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ABSTRACT 

 This study examines the robustness of the proposed modern solar activity / hurricane 

frequency relationship in light of recently compiled Atlantic hurricane records made available for 

the period 1700-1850. Constructing a thermodynamic efficiency for hurricanes utilizing mean 

monthly sunspot numbers (SSN), a Bayesian model that incorporates HURDAT (1851-2008) and 

Chenoweth archive (1700-1850) datasets is employed to maximize the information about the 

sun-hurricane relationship through the centuries. The information contained within the 

Chenoweth archive adds support to the hypothesis that solar variation influences hurricane 

activity. Results have impacts for U.S. seasonal hurricane science, as well as life and property for 

coastal and near-coastal populations. 
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CHAPTER 1 

INTRODUCTION 
 

 
"Start with 100,000 cubic miles of luxuriant tropical air, juicy with the humidity from a 
vacationer's dream of summery ocean waters. Stir it with coalescing thunderstorms and a hint of 
Coriolis force, just enough to shrug that inconceivable tonnage of airy mass into a spin. Keep the 
wind shear low to tighten the clouds' organization. Let thermodynamics loosen the brakes: The 
hot air rises, the surface pressure falls, and the spin accelerates. Rain pours down but the clouds 
inhale fresh water vapor even faster. Now the saturated moving air is a vast heat engine, and 
what was a sailor's idyll has become a monster consuming the sky, ripping at the sea. Hot, 
impatient wind racing twice as fast as a freight train obliterates everything in its way."  

-- John Rennie, Foreword, Hemingway’s Hurricane
 

 (Scott 2006) 

 

Motivation for this study comes from an interest to better understand how variations in 

solar activity might be affecting North Atlantic hurricanes. To explicate the sun-hurricane 

relationship in this study, a review of integral processes and definitions is required. This section 

addresses the physical background of hurricane characteristics and solar processes. 

Hurricane Characteristics 

Tropical cyclones are large storms that are characterized by heavy rain, winds, and 

extremely low surface pressures, having sustained winds of 33 m/s (74 mph). Originating from 

tropical latitudes (north of 10° N), these storms can persist for well over 3 weeks as they 

progress through the Atlantic Ocean basin. Mid-latitude non-tropical cyclones (MLNTC) rely on 

similar principal atmospheric processes, such as rising air and the resultant energy exchanges 

from evaporation and condensation. However, MLNTC reliance on strong upper-level winds 

(“jet streaks”) as an outflow mechanism for rising air markedly differentiates them from their 

tropical cousins. As a result, MLNTC vertical storm structure in a mature cyclone is tilted toward 

the strong upper-level winds from the surface, where advancing cold air leads at the surface, 

helping to increase surface lifting of air. Hurricanes, the idealized mature tropical cyclone, 

feature a different vertical structure. Instead of strong upper level winds and pressures providing 
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a dynamic outflow for vertical motion, hurricane vertical motion occurs under upper level high 

pressure, created in response to its own intense continued convection. Convection is one of the 

primary transfer processes of heat and mass (in the form of water vapor) in a fluid (Incropera & 

De Witt 1996). The tropical troposphere, the lowest 16 km of Earth’s atmosphere separating the 

troposphere and stratosphere (Brasseur & Solomon 2005), features this violent vertical transport 

of heat and water vapor, resulting in the release of latent heat from water vapor condensing. 

When rising air reaches the tropopause, it encounters a layer of air warmer than the rising air and 

subsides. In this way hurricanes vent the accumulated surface air. The hurricane vertical 

structure remains orthogonal (“stacked”) to the Earth’s surface and upper level high. 

Hurricanes can fill the entire vertical extent of the tropical troposphere and translate 

incredible amounts of energy from the ocean to the atmosphere via latent heat released from the 

condensation of rising ocean-fed moisture. But their development and intensification are highly 

dependent on ambient influences. Changes in atmospheric water vapor composition, steering 

currents, sea surface temperatures, or upper-tropospheric temperatures play significant 

controlling factors toward determining tropical cyclone intensity. In fact, the prediction of 

hurricane intensity changes is one of the great unsolved problems of tropical meteorology. 

Relative humidity of an atmospheric layer can increase or decrease the buoyancy of  air 

rising through it. Dry air entraining into the storm can decrease convection and interrupt the 

hurricane’s efficiency of utilizing the latent heat release from evaporation, inhibiting 

intensification or even leading to decay. Mean layer winds for 100mb through 1000mb (Dong 

and Neumann 1986) often provide the mechanism for direction and translational speed of 

hurricanes and can be produced from semi-permanent (e.g., North Atlantic Oscillation, El Nino 

Southern Oscillation) or seasonal (e.g., mid-latitude baroclinic cyclones, frontal boundaries) 

features. If winds are strong enough, shearing can weaken these giant yet fragile storms.  

The last two factors, sea-surface temperatures and upper tropospheric temperatures, 

constitute the concomitant physical processes we will explore in this study. Sea-surface 

temperatures provide the warm source for the moisture saturation and heating of surface air that 

can lead to rising air and convection. The latent release of heat from condensation is the primary 

source of energy for the hurricane. If temperatures are too low, the convective process is 

inhibited. For this reason North Atlantic hurricane season occurs in hemispheric summer.  
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Upper tropospheric temperatures are cooler than air temperatures near the surface. Unlike 

the stratosphere, tropospheric temperature decreases with height, a consequence of reflected 

terrestrial longwave radiation decreasing as one moves away from the Earth’s surface and 

volumetric expansion of air which results in an energy and, thus, temperature decrease.  The 

temperature at which the atmosphere decreases with height is referred to as the lapse rate 

(Ackerman & Knox 2003). The buoyancy of a theoretical parcel of rising air is determined by its 

temperature in relationship to its ambient environmental temperature: If a parcel is warmer than 

the air layer it is entering into, it will continue to rise. If a parcel is cooler, the parcel subsides. 

Also, moisture content (saturation) of a parcel affects this buoyancy. A rising saturated parcel 

will cool more slowly than an unsaturated parcel due to the release of latent heat from 

condensation partially countering the cooling from volumetric expansion. Atmospheric humidity 

plays a major role in vertical motion in the troposphere. But ambient temperatures significantly 

impact air parcel buoyancy. 

The thermodynamic (the study of heat / mechanical work transformation (Fermi 1956) 

implications of cooler upper air temperatures are realized in terms of a thermal efficiency, 

characterizing the vertical motion process within thunderstorms and, on a larger scale, 

hurricanes. This theoretical model is a perfectly efficient model of converting energy from heat 

to kinesis (i.e., thermal energy to mechanical work). However, energy, mostly in the form of 

heat, is lost at multiple points in the cycle, lowering the efficiency. In this light, Emanuel (1991) 

argues that only a small amount of energy in the convective process is available for the 

generation of wind (mechanical) energy, usually on the order 1/3. This implies that 1/3 of all 

available energy derived from the release of latent heat (into sensible heat) from evaporation 

actually is represented as a hurricane’s wind intensity. The efficiency is characterized by 

∈ =
𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑜𝑜
𝑇𝑇𝑠𝑠

 

where Ts represents temperature of the heat source (i.e., sea-surface temperatures) and To 

represents outflow temperature (Emanuel 1991). The difference between surface and upper-

tropospheric temperatures represents a potential energy available for the generation of wind 
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energy in hurricanes. Maximum potential intensity (hereafter, MPI) theory stipulates that a 

hurricane's intensity is proportional to the thermodynamic efficiency between input energy 

(entropy gain from ocean/atmosphere interaction) and outflow venting (mechanical dissipation) 

(Miller 1958; Emanuel 1991; Holland 1997; Bister and Emanuel 1998), all else being equal. 

An increase (decrease) in surface (upper-tropospheric) temperature would increase the 

thermodynamic potential energy available for convection. Emanuel (1991) estimates that 108 

Jm−2 would be needed to achieve thermodynamic equilibrium (enthalpy) between the surface and 

lower stratosphere, an enormous amount. As a result, the change in inflow / outflow 

temperatures of a given tropical system alters its potential energy yield and MPI.  

Solar Processes 

While hurricane development depends on optimal sea-surface or upper tropospheric 

temperatures the sun’s role in driving the Earth’s climate is paramount. Heating of our planet 

provided by this star constitutes the primary impetus for Earth’s atmospheric processes. The 

uneven distribution of heating of our planet leads to thermodynamic variability and instability. 

Just as seasons are a hemispheric response to the tilting of the Earth's axis and change in direct 

sunlight, the sun plays the critical role in determining temperatures, with its short- and long-wave 

radiation impacting various atmospheric layers.  

The sun is the center of the solar system and provides the Earth with heat and light. 

Almost ¾ of the sun’s total mass is hydrogen (Basu et al 2008). Nuclear transformations from 

hydrogen to helium, deuterium, beryllium, and lithium comprise the sun’s continuous fusion 

cycle called the p-p (proton-proton) chain, where hydrogen fusion (into helium) is responsible 

for 85% of the sun’s energy output (Salpeter 1952).  

Sunspots are visible disturbances on the surface of the sun resulting from intense 

magnetic fields associated with the geographic switching of magnetic poles that occurs, on 

average, every 11 years known as the solar dynamo, or solar magnetic cycle. Sunspots consist of 

dark central cores (umbra, Latin for “shadow”) in various shapes (penumbra, Latin for “almost 

shadow”) (Weiss 2007). Their appearance indicates an increasingly magnetically-active sun, 

often accompanied by increased solar prominences and coronal mass ejections. The sunspot is 

actually a result of convective inhibition of solar plasma from magnetic fields. Though the 
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sunspots are cooler (darker) and decrease solar luminosity, cloud-like features just above sunspot 

clusters called faculae are about 300 K hotter (brighter) than normal surface temperatures  of 

5,777 K (Stanford 2009). The result is higher outgoing Total Solar Irradiance (TSI) and higher 

ultraviolet (UV) and extreme ultraviolet (EUV) radiation reaching Earth during periods of high 

sunspots.  

TSI is the amount of solar radiative energy impacting the Earth's upper atmosphere and 

averages 1367 Wm-2 (+/- 4 Wm-2). It varies in phase with the solar magnetic activity cycle and, 

thus, ultraviolet radiation. While variations of approximately .1% TSI can occur within a given 

11 year cycle, shortwave UV and EUV intensity is known to vary as much as 10% within a given 

cycle. The atmospheric impacts of a 10% UV and EUV variation can be significant (Hoyt & 

Schatten 1997).  

Planck’s law describes the amount of light emitted (spectral irradiance) in terms of 

electromagnetic radiation for all wavelengths for a given temperature (Rybicki 1979). With the 

sun’s surface temperature of 5,777 K, electromagnetic radiation is emitted most abundantly in 

the visible spectrum (380 nm – 760 nm), followed by the ultraviolet (UV) spectrum (10 nm – 

400 nm). UV radiation is categorized into 3 bands: UV-A (400 nm – 320 nm), UV-B (320 nm – 

280 nm), and UV-C (280 nm – 200 nm) (Ghosh 2002). Absorption of these UV rays is the realm 

of ozone and ozone production. Ozone absorbs UV most abundantly at wavelengths of 200 nm – 

310 nm range, known as the Hartley band (Assembly 1977). The Mg II index (Heath and 

Schlesinger, 1986; Viereck and Puga, 1999) measures solar UV variations, beginning in 1991, at 

wavelengths near 200 nm, a critical ozone production wavelength. Hood (2003) utilized this 

index to find that the tropical tropopause temperatures responded to increased UV radiation. 

Increases in upper-tropospheric temperature corresponded strongly with solar activity maximums 

(Pap & Fox 2004), agreeing with the findings from NCEP/NCAR stratospheric temperature 

reanalyses (Labitzke 2002). Thusly, upper tropospheric warming occurs during periods of high 

solar activity due to increased UV radiation ozone absorption.  

Higher solar activity has also been linked with increased global SST. Upper ocean 

temperatures were shown to increase during periods of increased solar activity over most of the 

tropical oceans (White et al., 1997, 1998). Warming at the surface increases hurricane MPI, per 

the description in the previous section. Conversely, warming aloft caps potential available energy 

and hurricane intensification. The bicameral effect from increased sunspots through warmer sea 
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surface temperatures (hereafter, SST) and warmer upper tropospheric temperatures (hereafter, 

UTT) prevents a univariate approach toward describing the actual solar influence on hurricanes.  

The idea for a solar influence impact upon hurricanes was first discovered in 1872, which 

found that Indian Ocean hurricane frequency increased when sunspots increased (Meldrum 

1872). The study was ported to the North Atlantic (Poey 1873). Unfortunately, information about 

the relationship was not available, but a relationship was found. Elsner & Jagger (2008) continue 

the sun-hurricane relationship investigation in the North Atlantic. Western Caribbean in-season 

SSTs are nearly always warm enough for hurricane formation, while eastern Caribbean and 

tropical Atlantic SST are generally lower and much more spatially confined. With MPI optimal 

temperatures of 26 – 28 °C (Holland 1997) seasonally in place for the western Caribbean, a 

controlled spatial domain exists for examining a counter thermodynamic factor (UTT) to SST. 

Utilizing a Poisson generalized linear model (GLM) and accounting for shear and steering 

currents, the western (eastern) basin demonstrated a significant negative (positive) relationship 

between solar activity and hurricane frequency, corroborating the thermodynamic inflow/outflow 

temperature argument. The relationship was shown to be statistically significant after controlling 

for other factors known to affect hurricane frequency. 

For the purpose of our study, we are interested in hurricane counts as our dependent 

variable. Intensity and hurricane counts (frequency) are not mutually independent characteristics 

(Elsner & Jagger 2008). A closed system becomes a tropical storm once sustained winds reach 

17 m/s. Likewise, the system then becomes a hurricane once sustained winds reach 33 m/s. All 

else being equal, as hurricane season1

Hypothesis and Objective 

 characteristics (e.g., sea-surface temperatures, upper air 

temperatures, semi-permanent synoptic scale features, etc.) alter MPI we expect hurricane 

frequencies to respond accordingly. 

The sun-hurricane relationship was demonstrated in Elsner & Jagger (2008) as 

significantly suppressing hurricane activity during periods of high SSN for regions of sufficient 

                                                        
 
 
1 The North Atlantic hurricane season is temporally defined from 1 June through 30 November. 97% of all tropical 
cyclone activity has occurred between these dates since 1856 (http://www.aoml.noaa.gov/hrd/tcfaq/tcfaqHED.html). 

http://www.aoml.noaa.gov/hrd/tcfaq/tcfaqHED.html�
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SST. We aim to build off of this research and hypothesize that sun-hurricane relationship can be 

more precisely defined through the use of extended hurricane records (Chenoweth 2006). This 

study will examine the robustness of the sun-hurricane relationship in light of recently compiled 

hurricane observations prior to modern data (Chenoweth 2006).  

First, the relationship will be re-examined within the modern (1851-2008) HURDAT 

dataset, and a seasonal model will be utilized to explicate the impact of SSN, along with SST and 

temporal constraints, upon U.S.-landfalling hurricane frequency counts. Then, SSN will be used 

as a sole data source for examining the sun-hurricane relationship, with the construction of a 

thermodynamic efficiency from peripheral and core month SSN to be tested in a seasonal model. 

Ultimately, a Bayesian model that makes use of additional U.S.-landfalling hurricane counts 

back to 1749 will be constructed to maximize the information about the sun-hurricane 

relationship across the centuries. 
Chapter 2 will elaborate upon the  nature of the dependent variable (hurricane records) 

and independent variables (sunspot numbers and sea-surface temperatures) used in our study. 

Chapter 3 will examine  the sun-hurricane relationship with respect to modern data records, and 

provide a thermodynamic method toward this discovery. Chapter 4 will extend this method to 

records prior to those examined in Chapter 3, utilizing historical hurricane records from 

Chenoweth (2006) and SSN data (National Geophysical Data Center 2009), to be followed by a 

summary and conclusions.  
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CHAPTER 2 

DATA 

 

 
 This study incorporates modern and historical hurricane records, sea surface temperatures 

(SST), and monthly mean group sunspot numbers (SSN) toward testing the robustness of the 

sun-hurricane relationship. This chapter looks at a description of modern hurricane records, with 

an inclusion of a new compendium of hurricane observations prior to modern records. Finally, 

SST and SSN data are outlined. 

Hurricane Records 

The National Hurricane Center (NHC) houses the North Atlantic-basin hurricane 

database (HURDAT, or Best Track), containing dates, tracks, wind speeds, and central pressure 

values as available, providing the best available modern hurricane information dating back to 

1851 (Jarvinen et al. 1984). Tropical tempestologists rely heavily, if not exclusively, on this 

record for performing quantitative analyses, producing research such as hurricane return levels 

(Elsner et al 2008); risk analysis using hurricane destructiveness power predictions (Bogen et al 

2007); and predictive modeling for storm seasons (Larow 2008). With refining work begun by 

the late Jose Fernandez-Partagás (Partagás & Diaz 1996), over 5000 additions and alterations 

have been approved by the NHC Best Track Change Committee in an effort to improve the 

accuracy of storm data between 1851-1910 (AOML 2008). The April 2008 version identifies 

1,362 unique North Atlantic storms (> 18 m/s) and 819 hurricanes (> 33 m/s), 283 of which 

affected the U.S. mainland (National Hurricane Center 2008).  

Chenoweth’s cross-referenced archival of premodern (1700-1850) North Atlantic 

hurricanes should be of particular interest to North Atlantic storm studies. His work improves 

upon previous compilations (Poey 1855, Redfield 1863, Tannehill 1938, Ludlum 1963) and 

provides individual storm positions and dates preceding those listed in the HURDAT 

compendium. Verifying storm position and dates, Chenoweth conducted a re-analysis of 
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Ludlum’s 1963 work, cross-referencing and validating individual entries using newspaper 

accounts, weather diaries, and ships’ logbooks. Chenoweth’s compilation identifies 383 unique 

storms and 289 hurricanes, 127 of which affected the U.S. mainland (Chenoweth 2006).  

For both HURDAT and Chenoweth archive datasets, hurricanes were manually identified 

as either affecting the US mainland or not based on available information and then counted. All 

modern record references to U.S. hurricanes refer to those that made U.S. landfall. For the 

Chenoweth archive, hurricanes listing a U.S. mainland state or region qualified as U.S.-affecting. 

Chenoweth’s archive was digitized for use as a database of individual storm locations (Table 

2.1). Individual storm methodology is explicated in Scheitlin et al. (2009). Annual counts of 

these storms serve as the dependent variable for our statistical modeling, which was 

accomplished using R (R Development Core Team 2006). 

 Table 2.1 - A digitized portion of the Chenoweth (2006) archive. Individual event locations are  
 represented for a given storm event. “Track” represents verbatim listings from the archive,  
 which are split into respective observation “Locations” and digitized with appropriate latitude /  
 longitude coordinates. 

Year Month Fsn Int Track Location Latitude Longitude 
1700 9 1 HU South Carolina and Virginia South Carolina 32.87 -79.63 
1700 9 1 HU South Carolina and Virginia Virginia 37.29 -75.58 
1700 9 2 HU Barbados Barbados 13.18 -59.56 
1702 9 3 HU Barbados to 1711N 6949W Barbados 13.18 -59.56 
1702 9 3 HU Barbados to 1711N 6949W 1711N 6949W 17.18 -69.82 
1703 10 4 HU Virginia to New England Virginia 37.29 -75.58 
1703 10 4 HU Virginia to New England New England 42.8 -70.66 

Issues of accuracy are inherent in historical observations due to lack of observational 

density, both temporal and spatial. Table 2.2 outlines the major advances in tropical cyclone 

observation. Historical documents (personal diaries, newspaper accounts, ships’ logbooks) 

constitute a large segment of paleotempestological data. Geological proxies, such as tree rings, 

pollen, oxygen isotopes from ocean and ice cores, can also be included toward efforts in 

reconstructing storm histories that have escaped the reach of an era’s technological and 

observational prowess. 

Differences in storm counts between the modern (HURDAT) and prior (Chenoweth 

archive) storm records may be explained by changes in tropical climatology and/or due to limited 

opportunities of observation. Given the nature of the collection of premodern observations, 

knowledge of storm location and occurrence was a function of shipping traffic path frequency 
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and meteorologically-attuned populations. As such, we assume that storm counts are 

underrepresented in the Chenoweth archive. An attempt at representing this undercount will be 

documented in Chapter 4. 

 Table  2.2 - Advances in tropical cyclone observation (Jarvinen 1984). 
Pre-1871 Land observations and Ship logs 
1871 Government establishment of Hurricane Warning Service 
1905 Ship observations via wireless telegraph 
1914 Opening of Panama Canal - shipping boon in tropical Atlantic 

(Caribbean, Gulf of Mexico) 
1918 End of World War I 
1937 Radiosonde (weather balloon) network 
1944 Organized reconnaissance 
1945 End of World War II 
1955 Coastal Radar network 
1960 Orbiting Sun-synchronous satellites (Visible and Infrared) 
1966 Geostationary satellites (Visible only) 
1973 Ocean data buoys 
1974 Geostationary satellites (Visible and Infrared) 
1978 Aircraft-satellite data link 
1992 Automated Surface Observing System (ASOS) network2

Mid-1990s 

 

Mobile Radar and Observation platforms3,4

2005 
 

Aerosonde (unmanned aerial vehicle)5

Sea Surface Temperatures 

 

The SST Anomalies data is provided and maintained by the Physical Sciences Division 

of the Earth System Research Laboratory, NOAA, and is derived from the Kaplan SST dataset 

(Kaplan et al. 1998). Though observations were sometimes sparse, interpolated SST are available 

back to 1856 and are recorded monthly and globally by a 5° x 5° lat/long bounding. Utilizing 

ship observations located in the U.K. Met Office database (Parker et al. 1994), Kaplan’s dataset 

is an analysis which uses optimal estimation from 80 empirical orthogonal functions (EOFs). 

EOFs are useful for accounting for time-series and spatial patterns. 

                                                        
 
 
2 ASOS User’s Guide (1998) 
3 TTHRT (Texas Tech Hurricane Research Team, Texas Tech University) 
4 \FCMP (Florida Coastal Monitoring Program) 
5 Aerosonde (2006) 
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A SST time-series (Figure 2.1) demonstrates the upward-trending SST. For this study 

unsmoothed monthly mean North Atlantic SST Anomalies (1856-2008) are utilized (Enfield et. 

al 2001); references in this study to SST imply use of this data set. The methodology (Earth 

2009) begins with the 5° X 5° gridded Kaplan SST dataset. An areal weighted average is 

calculated over the North Atlantic from 0° to 70° N. The results are linearly detrended in an 

effort to account for climate change affecting the data (Mann & Emanuel 2006). A 121-month 

smoother can be applied, but for the purpose of this study is not. 

Table 2.3 lists seasons corresponding to cool, neutral, and warm SST anomaly years 

within the extent of the dataset. Demonstrating the importance of the detrended dataset, a value 

of 22.8°C can correspond with a cool, neutral, or warm phase depending on the sampling year. 

Warm and cool phase anomaly years will be  used, specifically, in the next chapter. 

 

 
Figure 2.1 - Annual North Atlantic SST from 1851-2008. Blue, gray, and red dots correspond with below, 
normal, and above-average terciles of AMO anomaly years. 
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 Table 2.3 – Cool (C), Neutral (N), and Warm (W) SST anomaly years for 1856 - 2008. Y denotes the  
 last  digit of the year. 

Y 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 

0 . N W W C N C C W N N W C N W N 

1 . W N N N N C C W W W N C N C W 

2 . C W N C N C C W W W N C C C W 

3 . C N N N C C C W N W C C C C W 

4 . W N C C C C C W W N C C C C W 

5 . W N N N C W C N W W C C C W W 

6 W N N N W C N N W N N N C C N W 

7 N N W W N C C W W N W C C W W W 

8 N N W W N N C N W N W C C N W W 

9 N N N N W C C C W W N C N N W . 

 

Sunspot Numbers 

Monthly mean sunspot numbers (SSN) for this study were the International sunspot 

number as made available by the National Geographic Data Center (National Geophysical Data 

Center 2009), which was originally constructed by Solar Influences Data Analysis Center, World 

Data Center at the Royal Observatory of Belgium (Van Der Linden 2009). Reliable monthly 

observations extend back to 1749. Swiss astronomer Johann Rudolph Wolf introduced a daily 

measurement technique that observes both total spots observed and the quantity of their 

clusterings. The data set addresses observed error by incorporating a weighted average of 

cooperating observations. 

Figure 2.2 displays a time-series of (a) U.S.-affecting seasonal hurricanes, (b) SST 

anomalies, and (c) monthly mean sunspots for the period 1856-2008. U.S.-affecting hurricane 

counts (~1.78 / season) show no significant trending during the time period; a line of least 

squares regression yields a slope = -0.001, but at inconclusive statistical significance (P = 0.631). 

SST anomalies account for time autocorrelation per the section description. The time period 

reflects almost 14 full solar cycles (Kane 2002, 2009). 



13 
 

 
 Figure 2.2 - Time series of (a) U.S. seasonal hurricanes, (b) SST anomalies, and (c) monthly mean sunspots  
 for the period 1856-2008.  
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CHAPTER 3 
 

EVIDENCE FOR A SOLAR INFLUENCE USING MODERN 
RECORDS  

 
 

In their study, Elsner and Jagger (2008) show a geographic difference in the sun-

hurricane relationship. Over the Western Atlantic where oceanic heat content is largest, the 

relationship demonstrates a significant decrease in hurricane frequency for increased sunspots. In 

contrast, the Eastern Atlantic indicates an increase in hurricane frequency. The Western Atlantic 

was theorized as demonstrating a thermodynamic inhibition due to warmed upper tropospheric 

temperatures from increased UV radiation during times of high sunspots. The Eastern Atlantic 

findings suggest increased SST as overpowering upper level warming during times of high 

sunspots. 

In an exploration similar to their spatial examining of SSN and hurricane frequency, we 

attempt to create a controlled temporal domain toward eliciting further information about the 

sun-hurricane relationship. Our use of the word controlled is not meant to imply a change in 

experimental conditions, as it normally entails; physical geographic events and subsequent 

observations represent singular opportunities in capturing  information.  Rather, it refers to a 

methodological approach toward identifying and approximating the magnitude of covariates 

(SSN, SST) within this multivariate analysis. Before conducting our statistical investigation, 

however, we justify our parametric modeling techniques regarding the use of hurricane count 

information. 

The Poisson Nature of Hurricane Counts 

Parametric modeling in this study are based on Poisson parameterized distributions, the 

long held approach to hurricanes as a stochastic event (Smiley 1959), as an approximation for the 

density of probable outcomes. The usage of the Poisson parameterization requires the event obey 

the principles characterized by a Poisson process. A Poisson process is predicated on two 

conditions: 1) As the sampling time interval decreases, event occurrences must not exceed a one 
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occurrence threshold (a non-temporal concurrence clause); 2) there can be no relationship 

between count occurrences at any time interval (Elsner & Kara 1999). 

Hurricane counts can be considered a quasi-Poisson process. Given that hurricanes can 

form anywhere within the North Atlantic tropical cyclone source region as well as at any time 

within a given hurricane season, it is not impossible for concurrent cyclogenesis, though highly 

unlikely. Also, non-interdependence of events cannot be guaranteed: Hurricane activity can be 

squelched within a given season, for instance, if a second storm were to traverse the same region 

as a previous storm (< 2 weeks) by inducing colder-water upwelling and, thus, cooler sea surface 

temperatures. The cooler sea surface temperatures can weaken and even cause the demise of the 

following tropical cyclone. 

A chief characteristic of the Poisson process approximation relies on the rareness of the 

measured event. A physical occurrence, such as hurricanes, constitutes a binary count dependent 

on the threshold of maximum sustained winds of 33 ms-1; a negative hurricane occurrence is a 

physical and mathematical impossibility. For Poisson distributions, the mean and variance are 

equal for rare event count data. As counts systemically increase, the distribution will take on a 

more normally distributed probability density function, characterized by independent mean and 

variance.  

Sun-hurricane Relationship in Modern Data 

Assuming a Poisson distribution to model U.S.-affecting hurricane counts, Figure 3.1 

reveals that increased September SSN, representing the climatological peak of the North Atlantic 

hurricane season, results in the decrease in mean U.S.-affecting hurricane frequency. We argue 

that high September SSN should demonstrate most clearly a suppression of U.S.-affecting 

hurricane frequency due to warmed UTT. 

Figure 3.1a shows the probability distribution of U.S.-affecting hurricanes conditioned on 

values of September SSN for seasons of above-normal SST. Above-normal SST are described in 

Chapter 2; specifically, Figure 2.2. For each hurricane count the percent represents the 

probability of that many hurricanes.  For the lowest-tercile September SSN (less than 10 

recorded), the probability of zero U.S.-affecting hurricanes occurring is 9%.  This probability 

increases to 20% for highest-tercile September SSN.  Conversely, the probability for exactly  
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Figure 3.1 - Probability distribution (Poisson) of U.S.-affecting hurricane counts conditional on terciled 
September sunspot numbers for years of (a) upper- and (b) lower-tercile core-season (August – October) 
Atlantic Ocean temperature anomalies.  Average September sunspots are displayed as the means of their 
respective terciles. Data spans from 1856 – 2008.   
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4 hurricanes is 13% and 6% for lowest and highest September SSN, respectively. Likewise, the 

probability of 3 or more hurricanes occurring dwindles from 40%  to 22%. Note that the shape of 

the distribution is much more symmetric for lowest-tercile SSN. 

The second graph (Figure 3.1b) shows the probability distribution conditional on values 

of September SSN for seasons of below-normal SST. For the lowest-tercile September SSN, the 

probability of U.S.-affecting hurricanes occurring is 20%. This probability increases to 40% for 

highest-tercile September SSN. Conversely, the probability for exactly 4 hurricanes is 6% and 

1% for lowest and highest September SSN, respectively. Likewise, the probability of 3 or more 

hurricanes dwindles from 22% to 6%. Also, as mean storm counts decrease with increasing 

tercile SSN, the distribution takes on an even more skewed distribution. 

With hurricane intensity heavily dependent on SST (e.g., Emanuel 1991, Holland 1997, 

Henderson-Sellers et al 1998), the decrease in overall U.S.-affecting hurricane probabilities of 

warm SST to cold SST is expected. However, increasing sunspot numbers under both scenarios 

decrease, demonstrating the effect of warmed upper tropospheric temperatures as an inhibiting 

thermodynamic factor in hurricane intensity and, thus, frequency. 

The correlation between September SSN and U.S.-affecting hurricane counts is 

modulated by SST.  This can be seen in Figure 3.2. The correlation (Pearson) over all years is -

0.14 as indicated by the left-most point. The correlation is based on a sample size of N=153 

years. Each storm season is considered independent, and the standard error on this correlation 

estimate is 0.156, providing a 90% confidence interval of (-0.279 , -0.01). The confidence 

interval is shown in the gray shading. The next point on the graph to the immediate right is the 

correlation between hurricane counts and SSN after removing the coldest 20%  (20th percentile) 

seasons. The 20th percentile SST value constitutes an anomaly of -0.17°C. The correlation 

changes negligibly, but with reduced sample size the confidence band widens. The plot shows 

that the correlation does not change much for the coldest 50% of seasons. However, when 60% 

of the coldest seasons are removed, the correlation decreases to -0.23 with a 90% confidence 

interval of (-0.435, -0.035), based on a sample size of 61 years. The correlation continues to 

decrease as only the warmest years remain. With sample size decreasing accordingly the 

confidence bands expand, but the relationship between U.S.-affecting hurricane counts and 

September SSN is statistically significant. The negatively strengthening correlation suggests that 

the warmest core-season SSTs display the strongest suppressive effects from high September 
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SSN. Warmer core-season SSTs provide a fertile developing ground for tropical development. 

As such, suppressed tropical development (i.e., U.S.-landfalling hurricanes) from high 

September SSN should be most evident then. 

 
Figure 3.2 – Pearson product-moment (points) and Spearman rank (dashed line) Correlation coefficients 
between September SSN and U.S.-affecting hurricane counts. The correlations are computed at increasing 
deciles of August through October averaged SST for the modern period 1856-2008.  The shaded region 
represents the 90% confidence bound at each computed value (Pearson).  The number of qualifying seasons  
are shown above the abscissa. 

Bivariate exploration of SSN and SST data (Figures 3.1 and 3.2) has revealed 

corroborating evidence toward the sun-hurricane relationship in the North Atlantic basin; 

specifically, that increased SSN and warmer UTT (from increased UV radiation) suppresses 

U.S.-affecting hurricane frequency. Next we will examine the same datasets, temporally 

partitioned, in  single and multi-variate generalized linear models toward demonstrating their 

concomitant effects.  
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Seasonal Model for U.S.-affecting Hurricanes using SSN and SST for 1851-
2008 

Prior analysis showed that the relationship between SSN and U.S.-affecting hurricanes is 

also contingent upon on oceanic warmth. This makes physical sense. Hurricanes, as previously 

described, require the tropical ocean as a continual source of moisture and heat. A baseline of 

26.5°C has been the long held minimum for tropical development (e.g., Palmen 1948; Gray 

1968, Anthes 1982). Seasons of higher overall SST, all else being equal, should provide a more 

conducive environment for tropical development. Our previous result indicates the suppressive 

effect of higher September SSN upon U.S.-affecting hurricane counts, especially during warmer 

SST hurricane seasons. The more conducive SST seasons, as a result, provide a larger sampling 

(from increased frequency), which demonstrate a magnitude increase in the negative effects from 

increased sunspots and UTT warming.  

We proceed next by developing a seasonal generalized linear model comprised of 

September SSN and August through October averaged SST as covariates within a seasonal 

model of U.S.-affecting hurricane counts in the modern record. Since there is more than one 

explanatory variable (SST and SSN) it is more useful to use a generalized linear regression 

model rather than bivariate correlation.  

Generalized linear models (hereafter, GLM) are comprised of three elements: A 

distribution function, a linear predictor, and a canonical link function. Each GLM described 

herein uses the logarithm of the independent variable (i.e., U.S.-affecting hurricane counts) as the 

canonical link function to a linear regression of the covariates (i.e., core/peripheral month SSN, 

AMO). The anti-log of the linear predictor (with other covariates held constant) will produce a 

factor change in the dependent variable.  

The covariate estimate represents the change in the logarithm of the dependent variable 

(i.e., U.S.-affecting hurricanes) while the other covariates are held constant. Each covariate 

reduces the degrees of freedom of the model by 1. The significance of the covariate to the model 

is based on the amount by which the residual deviance decreases with its inclusion in the model. 

Under the null hypothesis that a covariate is unimportant to the model, the residual deviance has 

a χ2 distribution with 1 degree of freedom. A P-value less than 0.05 indicates that the covariate is 

statistically important to the model after accounting for the variables already present in the 
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model. Covariates are added to the model sequentially from top to bottom as listed in all tables. 

Null refers to a model containing no covariates. 

 Table 3.1 – Coefficients and Analysis of Deviance of a Poisson Regression Model  
 for U.S.-affecting hurricanes (1851-2008) using mean August-October SST (SSTAug-Oct)  
 and September SSN (SSNSep). 

Term Estimate Degrees of 
Freedom Deviance 

Residual  
Degrees of 
Freedom 

Residual 
Deviance P-value 

NULL + 0.695   152 194.207  

SSTAug-Oct + 0.733 1 6.134 151 188.073 0.013 

SSNSep  - 0.003 1 4.094 150 183.980 0.043 

Signs of the parameter estimates (Table 3.1) indicate a contrasting relationship between 

the covariates: Warm core-season SST increases the probability of a U.S.-affecting hurricane, 

whereas increasing September SSN decreases the probability of a U.S.-affecting hurricane. The 

findings are statistically significant and consistent with supporting hurricane theory and the sun-

hurricane relationship.  

Quantitatively, the model covariate estimates represent the logarithmic response within 

the dependent variable (i.e., U.S.-affecting hurricane counts) for a one unit covariate increase 

(with all other covariates held constant). We take the anti-log of the estimate, multiplied by the 

unit covariate, to find the rate ratio impact upon the dependant variable. Given that interannual 

SST anomalies vary from (-0.465 °C, +0.485 °C), we interpret the model that an increase of 0.37 

°C (95th percentile) in core-season SST increases the probability of a hurricane occurrence by a 

factor of 1.31 (e +0.73*0.37) when September SSN are held constant. August through October 

averaged SST anomaly increase of 0.48 °C (99th percentile) increases the probability of a 

hurricane occurrence by a factor of 1.42 (e+0.73*0.48). 

Conversely, when core-season SST is held constant, a 1 unit increase in September SSN 

decreases the probability of a hurricane occurrence by a factor of 1.003... (e-0.0026). A September 

SSN value of 145 (95th percentile) decreases the probability of a hurricane occurrence by a factor 

of 1.46 (1 / e-0.026*145 ). A September SSN value of 193.9 (99th percentile) decreases the 

probability of a hurricane occurrence by a factor of 1.66 (1 / e-0.0026*193.9 ). SSTAug-Oct 

demonstrates a greater reduction in deviance than does SSNSep (6.134, 4.093), indicating that the 
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model is impacted more heavily by SST. Both terms, though, are statistically significant, 

reinforcing the previous section’s bivariate analysis results that SST and SSN have a pronounced 

effect upon the frequency of U.S.-affecting hurricanes. 

  Table 3.2 – Coefficients and Analysis of Deviance of a Poisson Regression  
  Model for U.S.-affecting hurricanes (1851-2008) using September SSN (SSNSep). 

Term Estimate Degrees of 
Freedom Deviance 

Residual  
Degrees of 
Freedom 

Residual 
Deviance P-value 

NULL +0.713   157 196.421  

SSNSep  - 0.002 1 3.626 156 192.796 0.063 

 

For both variables listed (Table 3.1), the reduction in residual deviance demonstrates the 

model “improvement” toward characterizing the relationship of the independent variables upon 

the (logarithm of) dependent variable.  But is the covariate SSNSep a significant predictor alone 

toward determining U.S.-affecting hurricane frequency? A Poisson regression of modern data 

utilizing September SSN as the sole predictor of U.S.-affecting hurricane frequency (Table 3.2) 

yields the expected negative sign of the coefficient (-0.002) , continuing to demonstrate the 

suppressive effect of warmed UTT, though at marginal statistical significance (P = 0.063). The 

removal of the SST component weakens the model, which makes physical sense: SST is a 

critical component toward hurricane development and thermodynamic evaluation. Therefore, we 

will continue to investigate the sun-hurricane relationship with respect to SST. 

We have previously demonstrated within the modern data (1851-2008) the bicameral 

effects of September SSN and August through October SST upon U.S.-affecting hurricane 

counts. Next, we examine the effects of core (September) and peripheral (May, June, July, and 

November) month SSN as covariates upon U.S.-affecting hurricane frequency. The temporal 

partitioning will be used to test the sun-hurricane relationship and describe a unique method 

toward demonstrating a proxy for SST. 

Table 3.3 represents GLM parameter estimates and analysis of deviance for a Poisson 

regression model. Core-season SSN demonstrates a negative coefficient as produced previously, 

indicating U.S.-affecting hurricane suppression for increased SSN. However, a positive  
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 Table 3.3 – Coefficients and Analysis of Deviance of a Poisson Regression Model for U.S.- 
 affecting hurricanes (1851-2008) using September SSN (SSNSep) and mean May, June, July,  
 and November SSN (SSNMay, Jun, Jul, Nov). 

Term Estimate Degrees of 
Freedom Deviance 

Residual  
Degrees of 
Freedom 

Residual 
Deviance P-value 

NULL +0.654   157 196.421  

SSNSep - 0.010 1 3.626 156 192.796 0.057 

SSNMay, Jun, Jul, Nov +0.008 1 4.417 155 188.379 0.036 

coefficient is indicated for peripheral month SSN. We propose that this covariate 

(SSNMay,Jun,Jul,Nov) within the regression model constitutes a SST proxy, where increased 

SSN over these months results in overall warmer seasonal SST, supporting increased U.S.-

affecting hurricanes. Deviance results state that peripheral month SSN carries greater weight 

toward impacting U.S.-affecting hurricane counts than core month SSN. This result is similar to 

that obtained in the SSN-SST regression model. Increases in SSNSep for both models result in a 

decrease in U.S.-affecting hurricanes; SSTAug-Oct and SSNMay, Jun, Jul, Nov result in an increase.  

However, our approach must take into account potential multicollinearity. Intraseasonal 

SSN are highly correlated (0.936), given the sinusoidal nature of the solar cycle: A high value in 

one month implies that its surrounding months will also be high. Collinear variables within a 

regression model artificially inflate respective standard errors as well as P-values, leading to 

possible failure in rejecting the null hypothesis (Allison 1999).  

SSN Thermodynamic Efficiencies 

One method toward mitigating the negative effects of multitcollinearity within a 

statistical model is by combining the two quasi-independent variables. We have chosen to 

represent the peak and non-peak months as a single covariate. SSNε within a Poisson GLM 

(Table 3.4) represents the difference between peripheral and core  month SSN as a single 

covariate,  a thermodynamic efficiency between SST and UTT. The model estimate is positive 

(statistically significant), indicating that higher (lower) efficiencies correspond with higher 

(lower) U.S.-affecting hurricane frequency. 
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 Referring to the structure outlined in Chapter 1, hurricanes can be thought of as heat 

engines. Warm moist air is rises from the surface, cools adiabatically, and releases latent heat 

into the atmosphere. A portion of this energy is used toward wind generation (Emanuel 1991) 

which becomes one of the observable intensity indicators for hurricanes. The moist warm air 

continues to rise until matching the temperature of its surroundings. The resultant outflow vents 

opposite (clockwise) to the rotation of the hurricane (counter-clockwise). To this end, the 

ambient temperatures at the inflow and outflow determine how much energy is available for use 

in the hurricane. As such, SSNMay, Jun, Jul, Nov and SSNSep represent a proxy SST-UTT / inflow-

outflow temperature modification and, when combined, constitute an efficiency suitable for 

examining the thermodynamic environment for a given storm season. 

The range of efficiencies stretch from -51.7 to  + 51.2. As described on a prior Poisson 

GLM, taking the anti-log of estimate for the lowest observed efficiency yields a decrease in U.S.-

affecting hurricanes by a factor of 1.59 ( 1 / e+0.009*-51.7 ); for the highest observed efficiency, an 

increase in frequency by a factor of 1.58 ( e+0.009*51.2 ). 

  Table 3.4 – Coefficients and Analysis of Deviance of a Poisson Regression Model  
  for U.S.-affecting hurricanes (1851-2008) using SSN thermodynamic efficiencies (SSNε). 

Term Estimate Degrees of 
Freedom Deviance 

Residual  
Degrees of 
Freedom 

Residual 
Deviance P-value 

NULL +0.575   157 196.42  

SSNε +0.009 1 6.92 156 189.50 0.009 

 

Figure 3.3 displays a histogram of SSN thermodynamic efficiencies for 1851 – 2008. 

Efficiencies are calculated by subtracting average peripheral-season month SSN (May, June, 

July, November) from average core-season month SSN( September). The distribution of SSN 

thermodynamic efficiencies produces a normal distribution (owing to the sinusoidal nature of 

annual SSN) with mean SSN efficiency -0.48 and a standard error of ± 17.09. Median SSN 

efficiency is +0.83. Almost 14 full solar cycles are represented in the dataset, comprising 2/3 of 

Solar Cycle 9 through all of Solar Cycle 23 (Kane 2002, 2009). 

Next we examine hurricane seasons of highest and lowest SSN thermodynamic 

efficiencies. Seasons 1999, 1938, and 1929 are represented in Figure 3.4 (a, b, and c, 
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respectively). These years constitute the 3 highest calculated SSN thermodynamic efficiency 

seasons. The 1999 season  (a) coincides with Solar Cycle 23 (Kane 2002, 2009 for all Solar 

Cycle number references), with the 2000 season displaying the cycle’s peak (annual SSN  

Figure 3.3 – Histogram of SSN thermodynamic efficiencies for 1851 – 2008.  Individual efficiencies are 
calculated by subtracting average peripheral- season month SSN (May, June, July, and November) from core 
season month SSN (September). 

average) as interpreted from its the subplot. The 1938 season (b) occurs within Solar Cycle 8, at 

or shortly-occurring after the cycle’s peak.  The 1929 season (c) occurs within Solar Cycle 7, just 

after the cycle’s peak. In all 3 cases, elevated May, June, July, and November SSN coupled with 

lower September SSN led to the high efficiency calculation. Also of note is the period of 

occurrence within the solar cycle. On an annual time scale, efficiencies should theoretically be 

highest slightly after the cycle’s peak due to decreasing solar activity. The 1938 and 1929 

seasons fit within this line of thinking. However, the 1999 season occurred within a still-

increasing solar cycle. Regardless, intrannual (monthly) SSN variation ultimately dominates the  
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Figure 3.4 – Monthly SSN (main plot) and surrounding annual SSN averages (subplot) for the highest SSN 
efficiency seasons of (a) 1999, (b) 1938, and (c) 1929. 
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thermodynamic calculation.  

SSN for hurricane seasons 1978, 2001, and 1957 are represented in Figure 3.5 (a, b, and 

c, respectively). These years constitute the 3 lowest calculated SSN thermodynamic efficiency 

seasons. The 1978 season (a) occurs within  Solar Cycle 21, just prior to the SSN cycle peak of 

the 1979 season. The 2001 season (b) occurs within Solar Cycle 23, just after the SSN cycle 

peak season of 2000. The 1957 season (c) occurs within Solar Cycle 19, the SSN cycle peak. All 

3 cases demonstrate the opposite process displayed in the highest efficiencies: Lower May, June, 

July, and November SSN coupled with high September SSN resulting in low efficiencies. 

Ignoring Intraseasonal (monthly) variation, seasonal efficiencies should theoretically be highest 

slightly before cycle peaks due to increasing solar activity. Only the 1978 season agreed with this 

line of thinking. As with the low efficiency seasons, monthly SSN variation ultimately dominates 

the thermodynamic calculation. 

 Table 3.5 –  Highest (left) and lowest (right) SSN thermodynamic efficiencies (SSNε)  for 1851 –  
 2008.  Mean SSNε, seasonal (monthly-averaged) SSN (Mean SSN), U.S.-affecting hurricane  

counts (U.S.), and major U.S.-affecting hurricane counts ( >  Category 3 on Saffir-Simpson scale)  
are also listed.  

Year SSNε Mean 
SSN U.S. Major 

U.S. 
 Year SSNε Mean 

SSN U.S. Major 
U.S. 

1999  +51.2 110.4 3 1  1978  - 51.7 95.4 0 0 

1938   +38.5 116.7 2 1  2001  - 46.0 114.5 0 0 

1929   +36.0 62.2 3 1  1957  - 45.0 201.6 1 1 

1950   +32.6 76.2 3 2  1908  - 43.4 54.8 1 0 

1871   +31.1 103.6 3 1  1981  - 42.4 141.2 0 0 

1937 +37.9 +93.8 2.8 1.2  1965 - 45.7 121.5 0.4 0.2 

Continuing the investigation, Table 3.5 represents the top 5 positive  and negative SSN 

thermodynamic efficiency seasons, along with seasonal averages and total U.S.-affecting 

hurricane counts within the modern dataset. 14 total (2.8 / season) U.S.-affecting hurricanes were 

observed during the 5 highest efficiency seasons. 2 total (0.4 / season) U.S.-affecting hurricanes 

were observed during the 5 lowest efficiency seasons. Difference in mean rates is 2.4 U.S.-

affecting hurricanes. 6 total (1.2 /season) major hurricanes ( > Category 3) affected the U.S 

during the highest efficiency seasons, compared to 1 (0.2 / season) during low efficiency  
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Figure 3.5 - Monthly SSN (main plot) and surrounding annual SSN averages (subplot) for the lowest SSN 
efficiency seasons of (a) 1978, (b) 2001, and (c) 1957.  
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seasons.  Difference in mean seasonal rates is 1.0 U.S.-affecting major hurricanes. 

The highest 5 efficiency seasons yielded 93.8 annually averaged SSN, while the lowest 5 

efficiency seasons averaged 121.5 annually averaged SSN. The range of values indicates there is 

no significant relationship between mean annual SSN and SSN seasonal efficiency. While a 

weakly positive correlation coefficient exists between the two variables for the entirety of  

modern data (0.12), the finding is not statistically significant (P = 0.13). In this section we have 

discussed evidence for a solar influence upon U.S.-affecting hurricane frequency using modern 

records. Continuing the investigation started by Elsner & Jagger (2008) we examined SSN as a 

mitigating factor upon U.S.-affecting hurricanes for all available modern data. Increasing SSN 

data, conditioned on warm and cool SST anomaly phases, demonstrated a reduction in mean 

U.S.-landfalling hurricane frequency. SST above the 60th percentile yielded (statistically 

significant) increasing correlation coefficients between September SSN and U.S.-affecting 

hurricanes. Several seasonal models were constructed toward more accurately characterizing the 

sun-hurricane relationship, featuring permutations of such covariates as core-season SST and 

core-season SSN. Models were then used to explore intraseasonal SSN as covariates, with the 

construction of a thermodynamic efficiency (SSNε). In all cases, the model covariates 

significantly impacted the U.S.-affecting hurricane frequency toward supporting the 

thermodynamic link between warmed UTT and decreasing U.S.-affecting hurricanes. Ultimately, 

a model was constructed utilizing SSN as a sole-source (temporally partitioned) data source for 

investigating the sun-hurricane relationship. Highest and lowest efficiencies demonstrated 

marked associations with U.S.-affecting hurricane intensity and frequency consistent with the 

previous sun-hurricane findings.  

The next section will continue with the SSN thermodynamic efficiency (hereafter, SSNε) 

as means for explicating the sun-hurricane relationship in light of newly available North Atlantic 

hurricane records. An additional 100 years of combined hurricane and SSN records (1749-1850) 

will be utilized to test whether or not the relationship corroborates findings in the modern 

records.  
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CHAPTER 4 
 
EVIDENCE FOR A SOLAR INFLUENCE USING PRIOR RECORDS 

 
 

 
SST anomaly data extends back only to 1856, disallowing joint SSN-SST / U.S. count 

regression prior. However, our discovery of a unique relationship between peripheral and core 

season SSN provides a method to extract information about U.S.-affecting hurricane activity 

using additional hurricane records (Chenoweth archive) and SSN. 

Therefore, we will use available SSN and corroborating portions of the Chenoweth 

archive as means for describing the thermodynamic efficiency impact upon U.S.-affecting 

hurricane frequency in a Bayesian generalized linear model (GLM). Similar to the approach 

taken by Elsner & Bossak (2001), a Bayesian approach toward "a predictive climate distribution 

of coastal hurricane activity" can account for potentially problematic historical observations 

while providing meaningful results. We first examine the thermodynamic efficiencies calculated 

within the corroborating portions of the Chenoweth archive, 1749-1850.  

SSN Thermodynamic Efficiencies 

As described in Chapter 3, the SSN thermodynamic efficiency (SSNε) accounts for 

multicollinearity between the peripheral and core season month SSN while effectively  

 Table 4.1 –  Highest (left) and lowest (right) SSN thermodynamic efficiencies (SSNε ) 
 for 1749 - 1850.  Mean SSNε,  seasonal (monthly-averaged) SSN,  and associated U.S.- 
 affecting hurricane counts (U.S.) are also listed. 

Year SSNε 
 

Mean 
SSN U.S.  Year SSNε Mean 

SSN U.S. 

1794  +40.3 41 2  1847 - 73.0 98.4 0 

1837  +38.6 138.3 4  1839 - 67.2 85.7 1 

1781 +34.7 68.1 2  1846 - 49.1 61.5 1 

1838 +30.8 103.2 2  1835 - 41.7 56.9 4 

1749  +29.6 80.9 1  1769 - 40.1 106.1 1 

1800 +34.8 86.3 2.2  1827 - 54.2 81.7 1.4 
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representing the ambient storm seasonal environment. Figure 4.1 represents a histogram of SSN 

thermodynamic efficiencies for the 100 years of prior records. Mean SSNε is + 0.14 with a 

standard error of 18.64. The median SSNε is + 1.73. Only 9 solar cycles occurred during the 

1749 – 1850 period, comprising all of Solar Cycle 1 and most of Solar Cycle 9 (Kane 2002, 

2009). The two lowest efficiencies for the entirety of data (1749-2008) occur in the premodern 

records in 1847 (-73.0) and 1839 (-67.2), as evidenced from Table 5.1. Only 1 U.S.-affecting 

hurricane was recorded during this period. For the highest 5 SSNε seasons, 11 (2.2 / season) total 

U.S.-affecting hurricanes were recorded; for the lowest 5 SSNε seasons, 7 (1.4 / season) were 

recorded, resulting in a mean difference in rates of 0.8 hurricane per season. This result is less 

than the modern record SSNε  comparison (2.4 / season), but marginally equivalent to the 

difference in mean seasonal rates for modern major U.S.-affecting hurricanes (1.0 / season). 

Given that major hurricanes ( > Category 3 on the Saffir-Simpson scale) are more likely to be 

Figure 4.1 - Histogram of SSN thermodynamic efficiencies for 1749 –1850.  Individual efficiencies are 
calculated by subtracting average peripheral season month SSN (May, June, July, and November) from core 
season month SSN (September). 
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recorded given their breadth of destructiveness (storm-surge and winds, primarily), the 

analogous rates between modern major U.S.-affecting hurricanes and prior record hurricanes 

could be demonstrating that the prior record hurricanes were, in fact, major hurricanes. 

SSNε will constitute the lone covariate in the Bayesian GLMs. In the next section we will 

address statistical modeling techniques toward explicating the sun-hurricane relationship (SSNε) 

in light of prior hurricane records. 

Modeling Approaches 

Three models are generated utilizing SSNε. A Bayesian GLM In addition to a Bayesian 

model, an alternate Bayesian GLM is additionally constructed to identify the value and 

contribution of the Bayesian model. Each represents a methodological approach to tempestology 

regarding the use of storm observation records. For all models, SSNε data is scaled (subtracting 

the mean and dividing by the standard deviation) to produce standardized values. The scaled 

values facilitate calculation of the prior distribution model parameters for the Bayesian models. 

 The Conservative approach used here argues that the strength of explanatory statistics is 

commensurate to the quality of data being analyzed, with HURDAT providing storm-specific 

information back to 1851; as such, questionable data is no data at all. Therefore, the range of data 

is 1851-2008. The Bayes approach utilizes the 102 prior years of U.S.-affecting hurricane counts 

from Chenoweth (2006) as a source of information to further elucidate the relationship as 

currently understood in the modern data. The Wrong_info Bayes approach is identical to Bayes, 

except that prior hurricane counts and corresponding years are randomized, obscuring any 

potential storm count / SSN relationship in the prior distribution formation. The Bayes and 

Wrong_info Bayes both represent posterior distributions.  

Bayesian Approach 

The Bayesian method represents a statistical approach that incorporates additional 

information, referred to as the prior distribution, as a random variable "to update an initial state 

of knowledge to a new state of knowledge," producing the posterior distribution (O’Hagan 
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2006). In our case, the prior distribution is 102 years of additional U.S.-affecting hurricane 

counts and SSN data, elicited from a Poisson GLM of SSNε for 1749-1850. The posterior 

distribution utilizes prior distribution information toward a multiple-permutation Bayesian GLM 

of U.S.-affecting hurricane counts regressed upon SSNε. The construction of the prior 

distribution will be expanded upon later. 

Before proceeding, we acknowledge a limitation of the historical data set. Figure 4.2 

represents a histogram of U.S.-affecting hurricane counts, bifurcated by the Chenoweth archive 

and HURDAT periods. Time-count autocorrelation is negative yet not significant (slope = -

0.001, P = 0.575) within the modern record, but is positive and significant (slope = +0.006, P = 

0.042) within the 1749-1850 portion of the Chenoweth (2006) archive. 

 
Figure 4.2 – U.S.-affecting hurricane counts for the periods (a) 1749-1850 (Chenoweth archive) and (b) 1851-
2008 (HURDAT).  

To appropriately incorporate the portion of the Chenoweth archive toward a posterior 

understanding of thermodynamic efficiency and U.S. counts, we statistically address the time-  
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  Table 4.2 – Population totals for the Caribbean  
  (Engerman 2000) and geographic U.S. (Abstract 
   1997). 

Year Caribbean U.S. Combined 

1700 310,000 250,900 560,900 

1750 1,000,000 1,170,800 2,170,800 

1800 2,200,000 5,308,483 7,508,483 

1850 4,000,000 23,191,876 27,191,876 

 

 

 
Figure 4.3 – Process for accounting for time-correlation within 1749-1850 portion of the Chenoweth archive: 
(a) observed storm counts, (b) missing storm rate, (c) a single simulation of seasonal missed storms, and (d) 
simulated plus observed storm counts. Missing storm rates (b) are only calculated up through 1850. 



34 
 

opportunity for observation is a limiting factor toward U.S.-affecting hurricane information 

compilation. Table 4.2 lists U.S. and Caribbean population totals since 1700. Using the time 

series of population totals, we infer from the combined populations an exponential relationship 

of growth that will serve as a metric of our “opportunity for observation.” The negative of the 

observed rate is taken for use toward calculating a missed rate of observed storms, yielding 

𝑌𝑌 = 𝑒𝑒(−0.026∗(𝑌𝑌𝑌𝑌−1700 )) 

where YY represents the storm year from 1700 to 1850. 

A sample of missed storms (Figure 4.3c) are randomly generated (Poisson) for the 

duration of the included Chenoweth archive storms based on the missed rate of observed storms 

(Figure 4.3b). The sample is then added back to the original observation time series, creating a 

combination of observed and probable missed storm counts (Figure 4.3d). This missing rate 

serves as the dependent variable within a standard GLM against  SSNε  as covariate 1749-1850. 

Since the missing storm rate is used in a Poisson random generation, the process is repeated 

1,000 times to account for aleatory uncertainty produced from the sampling process. The 

resulting parameter and variance model estimates are recorded and serve as our prior information 

toward determining a posterior distribution of SSNε.  

Model Results 

The P-value is computed by determining the count of simulations resulting in an estimate less 

than zero, and then dividing this number by the number of simulations. 100,000 permutations are 

conducted for each model. Parameter estimates and associated P-values are listed in Table 4.3. 

Model parameter estimates and variances for the SSNε – U.S.-affecting hurricane frequency in 

each model vary for each run of the model, producing varying coefficients per permutation. 

Statistical modeling represents this uncertainty with a standard error. Figure 4.4 is a density plot 

of the 100,000 accumulated parameter estimates for each model run. The sum of the  parameter 

estimates divided by the total permutations (100,000) is the mathematical representation of the 

regression parameter estimate for the model represented in Table 4.3. The standard error is  
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Figure 4.4 – Density estimates for Conservative (black), Bayes (blue), and Wrong_info Bayes (red) model 
parameter estimates. The area under each line to the left of 0 represents each model P-value. 

Table 4.3 – Coefficients and P-values  
from Bayesian Poisson Simulated  
Regression Models 

Model Estimate P-value 

Conservative + 0.165 0.009 

Bayes + 0.140 0.006 
Bayes 
(Wrong_info) + 0.136 0.017 
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realized in Figure 4.4 as represented by the dispersion of the parameter estimates for each model. 

Model P-values are calculated as the area under the parameter estimate density to the left of 0.  

The greatest magnitude of parameter estimates is found within the Conservative model. 

The strongest p-value coincides with the Bayes model. The Wrong_info Bayes model produced 

the smallest parameter estimate and P-value out of all 3 models, which is expected. “Wrong 

information” should degrade the quality of the posterior distribution. The SSNε – U.S.-affecting 

hurricane frequency relationship was found to be significant in all 3 models. 

The Bayes model reveals a positive estimate (+0.140) at strong statistical significance (P 

= .006). The positive estimate is based on scaled data as described earlier in this section, but the 

sign of the coefficient (and statistical significance) mirrors the findings of the modern record 

SSNε – U.S.-affecting hurricane frequency results from Chapter 3.  

The Bayes and Wrong_info Bayes model yield similar yet interestingly different results. 

With randomized annual storm counts serving as used toward generating the prior distribution, 

the Wrong_info Bayes model produced a less concise distribution compared to the Bayes model. 

This is significant; the increase in parameter estimate magnitude and conciseness of distribution 

indicates that the prior source of hurricane counts and associated SSN information supports the 

relationship found within the modern record.  

Summary & Future Work 

The goal of this study was to test the robustness of the hypothesis that the sun modulates 

U.S. hurricane activity. The relationship is described by an inverse correlation between the 

probability of a U.S. hurricane and the number of sunspots.  It is speculated that increased solar 

activity increases UV radiation absorption by ozone and, thusly, inhibits hurricane intensity 

based on the maximum potential intensity argument that the magnitude of difference between 

inflow and outflow temperatures constitutes a thermodynamic efficiency in converting heat into 

wind.  

Temporally segmenting the modern data by analyzing solar activity during the 

climatological peak (September) of the North Atlantic hurricane season provides an initial if not 

statistically significant foray into elucidating further information about the sun-hurricane 

relationship. After incorporating another significant hurricane intensity variable (SST) as an 
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additional partitioning into the relationship, the mean number of U.S.-affecting hurricanes 

decreases by 20% for cooler season SST / higher September SSN (as compared to lowest 

September SSN). Seasons of comparatively warmer SST yielded higher magnitude (negative) 

correlation coefficients between September SSN and U.S.-affecting storm counts. A Poisson 

regression model is used to  corroborate these findings. 

One of the primary contributions of this work is the creation of a temporal 

thermodynamic efficiency for SSN, where core and peripheral month SSN constitute an 

efficiency index to MPI in terms of inflow (SST) and outflow (UTT) temperatures. The modeled 

parameter estimate of this efficiency upon storm count yielded a significant negative coefficient, 

suggesting a suppression of hurricane development due to warmer September UTT and/or cooler 

seasonal SST consistent with a minimal energy efficiency scenario within the MPI theoretical 

framework. 

With the Elsner & Jagger (2008) spatial contribution and this study’s temporal 

explication of modern data supporting a segmenting of SSN toward an impact upon U.S.-

affecting hurricane counts, the sun-hurricane relationship’s robustness is tested in light of 

historic hurricane information. Using this information meaningfully, a Bayesian approach is 

justified and compared with other methodological approaches to simulated model results. 

Utilizing the information contained within the Chenoweth archive, the results add measurable 

support to the hypothesis that solar variation influences hurricane activity. 

Future work may include other UV indices, such as the Mg II index used in Hood (2003), 

along with theoretical thermodynamic calculations to look at storm velocities in modern data. 

Whereas this study examined an intraseasonal thermodynamic proxy, such information could be 

studied daily. Also, as prior hurricane records improve due to improved historical recovery, the 

SSNε – U.S.-affecting hurricane frequency relationship may yield even more significant results. 

On a longer time scale, future work to push the boundaries of hurricane records would provide a 

fascinating study coinciding with a major solar cycle minimum event, the Maunder minimum. 

This period featured a global temperature reduction and minimal sunspots (Vaquero et al. 2002). 

With some scientists predicting lower amplitude solar cycles (Duhau 2003; Dikpati et al. 2006; 

Rai 2007), an analog such as the Maunder minimum study could provide further insight into the 

sun-hurricane relationship.  
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