number of X-choices: 

 Each participant B who is selected by participant Y will get revenue of (bY + 1) tokens [see 

table page 2] and each participant B who is not selected by participant Y will get 1 token. 

 Participant Y will get 1 round-point [in VS: 20 tokens] and participant X will get nothing (0 

round-points [in VS: 0 tokens]). 
 

(3) The number of X-choices is equal to the number of Y-choices: 

 The computer program will randomly choose which distribution (X or Y) will determine the

 revenues (each distribution has the same chance of 50% of being chosen). 

 Each participant B who is selected by the chosen distribution will get revenue of (bX + 1) or (bY 

+ 1) tokens. Each participant B who is not selected by the chosen distribution will get 1 token. 

 The chosen participant X or Y will get 1 round-point [in VS: 20 tokens] and the participant X or 

Y who is not chosen will get nothing (0 round-points [in VS: 0 tokens]). 
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Note that all participants A and participants B will only get information about the number of X-

choices and the number of Y-choices, but no information who of the participants B specifically 

has made which choice X, Y or 0. 

 

The round earnings of a participant B for a respective round are calculated in the following way: 

round earnings = round revenue – round costs. The total earnings of a participant B are the sum of all 

her or his round earnings. 
 

The following tables give all your possible round earnings: 
 

Possible round earnings participants B: 
 
 

Case 1:   You are selected only by distribution X: 

Your choice 
More X-choices   
than Y-choices 

Less X-choices     
than Y-choices 

Equal number X- and Y-choices 

Choice 0 (bX + 1) tokens 1 token 
(bX + 1) or 1 token (50% chance 

each) 

Choice X of Y (bX + 0) tokens 0 token 
(bX + 1) or 0 token (50% chance 

each) 
 

Case 2:   You are selected by distribution X and distribution Y: 

Your choice 
More X-choices   
than Y-choices 

Less X-choices     
than Y-choices 

Equal number X- and Y-choices 

Choice 0 (bX + 1) tokens (bY + 1) tokens 
(bX + 1) or (bY + 1) tokens 

(50% chance each) 

Choice X of Y (bX + 0) tokens (bY + 0) tokens 
(bX + 0) or (bY + 0) tokens 

(50% chance each) 
 

Case 3:   You are selected only by distribution Y: 

Your choice 
More X-choices   
than Y-choices 

Less X-choices     
than Y-choices 

Equal number X- and Y-choices 

Choice 0 1 token (bY + 1) tokens 
(bY + 1) or 1 token (50% chance 

each) 

Choice X of Y 0 token (bY + 0) tokens 
(bY + 1) or 0 token (50% chance 

each) 
 

Case 4:   You are selected by neither distribution: 

Your choice 
More X-choices   
than Y-choices 

Less X-choices     
than Y-choices 

Equal number X- and Y-choices 

Choice 0 1 token 1 token 1 token 

Choice X of Y 0 token 0 token 0 token 
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Example participants B 

Below you can see a figure that participants B will also encounter on the computer screen. 
 

 
Translation from Dutch: Round = ‘Ronde’; Total earnings = ‘TotaleVerd.’; Previous round = ‘Vorige 
ronde’; Number of choices = ‘Aantal keuzes’; Distribution = ‘Verdeling’; Own choice = ‘Eigen 
keuze’; Your result = ‘Uw resultaat’; Revenue = ‘Opbrengst’; Costs = ‘Kosten’; Round earnings = 
‘RondeVerd.’; Choice = ‘Keuze’; Make your choice! = ‘Maak uw Keuze!’; Press X, Y, or 0 or click 
one of the buttons to maker your choice = ‘Druk X, Y of 0 of klik een van de knoppen om uw keuze te 
maken’. 

 

In this example participant X has selected five participants B and participant Y has selected seven 

participants B. In case the number of X-choices exceeds the number of Y-choices, each participant B 

selected by participant X will get revenue of 4.6 tokens and each non-selected participant B 1 token. In 

case the number of Y-choices exceeds the number of X-choices, each participant B selected by 

participant Y will get revenue of 3.6 tokens and each not selected participant B 1 token. In case the 

number of X-choices is equal to the number of Y-choices, one of both distributions will be randomly 

chosen to determine the revenue for each participant. Note that there are two participants B who are 

selected only by distribution X, three participants by both distributions, four participants only by 

distribution Y, and three participants by neither distribution. The purple frame identifies you as one of 

the participants B in the figure. In the example, you are selected by both participants X and Y. There is 

no fixed ordering of participants B in this figure. In each round, the positions of participants will be 

ordered according to the distributions X and Y. 
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Computer screens 

 
Computer screen participants A: [only given to participants A] 

The computer screen has four main windows: 

(1) The Status window shows the current round number and the total points [in VS: total earnings] up

 to the previous round. 

(2) The Previous round window depicts the following information about the previous round: 

(a) The number of X-choices. 

(b) The number of Y-choices. 

(c) Your distribution (“X” or “Y”) [in VS: (“Yes – X”, “Yes – Y” or “No”)].  

(d) Your round-points [in VS: round earnings]. 

(3) In the Choice window you will find twelve buttons. Press the buttons of the participants B who

 you want to select. When you have chosen you will have to wait until the other participant A has

 made his or her choice [in VS: until all participants A have made their choices]. 

(4) The Result window shows the results of the current round, hence, after each participant has made

 a choice. Each yellow rectangle shown represents one X-choice and each blue rectangle represents

 one Y-choice. After a few seconds the result will also appear in numbers. 
 

At the lower bound of your screen the Information bar is located. There you are told the current status 

of the experiment. 

 
Computer screens participants B: [only given to participants B] 

The computer screen has four main windows. 

(1) The Status window shows the current round number and the total earnings up to the previous

 round. 

(2) The Previous round window depicts the following information about the previous round: 

(a) The number of X-choices. 

(b) The number of Y-choices. 

(c) Your choice. 

(d) Your revenue. 

(e) Your costs. 

(f) Your round earnings. 
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(3) In the Choice window you will find three buttons. Press the button “Choice X”, the button “Choice

 Y”, or the button “Choice 0” with the mouse, or press the key “X”, “Y”, or “0”. When you have

 chosen you will have to wait until all participants have made their choices. In this window you

 will also be informed about the distribution X and the distribution Y at the beginning of each

 round. 

(4) The Result window shows the results of the current round, hence, after each participant has made

 a choice. Each yellow rectangle shown represents one X-choice and each blue rectangle represents

 one Y-choice. After a few seconds the result will also appear in numbers. 
 

At the lower bound of your screen the Information bar is located. There you are told the current status 

of the experiment. 

 
Further procedures 

Before the 51 rounds of the experiment that are relevant for your earnings start, we will ask you to 

participate in three training-rounds. You will have to answer questions in order to proceed further in 

these training-rounds. In the training-rounds you are not matched with other participants but with the 

computer program. You cannot draw conclusions about choices of other participants A or 

participants B based on the results in the training-rounds. When you are ready with the training-

rounds, we will ask you to answer more questions. 

 

We will now start with the three training-rounds. If you have any questions, please raise your hand. 

One of us will come to you to answer them. 
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Appendix D  Procedures 
 

 

TABLE D.1: SEQUENCE OF ‘ACUTAL’ CANDIDATES DRAWN FROM THE POOL 

OF POTENTIAL CANDIDATES 1-6 IN VS 

Round 
‘Actual’ 

candidates 
Round 

‘Actual’ 
candidates  

Round 
‘Actual’ 

candidates  
1 3-1 21 1-4 41 2-3 
2 4-6 22 5-6 42 2-6 
3 3-5 23 1-2 43 5-1 
4 1-2 24 4-2 44 1-2 
5 4-6 25 5-3 45 6-5 
6 5-1 26 5-3 46 2-1 
7 2-3 27 4-6 47 3-6 
8 6-5 28 3-5 48 6-3 
9 3-5 29 2-6 49 1-4 

10 4-2 30 2-4 50 4-2 
11 1-5 31 3-1 51 5-1 
12 6-3 32 1-4 

 

13 4-2 33 3-5 
14 1-3 34 5-4 
15 6-3 35 3-5 
16 6-4 36 1-6 
17 2-5 37 6-1 
18 4-2 38 4-2 
19 1-2 39 1-6 
20 6-3 40 1-5 

 


