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ABSTRACT

Hurricanes threaten the United States every year. It is important to quantify the
risk of these events for emergency managers. Extreme value statistics are used to
model hurricane characteristics at different locations. Using wind speeds over a spec-
ified threshold, the risk of extreme winds are estimated in twelve Florida cities. The
risk estimates are provided as statistical return periods, or the expected frequency
of specific hurricane magnitudes. Results show that the city of Miami can expect to
see hurricane winds blowing at 50 ms−1 (45.5–54.5) [90% CI] or stronger, on average,
once every 12 years. In comparison, the city of Pensacola can expect to see hurricane
winds of 50 ms−1 (46.9–53.1) [90% CI] or stronger once every 24 years. Hurricanes in
the vicinity of Florida are found to be increasing in intensity over time as a product of
higher offshore intensification rates. The risk of hurricane strikes can be further un-
derstood by including an additional variable, storm surge. Using observational data,
the joint probability distribution of hurricane wind speeds and storm surge is found at
three Air Force Bases along the U. S. Gulf coast. The quartile pointwise uncertainty
is quantified using a Monte Carlo procedure. Eglin Air Force Base can expect wind
speeds blowing at 50 ms−1 and surge heights of 3 m, on average, once every 28 years
(23–36). MacDill Air Force Base can expect wind speeds blowing at 50 ms−1 and
surge heights of 3 m, on average, once every 27 years (22–34). Keesler Air Force Base
can expect wind speeds blowing at 50 ms−1 and surge heights of 3 m, on average, once
every 15 years (13–18). Utilizing a spatial tessellation across the North Atlantic and
Gulf of Mexico provides additional insight into the risk of hurricane strikes. Parame-
ters from the extreme value model are mapped across space to visualize patterns. Sea
surface temperature is included as a covariate in a geographically weighted regression
model with each parameter. It is found that as sea surface temperatures increase, the
expected hurricane wind speed for a given return period also increases.

xiv



CHAPTER 1

HURRICANE RISK

Nowhere in the world is safe from natural disasters. Earthquakes, forest fires, hurri-
canes, and countless other hazards are responsible for the loss of life and the massive
monetary costs that areas around the globe feel annually. Thankfully, changes in
warning systems and broadcast technology over the last few decades has allowed for
people to be more aware of these hazards and the types of risks an occurrence might
pose. This awareness, however, does not mitigate against the potentially stagger-
ing economic losses experienced after a major disaster. In the 20th century alone,
monetary losses that have come from tropical cyclones have reached over $450 billion
(Pielke Jr. et al., 2008; Malmstadt et al., 2009). Much of this damage is caused by
the high wind speeds and deep storm surges from the most intense hurricanes. Storm
surge is considered the most destructive component and is defined as the difference
between the storm tide and the normal tide (Elsner and Kara, 1999). As a hurricane
makes landfall, the larger storm tide will pour over the landscape and inundate much
in its path, potentially costing large sums of money.

Considering the damage from these types of events reach such a high monetary
cost, it is necessary that the scientific community pursues a deeper understanding of
statistical risk. Risk, here, refers to the probability of an area experiencing a natural
disaster in a given time period. It is separate from loss of life or livelihood. The
likelihood of a hurricane occurrence is different than the likelihood of other natural
hazards. The location of an earthquake’s epicenter, for example, cannot be predicted
or anticipated more than a few days before the actual occurrence. Once the event
occurs, the spatial extent of the actual quake can be very localized or spread out in a
much larger domain. Most importantly, it is difficult to accurately estimate the risk of
earthquake occurrences (Masala, 2012). A forest fire, on the other hand, is fairly easy
to anticipate if the conditions in an area have been conducive to fire formation. If the
area has had drought-like conditions for an extended time and the air temperature
has been higher than average, the likelihood of a forest fire disaster increases (Finney
et al., 2011). The spatial extent of a forest fire rarely stays localized. These events
usually encompass very large areas and can devastate communities hundreds of miles
away from where the first ignition point occurred. Understanding these two very
different types of hazards allows for a differentiation to be made between these types
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and a tropical cyclone, or hurricane, hazard.

Hurricanes pose a particularly interesting threat. Monitoring global and local
weather using satellites since the 1960s has allowed researchers to capture the forma-
tion of hurricanes in the North Atlantic Ocean, Caribbean Sea, and Gulf of Mexico.
There is a heightened sense of awareness and anticipation of these events from the
moment of genesis until they dissipate or make landfall. The environmental condi-
tions conducive to formation have been researched to the extent that scientists can
actively anticipate a hurricane type disturbance before it actually manifests. The
spatial extent of this type of hazard varies from localized areas to state sized areas.
In comparison to the other hazards mentioned, the ability to anticipate and model
hurricane strikes makes the quantification of this risk different. The likelihood of hur-
ricane occurrence can be estimated in many ways and it can be localized for specific
areas.

The purpose of this dissertation is to provide innovative methodologies for under-
standing the statistical risk of hurricanes using various spatial extents. Citizens all
around the world suffer from the detrimental effects of these events making landfall
on their communities, so it is the responsibility of scientists to drive our knowledge
further for the benefit of the public. There are three major questions being asked.
The first: what is the risk of extreme hurricane winds in various cities around the
state of Florida? The second: what is the risk of hurricane storm surge along the
Gulf of Mexico, and what is the combined risk of hurricane storm surge and maximum
wind speeds at the locations of interest? The third: what is the spatial distribution
of hurricane winds across the North Atlantic, and how does this spatial distribution
compare with the spatial distribution of climatological sea surface temperature? Sea
surface temperature is included because the relationship between the warmth of the
ocean surface and the location of extreme hurricane winds might provide insight into
the effects of a warming climate. The methods presented can be utilized in other
locations not analyzed here, and further developed in future research so the discipline
continues to grow. The results presented are useful to those living in the areas of
interest, as well as those creating government policies or insurance rates in the areas
studied.

All three research studies include wind speed as a particular hazardous character-
istic from hurricanes. Study 2 also includes hurricane storm surge. A major difference
in the approaches presented lies in the spatial aspect of each. The first study’s spatial
scale is state sized as it focuses on the probability of hurricane occurrence in local
cities around Florida. The second study is localized and looks at three individual
locations along the U. S. Gulf coast. The third study has the largest spatial scale
and can be considered a more regional approach to the understanding of hurricane
occurrence. Each of the studies considers virtually the same length of record, and the
wind speed and storm surge variables can be considered instantaneous characteristics.
That being said, the unifying factor through each of these is the temporal element.
The differentiating factor is space.

Six chapters describe this work. The first chapter discusses the statistical risk of
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hurricanes, and in the remaining sections relevant terms and literature are defined
and discussed to provide a proper background for the studies performed. Chapter 2
describes the data that were collected, refined, and utilized in these studies. Chapter
3, Chapter 4, and Chapter 5 each present a research study including the methodologies
used and the results that were collected. Chapter 6 summarizes the approaches and
results, and also draws a connection between the results and societal vulnerability.
The Appendix provides some of the statistical code used to calculate various results
in Chapter 4 and Chapter 5.

1.1 Hurricanes

A tropical cyclone is a closed circulation of air that develops over the warm waters
of the tropical latitudes. In the Northern Hemisphere, these spin in a counterclockwise
direction around a center of low pressure and are called hurricanes. In order for
a hurricane to develop, certain conditions need to exist. The temperature of the
ocean surface needs to be at least 26.5◦C , there must be a pre-existing atmospheric
disturbance, it must be further north of 8◦ latitude, and the horizontal winds in the
atmosphere must be relatively weak (< 10 ms−1) (Elsner and Kara, 1999).

The difference between the intense low pressure and surrounding higher pressure
causes extreme winds to develop over time. A tropical cyclone is not automatically
a hurricane, but rather passes through a life cycle from the development of an atmo-
spheric disturbance to a major hurricane. First, a tropical disturbance, or tropical
wave, will develop when there is a small pressure drop that causes enhanced cloudi-
ness and convection. In some cases, this stage is essentially absent and the event
becomes a tropical depression immediately. A tropical depression has a maximum
sustained wind speed (taken as a one-minute average at 10 meters above the surface)
less than 18 ms−1. The depression becomes a tropical storm when the one-minute
average wind speed is between 18 and 32 ms−1. It becomes a full blown hurricane
when it reaches 33 ms−1, and is considered a major hurricane when it reaches 50 ms−1.
There is a scale that is used to estimate the intensities of hurricanes once they reach
33 ms−1, and it is known as the Saffir-Simpson Scale, named after Herbert Saffir and
Robert Simpson. The categories of hurricanes span from 1–5, with 5 being the most
catastrophic, experiencing wind speeds greater than 69 ms−1.

Hurricanes affect the North Atlantic during an “official” season that runs from
June 1 through November, designated by the U. S. National Weather Service. It is,
of course, possible for a hurricane to form outside of this season if the conditions
are met, but this is rare. The National Oceanic and Atmospheric Administration’s
(NOAA) National Hurricane Center (NHC) keeps records of the events that occur
each season and have created a record that extends back to 1851. These data will be
described in further detail in Chapter 2.

The most destructive characteristics of a hurricane are its wind speeds and its
storm surge. One of the second study’s goals is to describe the statistical relationship
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between wind speed and storm surge because, physically, they are connected. Storm
surge is created through the momentum flux between the energy exchange of the
winds at the hurricane’s base and the waves at the top of the water column under
the sea surface below the hurricane. As the hurricane nears the continental shelf, the
water column shortens and pushes more water toward the surface (Blain et al., 1994).
By direct interaction with the air flow, this change in swell modifies the wind stress
(in this case, defined by air density and the turbulent fluctuations in vertical and
horizontal velocities) and will, therefore, affect the exchange rate of the momentum
flux between the ocean and atmosphere (Donelan et al., 1997). Considering these
characteristics interact with one another on a physical basis, finding the statistical
relationship of these variables may provide additional insight into the understanding
of their combined probability of occurrence.

There is no shortage of literature on climatological characteristics of particular
basins or regions (Landsea, 1993; Elsner and Kara, 1999; Emanuel, 2003; Scheitlin
et al., 2011), simulated models that show their interaction with other environmental
characteristics (Tsutsui and Kasahara, 1996; Walsh and Katzfey, 2000; Knutson et al.,
2007; Caron et al., 2011), and risk estimations of particular characteristics (Darling,
1991; Coles and Casson, 1998; Jagger and Elsner, 2006; Malmstadt et al., 2010). This
dissertation focuses on an area of risk estimation that involves the use of extreme
value theory to analyze a sample of extreme data. These are data that fall on the tail
ends of a distribution, and by theory, do not occur often in records. When interested
in extreme hurricanes, the desire is to better understand the upper limits of the known
wind speed and storm surge distributions so that society can better prepare for the
disasters that cause the most damage.

1.2 Extreme Value Theory

The First Law of Geography states that “all things are related, but nearby things
are more related than distant things” (Tobler, 1970). This law is what makes spatial
data unique because it allows us to use information collected in one place at a nearby
location when those data are not available. In particular, extreme data occur at
the limits of a distribution and are not as common as those nearest the mean. At
any specific location, the record of hurricane events is short because the likelihood of
an event making a landfall is not high. Considering this, the likelihood of a major
hurricane, or extreme hurricane, at a specific location is even less. For the studies
presented here, extreme hurricane wind data and surge data are used to represent the
likelihood of occurrence at a specific location using some of the recorded data near
the locations of interest, similar to what has been done in Elsner et al. (2008a).

According to Kotz and Nadarajah (2000), probabilistic extreme value theory
(EVT) blends an enormous variety of applications involving natural phenomena such
as rainfall, floods, air pollution, and wind gusts. Recently, this theory has been ap-
plied to tropical cyclone observations to try and estimate the occurrence of hurricanes
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affecting the United States. Embrechts et al. (1999) suggest that, because the rein-
surance industries have experienced higher losses in recent years from unprecedented
catastrophes, extreme value modeling can be an exceptionally useful tool in emer-
gency management. Before discussing applications of extreme value distributions, it
is important to understand the theory behind it.

Probabilistic EVT deals with the stochastic behavior of the maximum and the
minimum of independent and identically distributed random variables. The distri-
butional properties of extremes, as well as of exceedances over (below) high (low)
thresholds are determined by the upper and lower tails of the underlying distribution
(Kotz and Nadarajah, 2000). In particular, extreme value analysis usually requires
estimation of the probability of events that are more extreme than have ever been
observed (Coles, 2001). EVT provides a framework that enables this type of extrap-
olation.

Historically, work on extreme value problems can be traced back to as early as
1709 when Nicolas Bernoulli discussed the mean largest distance from the origin given
n points lying at random on a straight line of a fixed length t, see Gumbel (1958).
The need for EVT originated mainly from the needs of astronomers in utilizing or
rejecting outlying observations. A systematic development of the general theory can
be regarded as starting from von Bortkiewicz (1922) that dealt with the distribution
of range in random samples. It was in this paper that the concept of “distribution
of largest value” was introduced for the first time. Frèchet (1927) followed with a
paper in which asymptotic distributions of largest values were considered. Fisher and
Tippett (1928) provided a study that identified the only three possible extreme limit
distributions that exist. In the 1930s and 1940s, numerous papers dealing with prac-
tical applications of extreme value statistics were conducted, including on radioactive
emissions (Gumbel, 1937), strength of materials (Weibull, 1939), flood analysis (Gum-
bel, 1941), seismic analysis (Nordquist, 1945), and rainfall analysis Potter (1949).
Gumbel was the first to call the attention of engineers and statisticians to certain
distributions which had previously been dealt with empirically. Gumbel (1941) was
the first research study using EVT in the U. S. dealing with meteorological phenom-
ena (Kotz and Nadarajah, 2000). This research has spurred decades of subsequent
meteorological analysis.

According to Coles (2001), the extreme value paradigm refers to an approach that
comprises a principle for model extrapolation based on the implementation of math-
ematical limits as finite-level approximations. This suggests an implicit assumption
that the underlying stochastic mechanism of the process being modeled is sufficiently
smooth to enable extrapolation to unobserved levels. This may be flawed, but no
credible alternative has been proposed. It is important to understand the limitations
of extreme value modeling from the outset. First, models are developed using asymp-
totic arguments, so care is needed in treating the models as exact results for finite
samples. Second, the models themselves are derived under idealized circumstances,
and third, the models may lead to information loss when implemented in practice.
This final limitation comes into play when taking block maxima per unit time, for
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example, and is less important in the research presented in the upcoming chapters
where a different approach is taken to obtaining maximum data (Coles, 2001).

As stated above, only three possible extreme limit distributions exist (Fisher and
Tippett, 1928). Extreme value distributions are usually considered to comprise the
following three families: Type 1 (Gumbel-type distribution) whose upper tail is infi-
nite (though shorter than the Frèchet distribution), Type 2 (Frèchet-type distribution)
with an infinite upper tail, and Type 3 (Weibull-type distribution) with a finite upper
tail (Kotz and Nadarajah, 2000). The Gumbel type is shown by

Pr[X ≤ x] = exp
[

−e
(x−µ)

σ

]

, (1.1)

the Frèchet-type is shown by

Pr[X ≤ x] =

{

0 x < µ

exp
{

−
(

x−µ
σ

)−ξ
}

x ≥ µ

}

(1.2)

and the Weibull-type is shown by

Pr[X ≤ x] =

{

exp
{

−
(

µ−x
σ

)ξ
}

x ≤ µ

0 x > µ

}

(1.3)

where µ, σ, and ξ are parameters. According to Coles (2001), these three families can
be combined into a single family of models having distribution functions of the form

G(x) = exp−

[

1 + ξ

(

x− µ

σ

)]
−1
ξ

, (1.4)

where the parameters satisfy −∞ < µ < ∞, σ > 0, and −∞ < ξ < ∞. This is
the generalized extreme value (GEV) family of distributions. The model has three
parameters, a location parameter µ, a scale parameter σ, and a shape parameter
ξ. This unification into a single family greatly simplifies statistical implementation.
Through inference on ξ, the data themselves determine the most appropriate type of
tail behavior, and there is no necessity to make subjective a priori judgements about
which individual extreme value family to adopt.

However, according to Coles and Powell (1996), there is one main drawback to
the GEV family of distributions as an inference model. It has restriction to annual
maximum data when in fact the series, X1, X2, . . . , Xn may contain many other data
which are informative about the tail of the resultant distribution. Thus, models
based on the threshold approach were developed. This leads to the second general
characterization based on exceedances over a high threshold. If an entire time series
of data are available, a better use is made of the data by avoiding altogether the
procedure of blocking (Coles, 2001). Many times, in practical applications, the parent
distribution F of a given set of observations is not known. Approximations that
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are broadly applicable for high values of the threshold are thus sought after. This
parallels the use of the GEV as an approximation to the distribution of maxima
of long sequences when the parent population is unknown. An asymptotic model
characterization is known as the generalized Pareto distribution (GPD).

The following theorem discusses the GPD. Let X1, X2, . . . be a sequence of inde-
pendent random variables with a common distribution function F and let

Mn = max{X1, . . . , Xn}. (1.5)

Denote an arbitrary term in the Xi sequence by X , and suppose that F satisfies,
so that for large n, Pr{Mn ≤ x} ≈ G(x), Equation 1.4 applies for some µ, σ > 0,
and ξ. Then, for a large enough threshold, u, the distribution function of (X − u),
conditional on X > u, is approximately

H(y) = 1−

(

1 +
ξy

σ̃

)
−1
ξ

(1.6)

defined on {y : y > 0 and
(

1 + ξy
σ̃

)

> 0}, where σ̃ = σ + ξ(u− µ) and µ, σ, and ξ are
the GEV parameters of Equation 1.4. Taking into account also the crossing rate of
the threshold u gives a three-parameter model equivalent to the three-parameter GEV
model (Coles and Powell, 1996). Inference based on this GPD approach is generally
superior because it relies on more data (Coles and Powell, 1996). It is for this reason
that the GPD threshold approach is adopted for the studies in this dissertation.

There are numerous studies that have been conducted utilizing the various distri-
butions mentioned above. Neumann (1987) employs a Weibull distribution for tropical
cyclone wind speeds and a Poisson distribution for hurricane frequency and estimates
return periods at the county level. This model is called HURISK, and is utilized by
NOAA for estimating tropical cyclone return periods at site-specific locations. The
latest output is presented in Blake et al. (2007).

Heckert et al. (1998) use the peaks-over-threshold model (POT) and a reverse
Weibull distribution to obtain the mean recurrence intervals for extreme wind speeds
at various locations along the U. S. coastline. The GPD is utilized as the threshold
modeling approach. It is found that the results are consistent with the assumption
that the reverse Weibull distribution is an appropriate probabilistic description of
simulated extreme wind speeds. The results tend to be lower, however, than what are
offered in other literature, which is due to the inclusion of the POT approach, which,
the author’s argue should be adopted in future studies.

Chu and Wang (1998) employ the use of the Gumbel, the Weibull, and the log-
normal distribution to model return periods for the relative intensities of tropical
cyclone wind speeds in the vicinity of Hawaii. Relative intensity is a dimensionless
quantity that is efficient in its use in extreme value distributions because of it rep-
resents the characteristics of tropical cyclones in a compact fashion. After model
adequacy checks, the authors find that the lognormal distribution is best for the over-
all goodness of fit, so it is this distribution that is used in the Monte Carlo method
to simulate the relative intensities in the vicinity of Hawaii.
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Jagger et al. (2001) use a maximum likelihood estimator to determine a linear re-
gression for the parameters of the Weibull distribution for tropical cyclone wind speeds
in coastal counties of the United States. The results from this approach compare fa-
vorably with the HURISK approach (Neumann, 1987), but the inclusion of covariate
information shows discrepancies from the normally used HURISK. This paper sug-
gests that the inclusion of covariate information can provide a better understanding
when assigning probabilities in a given, say El Niño, year. The model provided in
Jagger et al. (2001) generates exceedance probabilities that are conditioned on climate
factors by modeling the parameters with linear regression. It is suggested that at the
highest hurricane intensities, the results offered by the dynamic model are likely too
high as a result of the model fitting the data to the distribution (a heavy tail). They
suggest that an approach utilizing a thresholding model would alleviate that problem.

Coles and Casson (1998) use a GPD, with a slight re-parameterization, that en-
ables models fitted at different thresholds or different locations to be easily compared.
They also employ the maximum likelihood as the method of inference. They only
model wind speeds above a certain threshold u, and additionally specify the excee-
dence rate of u, with λ. The slight re-parameterization mentioned above accounts
for the spatial differences in the simulated hurricane data. The results in this paper
identify that the spatial variation in return levels is not solely due to variation in
hurricane rates, but also due to different patterns of hurricane behavior in different
locations.

Jagger and Elsner (2006) produce estimates for extreme hurricane winds near the
United States using a GPD. The approach includes covariate information to adjust
the return levels depending on climate factors, like El Niño and the North Atlantic
Oscillation. A maximum likelihood approach is used to model the maximum wind
speeds, and the GPD describes the maximum wind distribution for each hurricane
with winds exceeding u. It incorporates the frequency, or rate, of hurricane occurrence
as an exceedence rate modeled with a Poisson distribution. This is represented by λ.
The approach is modified in Elsner et al. (2008a) to estimate hurricane return levels
for Lake Shelby, Alabama as a way to compare geological proxies of past hurricanes
with historical records. The return period estimates using only the known historical
data are compared with the estimates that utilize the additional geologic proxy data.
Parisi and Lund (2008) use a similar approach (the GPD) but add a component for
the day of hurricane occurrence. Malmstadt et al. (2010) automate the approach
offered in Elsner et al. (2008a) and apply the GPD, with the exceedance rate, to
various cities around the state of Florida.

Within the field of tropical cyclone analysis, extreme value modeling has not only
been applied to extreme wind speeds, but has also begun to be applied to storm
surge analyses. Walton Jr. (2000) assesses a variety of potential probabilistic models
for storm surge in New Jersey. The various extreme value distributions applied are
compared by determining the quality of fit in the upper tail of the data. The authors
conclude that many different probability distributions may be adequate for models in
hydrology, although underprediction may occur in the largest extremes of the data,
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so the choice of distribution should be centered on how well the distribution models
the upper tail of the data. Butler et al. (2007) use both observational data and model
reanalysis data of surge to study temporal trends. In this paper, the authors utilize
the r-largest value model (as an extension of GEV discussed above) to allow for the
inclusion of additional data. They argue that the GEV model alone makes highly
inefficient use of the available data since it only allows us to use one observation per
year.

The vast majority of these analyses are univariate models. In Chapter 3 hurricane
wind speed is used to estimate the univariate risk to various locations in Florida.
However, it is interesting to consider the benefit of including an additional variable in
a model. In the second study presented in this dissertation, the relationship between
two hurricane characteristics, wind and surge, is explored using a bivariate copula
approach.

1.3 Copulas

Extreme wind speeds and deep storm surges from hurricanes work in conjunction
to cause severe widespread damage when major hurricanes make landfall. According
to Liu et al. (2009), the overall risk from a tropical cyclone event cannot be pre-
dicted by the traditional univariate extrapolation from annual maximum data sam-
pling alone. This suggests that a method must be employed that allows for multiple
cyclone characteristics to be incorporated into the estimation scheme. The traditional
way to estimate a combined risk is to use copulas. These discuss the dependency
structure of one random variable given the occurrence of another. Coles et al. (1999)
discuss that dependence between random variables occurs when different processes
have a stochastic behavior that is linked to common meteorological conditions. It is
also possible for variables to be dependent when a single process is studied at multiple
locations or in terms of its temporal evolution.

The second study of this dissertation, presented in Chapter 4, estimates the de-
pendency structure of extreme hurricane winds and storm surges at three Air Force
Bases (AFB) along the U. S. Gulf coast. Hurricane wind speeds and hurricane storm
surges are linked because of the meteorological phenomenon of the hurricane itself.
The broad objective of this study is to develop a measure of extremal dependence for
wind and surge. Probabilities of specific surge and wind levels occurring at the three
locations are estimated.

The following is the statistical theory behind copula models. For a given pair of
(X , Y ) values, if it is assumed that the marginal distributions of these variables are
the same, a natural measure of dependence is

χ = lim
z→z∗

Pr(Y > z|X > z), (1.7)

where z∗ is the upper limit of the support of the common marginal distribution (Coles
et al., 1999). Stated more loosely, χ is the probability of one variable being extreme
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given that the other is extreme. It is well understood that marginal distributions of
random variables are often not identical, which leads us to the copula function that
allows for the removal of marginal influences. Tawn (1988) and Coles et al. (1999)
describe the theory and dependence measures for extreme values analysis such as this.
The copula function for a measure of extremal dependence is described as follows:

For any random vector, (X , Y ), the distribution function

F (x, y) = Pr(X ≤ x, Y ≤ y) (1.8)

provides a complete description of dependence between variables X and Y . Marginal
aspects can play an influence on the variables and can be removed by observing
that, subject to continuity conditions, there is a unique function C(·, ·) with domain
A = [0, 1]x[0, 1] such that

F (x, y) = C{FX(x), FY(y)}, (1.9)

where FX and FY are the marginal distribution functions given by

FX(x) = F (x,∞) and FY(y) = F (∞, y). (1.10)

The function C is the copula and it contains complete information about the
joint distribution of X and Y apart from the marginal distributions. In this way,
C describes the association between the two variables in a form that is unaffected
by marginal transformation. Stated another way, C is the joint distribution function
of the two variables after transformation to variables U and V , with Uniform [0, 1]
margins, via (U, V ) = {FX(X), FY(Y )}.

For a more complete summary of dependence measures, see Coles et al. (1999);
Nelsen (1998) and Joe (1997).

Copulas are a popular multivariate modeling tool in various research avenues.
They were first introduced in 1959, when Sklar (1959) showed that any multivariate
distribution can be represented using a copula. He also showed that if the marginal
distributions are continuous, then there is a unique copula representation. In recent
years, copulas have been applied to actuarial science, where they are used to model
dependent mortality and losses (Frees and Valdez, 1998). Financial research use
copulas to allocate assets, score credit, and manage risk (Embrechts et al., 2003).
Also, in engineering, copulas are used for hydrological modeling (Genest and Favre,
2007).

Smith et al. (1990) provide a thorough discussion of the statistical aspects of mul-
tivariate extreme value distributions. Notably, the authors discuss the relationship
between univariate extremes and the multivariate extreme copula. They also include
a kernel function to alleviate any smoothing problems. They find that the smooth-
ing method of incorporating a kernel function in the calculation of the dependence
parameter provides smoother estimates. They suggest this method is the most satis-
factory of the nonparametric approaches, but it cannot be expected to work well in
small samples. It will provide some indication of the dependence structure.
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Coles et al. (1999) provide a thorough description of dependence measures for
extreme value analyses and suggest three examples of data sets that have potential
dependence. The third, which has the most relevance here, are wave and surge height
data at a coastal location in England. In the third example, the motivation is that
both the surge and wave processes are driven by similar meteorological conditions,
so extreme behavior in both processes is likely to occur simultaneously. A similar
relationship between wind speeds and surge heights is presented using this copula
approach for estimation in Chapter 4.

Chapters 3 and 4 provide probability estimates for more localized areas. Specif-
ically, Chapter 3 focuses on the likelihood of hurricane occurrence for a U. S. state
location analyzing individual cities around Florida. Chapter 4 analyzes the combined
probability of wind and surge at three local AFBs in the southeastern United States.
Chapter 5 visualizes the univariate risk of hurricane wind speed across the Gulf of
Mexico and North Atlantic by using a hexagonal tessellation representing larger spa-
tial regions than the first two studies.

1.4 Tessellated Space

Chapter 5 utilizes a spatially oriented approach to visualizing statistical hurricane
wind risk. The parameters of the univariate GPD model described previously are
mapped out using hexagonal tessellations across the Gulf of Mexico and North At-
lantic. Brettschneider (2008) states that the only geometric shapes that completely
cover the Atlantic basin without any overlap are squares, triangles, and hexagons.
The square is primarily limited by the corner representation. A network of triangles
magnifies the corner issue, and also magnifies the orientation issue; that is, the direc-
tion the triangle points affects the number of storm tracks observed intersecting the
triangle. A hexagon represents the best compromise between overlap and uniformity.
Hexagons can be tessellated where no area is left uncovered. All of the interior an-
gles of a hexagon are equal, and the sides are of equal length, so the hexagon best
approximates the idealized shape of a circle. Hexagons are used to visualize the GPD
model parameters to see if the information changes over space. In particular, the λ,
or rate, the σ, or statistical scale, and the ξ, or shape, parameters are visualized.

As weather services monitor hurricanes, values of location, wind speed, pressure,
size, and speed are gathered along the existing path of the event. Hurricanes rely
on particular atmospheric and environmental conditions to continue to grow or sus-
tain intensity. These events move through space and are thus potentially correlated
through space. If multiple hurricanes exist near one another temporally and spatially,
the values may have a dependency as well. In Chapter 5, spatial autocorrelation, or
the propensity for similar values to be found together, is tested to see the dependence
of particular parameters near one another spatially. Spatial dependence is an inherent
property of an attribute in geographic space because of the underlying continuity of
space (Haining, 2003), and, in this case, due to the operation of hurricane mechanics.
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Christaller (1933) in his famous dissertation theorizes Central Place Theory (CPT),
which is a spatial theory in urban geography that attempts to explain the distribution
patterns, size, and number of cities and towns around the world. Christaller (1933)
came to the conclusion that people gather together in cities to share goods and ser-
vices. There is a rank order of central places where each smaller subdivision fits into
the order above it. When mapped out visually, the central places are located at the
points of equilateral triangles, and as they connect, a series of hexagons is formed.
CPT attempts to understand the social construction of cities throughout space. It is
different than the understanding of hurricane phenomenon throughout space because
hurricanes are bounded by the physical elements of the atmosphere, while social be-
havior has no such bound. However, spatial autocorrelation is a property of attributes
occurring throughout geographic space, physical or social. CPT describes similar peo-
ple locating near one another in space for access to a common good. Hurricane values
occurring near one another temporally and in similar environmental conditions are
often similar as well. In this way, the geographic theory of central places and the
geographic understanding of hurricanes can be similar.

Hexagons are used to map out space and compare differences in two relevant pieces
of literature. Brettschneider (2008) uses a tessellated Gulf of Mexico and Atlantic
basin to first, determine whether spatial patterns exist in the climatological record,
and second, to determine whether probability can indicate the relative likelihood of
landfall as a function of storm position. This study utilizes an empirical probability
approach to assess the relative likelihood of movement of tropical cyclones based solely
on the past movement of cyclones. The methodological approach of using hexagons is
adopted for the final portion of this dissertation as an attempt to better understand
patterns in the frequency and magnitude of these extreme wind events in the Gulf
of Mexico and in the North Atlantic. Elsner et al. (2011) demonstrate a spatial
framework for studying hurricane climatology using hexagons. The authors find that
hexagons are efficient at covering hurricane tracks, as well as providing a background
to combine attribute data from tropical cyclones with spatial climate data.

Other types of spatial hierarchical models exist. Cooley et al. (2007) apply a
Bayesian analysis for spatial extremes of rainfall in Colorado to produce a map char-
acterizing how extreme behavior behave across a geographic region. The authors
spatially model the exceedance rate parameter assuming that the regional extreme
precipitation is driven by a latent spatial process characterized by geographical and
climatological covariates. They find that effects that are not fully described by the
covariates included are captured by the spatial structure in the hierarchies. This is an
interesting and innovative approach to understanding rainfall. That same assumption
of the latent spatial process is applied in Chapter 5 when analyzing the parameters
of the hurricane threshold model across space.

In Chapter 5, the relationship between each of the GPD parameters and sea surface
temperature (SST) is analyzed using a geographically weighted regression (GWR)
model. By including the SST covariate, the potential effect of an increasing SST on
hurricane characteristics can be further understood. GWR slides a moving window
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over the study area and fits the same regression equation to each spatially defined
subset (Haining, 2003). A GWR model allows insight into the spatial differences of
the relationship that a global regression model cannot provide. Hurricanes depend
on particular environmental conditions, so it is beneficial to see where the various
aspects of hurricane occurrence might be differently affected by SSTs.

The relevant literature and theories for a complete understanding of the upcoming
studies have been discussed. Now, the necessary data are presented.
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CHAPTER 2

DATA SOURCES

There are three main sources of data utilized in this dissertation to represent hurricane
location and wind, hurricane storm surge, and sea surface temperature. The following
sections describe each of these sources in detail. The specifics of how the data were
further utilized in each study are discussed in the respective chapter.

2.1 Hurricane Data

Hurricanes are tropical cyclones whose wind speeds reach at least 33 ms−1. The
hurricane occurrence, location, and wind speed data used in this analysis are derived
from the NHC’s Hurricane Database (HURDAT; or best track) (Landsea et al., 2004).
This is the official record of tropical cyclones for the Atlantic Ocean, Gulf of Mexico,
and Caribbean Sea, including those that have made a U. S. landfall. This record con-
sists of the 6-hourly cyclone location and intensity for individual storms back to 1851.
For cyclones prior to 1931, the 6-hour information is interpolated from once-daily
(1200 UTC) estimates. For cyclones in the period 1931–1956, the 6-hour information
is interpolated from twice-daily observations (0000 and 1200 UTC). Analyses were
previously conducted on storms during the second half of the nineteenth and early
twentieth century to improve the quality of the data (Fernandez-Partagas and Diaz,
1996; Landsea et al., 2004). These data are further explained and can be downloaded
from the NHC site http://www.nhc.noaa.gov/pastall.shtml#hurdat.

There remain limitations to these data that are relevant to the work presented in
this dissertation. Storm information over the earlier part of the record is less certain
than information over the more recent decades (Landsea et al., 2004). This time
variation in uncertainty is likely larger in the collection of tropical cyclones occurring
over the open ocean, but presents itself to some degree in land falling hurricanes.
Unless the area was at least sparsely populated at time of landfall, the hurricane
wind speed may not have been recorded. Despite the limitations, these data are
frequently used for hurricane risk analysis (Emanuel et al., 2006).

In order to utilize as much information as possible, the 6-hourly hurricane track
data were interpolated hourly for geographic position of the hurricane center (cen-
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ter fix) and wind speed using splines described in Jagger and Elsner (2006). Using
splines, a parsimonious smooth representation of the data is gained that preserves
local properties. An example of the difference between the 6-hourly information and
the 1-hourly information is shown in Figure 2.1. The hurricane intensity as a func-
tion of storm hour using the raw (6-hourly) and 1-hourly spline interpolated values
for Hurricane Andrew (1992) is shown in Figure 2.1. The spline smoothing preserves
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Figure 2.1: Hurricane Andrew (1992) intensities along an hourly plot.
Dashed line represents the observed values, and the solid line represents
the spline interpolated values.

the 6-hourly wind speed and gives a nonlinear interpolation of values at each hour
between these values. The advantage of the hourly interpolated values is that the
chance of missing a hurricane passing through any given area is greatly reduced. For
example, with the 6-hourly data and an average translational velocity of 18 km hr−1

one would expect to miss about 10% of all hurricanes crossing a circular region with
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a radius of 75 km. In contrast, one would expect to miss only about 0.2% of the hur-
ricanes (2 in 1000 storms) crossing through the same region using hourly data. The
missing track proportion is calculated assuming uniform track density and a fixed
wind speed.

Figure 2.2 shows the known hurricane tracks with the 1-hourly locations that have
affected the North Atlantic from 1851–2009. The color shading of the tracks denotes
intensity. The darkest gray shows Category 1 (at least 33 ms−1) hurricanes and the
lightest shade shows Category 5 hurricanes (≥ 69 ms−1). Categories are based on the
Saffir-Simpson Scale mentioned in Chapter 1. The weakest hurricanes are the most
frequent, while the most extreme occur less often in the record. Each of the studies in
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Figure 2.2: North Atlantic hurricanes from 1851–2009. Tracks shown are the
1-hourly spline interpolated location values. The shading represents Saffir-
Simpson wind speed categories. The darkest gray represents Category 1 (at
least 33 ms−1) and the lightest gray represents Category 5 (≥ 69 ms−1).

the upcoming chapters utilize the 1-hourly interpolated wind speed data. However,
each study utilizes different subsets of these data depending on the question being
asked. The specific method of subsetting the data is discussed in the relevant chapter.
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2.2 Storm Surge Data

The second study utilizes storm surge data along with the wind speed data. The
storm surge information used in these analyses come from SURGEDAT, a global storm
surge database (Needham and Keim, 2011). This dataset identifies the magnitude
and location of peak storm surge for tropical cyclone-generated surge events that
have occurred around the world since 1880. The database is available online at http:
//surge.srcc.lsu.edu/.

SURGEDAT utilized 62 sources of data, including 28 Federal government sources,
numerous academic publications, and more than 3,000 pages of historical newspaper,
to identify more than 200 storm surges along the U. S. Gulf coast. Federal data
sources include the NHC, United States Geologic Survey, U. S. Army Corps of En-
gineers, and National Weather Service weather forecast offices. A given surge event
often utilized multiple data sources to estimate the location and height of peak storm
surge. For example, SURGEDAT referenced ten data sources, including six Federal
sources, three books and one website, to make the most accurate possible storm surge
estimate for Hurricane Camille (1969). All available information was documented
from every source, producing more than 600 pages of metadata for surge events along
the U. S. Gulf coast alone. The 202 storm surge events for the U. S. Gulf coast can be
seen in Figure 2.3. Precise surge magnitudes were obtained for events in which tide
gauges measured the highest surge levels. As much as possible, SURGEDAT removed
tidal influences from the dataset. Where tide gauge data were available, the normal
astronomical tide level was subtracted from the maximum observed water level to
obtain the magnitude of maximum storm surge. However, when tide gauge data were
unavailable, or gauges were not located in the area of peak storm surge, maximum
storm surge levels were estimated from scientific and anecdotal documentation. Gen-
erally, these estimations provided water levels above normal, sometimes rounded off
to the nearest foot, which were then converted to meters.

The influence of waves on maximum water levels was also removed from the dataset
as much as possible. The manner in which waves were removed from scientific surge
observations depends upon the data type. Waves often appear as noise on tide gauge
graphs; in these cases the surge level was visually estimated at the lower end of
the observed heights, where Mean Sea Level rose to produce a new baseline level.
In regards to post-storm field work, greater weight was given to observations that
utilized still water marks inside structures, such as interior mudlines, which minimize
the effects of waves. For more details about the methodology utilized to construct
SURGEDAT, please see Needham and Keim (2011).

Chaper 4 is the only study to utilize these data. Each location analyzed in the
study uses a different subset of these data, and the details of the specific data collection
are outlined when necessary.
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Figure 2.3: Location points for all U. S. Gulf coast hurricane storm surge
events from 1886–2010 as taken from SURGEDAT.
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2.3 Sea Surface Temperature Data

The final study in this dissertation (Chapter 5) looks at the spatial distribution
of statistical risk across the North Atlantic using hexagonal tessellations. The rela-
tionship between the parameters in the risk model and SST over the North Atlantic
is estimated using a GWR model across the hexagons. The data are the NOAA’s
reconstructed SSTs, version 3, from the Earth System Research Laboratory Physical
Science Division and are available in network common data form (netCDF) format.
NetCDF is a set of software libraries and data formats from the Unidata commu-
nity that support the creation, access, and sharing of data arrays. Spatial climate
data such as monthly SST grids are organized as arrays and stored in netCDF files
by The National Center for Atmospheric Research (NCAR). The SST variable is
an area-weighted average (◦C) using values in 5◦ latitude-longitude grid boxes from
the equator north to 70◦N latitude and spanning the North Atlantic Ocean (En-
field et al., 2001) for the set of months starting with January 1854 and spanning
through November 2009. This grid is shown in Figure 2.4. The data are avail-
able at www.esrl.noaa.gov/psd/data/correlation/amon.us.long.data. Further
specifics about the SST data utilized in Chapter 5 are discussed when needed. This
is the only study to utilize these data. A solid foundation has now been put in place
for the upcoming three chapters. A discussion of the relevant literature has provided
the background for this research, and the basic sources of data have been described to
provide an initial framework. Each of the following three chapters represents statisti-
cal risk in a similar way using various spatial domains. Chapter 3 presents a research
study about hurricane wind risk in twelve different Florida cities.

19



0o

70oN

120oW 20oE

Figure 2.4: Location grid of NOAA reconstructed SST values. The locations
are taken at 5◦ latitude-longitude grid boxes from the equator north to 70◦N
latitude and spanning the North Atlantic Ocean.
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CHAPTER 3

RISK OF EXTREME HURRICANE
WINDS IN FLORIDA

The state of Florida has a particularly unique vulnerability to hurricane strikes. Geo-
graphically, it sits surrounded by warm seas, with the Atlantic Ocean to the east, the
Gulf of Mexico to the west, and both warm bodies connected by the Florida Straits.
Other than the small northern boundary, the entire state has a coastline susceptible
to hurricanes. According to Blake et al. (2007), 40% of all U. S. hurricanes hit Florida;
and 83% of Category 4 or 5 hurricane strikes have hit either Florida or Texas. Due
to increasing populations and economic development in the areas prone to devasta-
tion, average economic losses are increasing over time (Malmstadt et al., 2009). For
society to better cope with and mitigate these disasters, a more precise estimate of
the statistical risk of high winds on the local level is needed.

In this chapter, wind risk from a hurricane is estimated as the probability of
a region experiencing winds of hurricane force or greater within a specified period.
In this context, risk is an attribute of a region that is determined by the size and
location of the region and not by the potential for loss of life or property. Risk is
an unobserved and changing quantity that is estimated using a statistical procedure.
The procedure provides an estimate of the exceedance wind speed (return level) as
a function of return period (inverse of the annual probability). The primary goal
here is to quantify the risk of hurricane winds of varying magnitudes blowing over a
particular region over a given time period. This method can provide useful return level
estimates for homeowners on a 20–30 year mortgage as well as provide information at
similar time scales as offered for the 100-year flood plain in hydrology literature (Bin
et al., 2008).

In particular, this chapter estimates return levels of hurricane winds affecting
twelve Florida cities and examines the case for secular trends in the intensity and
frequency of hurricanes in the vicinity of the state. This is an application of the
Elsner et al. (2008a) model, where information from past cyclones affecting the city
and it’s vicinity are combined through the parameters of an extreme value model to
estimate return levels. This chapter goes beyond the initial work by automating the
procedure and applying it to cities in Florida. This procedure, called the Hurricane
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Risk Calculator (HRC), borrows information from a larger region to estimate the
distribution parameters for a smaller region. The methodology implicitly assumes a
stationary climate with regard to the occurrence and intensity of the wind events.
Some light is shed on this assumption by examining the case for trends in hurricane
activity in and around the state of Florida using the method of quantile regression
as introduced in the study of hurricane climatology in Elsner et al. (2008b). This
chapter can be seen in final publication in Malmstadt et al. (2010).

This chapter continues by discussing the statistical procedure for estimating local
wind risk in Section 3.1. Section 3.2 gives the results of the return period calculations
for selected Florida cities. Section 3.3 presents the methods and results of the trend
analysis of hurricanes in the vicinity of Florida. Section 3.4 summarizes the results
and emphasizes the important conclusions for this chapter. The work is important
in providing reliable estimates of hurricane wind return periods for the population
centers of Florida and for demonstrating a statistically significant trend in hurricane
intensification rates in the vicinity of the state.

3.1 Estimation of Florida Wind Risk

All analysis and modeling was performed using the open source R Project for
Statistical Computing software (R Development Core Team, 2010).

For this study, the 1-hourly wind speed estimates used for the years 1851–2008
are described in Chapter 2. As noted earlier, there are limitations to the data set
that are even more prevalent in the earliest portion of the record. To test the effect of
the limitations, this chapter compares results from the HRC using all of the available
data with the results from a shorter, more reliable set of years, 1899–2008. As noted
in Neumann (1987) estimated return levels assume the hurricane climatology over the
record will remain unchanged. It is also assumed that the occurrence of a hurricane
within the city is independent of future hurricanes within the same city. This latter
assumption is reasonable, but as shown in Section 3.3 there is some evidence that
Florida’s hurricane climate is changing.

The locations of the twelve cities used in this study were obtained from the United
States Geological Survey’s database, available at http://geonames.usgs.gov, and
describe the geographic center of the city limits as recognized by the federal gov-
ernment. Each city is chosen based on its level of population density, as well as its
potential risk for hurricane damage. Twelve cities were chosen to map out the spatial
differences for locations from the western Panhandle to the northeast coast of the
state (Figure 3.1). The city center is considered the geographic center of the city
limits as defined by the federal government. A 100 km radial circle is drawn around
each center. This distance is used in the HRC. The 2000 U. S. Census information is
provided to show Florida’s county population per square kilometer. Another way to
map the Census data would be to show metropolitan statistical area population for
the cities of interest.
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Figure 3.1: Florida cities. The twelve Florida cities used in this study are
shown with the city centroid location denoted with a square. The 100 km
radial distance from the city center is shown with a circle. This distance is
used in the HRC and encompasses each city. County shading represents the
population density per square kilometer.
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The first portion of this study estimates return levels locally. The climatological
probability of hurricane winds can be estimated in various ways, as was shown in
Chapter 1. For this research, the approach of Elsner et al. (2008a) is automated to
estimate local return levels for twelve cities in Florida. This is the HRC. Specifically,
the distribution of the maximum wind above a threshold value u is assumed to follow
a GPD (refer to Chapter 1). The threshold value for the extreme value model is
determined using the mean residual life plot (Davison and Smith, 1990). This plot is
produced by averaging the difference in the observed wind speeds above a specified
level as a function of the level. For example, at a wind speed level of 30 ms−1, 30 is
subtracted from each observed wind speed and only the positive values (excesses) are
averaged. This is repeated for all wind speed levels. The mean excess is the expected
value of the amount that the observations exceed the particular level. In other words,
if extreme values follow a GPD, then the expected value of the excesses is a linear
function of the threshold.

Following Jagger and Elsner (2006) and the theorem discussed in Chapter 1, the
exceedences W − u are modeled as samples from a family of GPD, so that for an
individual hurricane with maximum wind W ,

Pr(W > v|W > u) =

(

1 +
ξ

σ
[v − u]

)−1/ξ

(3.1)

= GPD(v − u|σ, ξ)

where σ > 0 and σ + ξ(v − u) ≥ 0. For negative values of the shape parameter (ξ)
the GPD family of distributions has an upper limit of Wmax = u+ σu/|ξ|.

The frequency of storms with intensity of at least u follows a Poisson distri-
bution with a rate, λu, the threshold crossing rate. Thus the number of hurri-
canes per year with winds exceeding v is a thinned Poisson process with mean
λv = λu Pr(W > v|W > u). This is the POT method and the resulting model is
completely characterized for a given threshold u by σ, or scale, ξ, and λu; the GPD
parameters and the threshold crossing rate, respectively. It is important to note that
the scale parameter, or σ, is a measure of the dispersion of the distribution, and does
not refer to a type of geographic scale.

Since the number of storms exceeding any wind speed v is a Poisson process, the
return period for any v has an exponential distribution, with mean r(v) = 1/λv. By
substituting for λv in terms of both λu and the GPD parameters then solving for v
as a function of r the corresponding return level for a given return period can be
estimated as

rl(r) = u+
σ

ξ

[

(r · λu)
ξ − 1

]

. (3.2)

For a more complete description of the statistical theory supporting this model
please refer to Coles (2001), and for an example of the application of POT to maximum
wind speeds in hurricanes refer to Jagger and Elsner (2006).

This model estimates how long on average an area can expect to wait to experience
a hurricane of a given intensity. Unfortunately for most small areas like cities, there
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are too few historical hurricanes to provide a stable estimate of the model parameters.
Therefore, the parameters at the smaller radial distance are extrapolated using linear
regression from multiple correlated sets of parameters taken at larger radial distances
surrounding the location. An example of how this is done in the HRC is provided in
the next section.

3.2 Return Period Estimates

The HRC procedure is outlined here for the city of Miami. The goal of interest
is to find return level estimates for a 100 km radius around each city center. This
allows for the city to be included, as well as a substantial portion of the areas outside
of the city boundaries. Figure 3.2 shows the GPD model parameters and their 90%
confidence intervals for increasing radial distances from the geographic center of the
city from 75 to 200 km at increments of 25 km. Each parameter is estimated based on
the statistical procedure described in the previous section and plotted as a function
of radius from the city center. A confidence interval (CI) about the mean return level
is obtained by scaling the CI obtained from using a larger radial distance (see Elsner
et al. (2008a)). This is done by first, calculating the return levels for a given return
period, and then assuming the estimate is asymptotically normal from a knowledge
of the limiting variance of the estimator (delta method). Note that for radii larger
than 125 km the change in parameter values is linear. This linear relationship is
exploited and a separate bivariate regression for each parameter as a function of
search radius between 125 and 200 km is determined. The regression line (solid) is
used to extrapolate the parameter value at the radial distance of 100 km for each
parameter (point indicated on regression line). Thus parameters at the small radial
distance of interest are extrapolated using the parameters at larger radial distances.

The threshold u used in the model varies for each location depending on the mean
residual life plot produced. The choice is a compromise between having wind speeds
high enough for a proper GPD fit but enough of them that the parameter estimates
of the GPD are reliable. The thresholds range from 20–35 ms−1. With a proper
threshold, the values of ξ are greater than −1 and the change as a function of radius
is small. Figure 3.3 shows the ξ parameter from Miami’s estimates as an example.
The dotted line shows the ξ parameter using a threshold that is too high for the
model (40 ms−1) and the solid line shows ξ using a threshold that is appropriate
for the model (35 ms−1). Although the choice of the precise threshold is somewhat
arbitrary, for each location the choice made is not overly sensitive to the search radius.

The return level curve for Miami using data from 1851 and parameters extrapo-
lated to a radius of 100 km is shown in Figure 3.4. The return period in years is on
the horizontal axis with a log scale. The return level indicating wind speeds (ms−1)
is on the vertical axis with a linear scale. The 90% uncertainty range on the return
levels are shown with vertical lines. The model curve indicates that Miami (within
a 100 km radius of the city center) can expect a hurricane of at least 33 ms−1, with
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Figure 3.2: HRC parameters. The values for the HRC parameters (λ, σ, and
ξ) as a function of radial distance are shown. Parameter values are obtained
from a maximum likelihood procedure using the fastest wind speeds from
hurricanes occurring within a radial distance of the geographic center of
Miami. The bold line indicates the regression line of the parameter on
distance from city center.
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Figure 3.3: Threshold comparison. Miami’s ξ parameter as a function of ra-
dial distance is shown. The dotted line shows the parameter using a 40 ms−1

threshold. The solid line shows the parameter using a 35 ms−1 threshold.

a 90% uncertainty of (26.9–39.1) on average once every 5 years and a hurricane of
at least 50 ms−1 (45.5–54.5) on average once every 12 years. Since the estimate is
over an area and wind speeds diminish rapidly as the hurricane moves over land, it
most accurately represents the portion of the area over (or nearest) the ocean. For
comparison, the model is rerun using hurricanes limited to the period 1899–2008.
The return-level curve is similar (dashed line). The estimates using data from 1899
produce higher return levels for return periods in the range from about 5 to 100 years.
However, the estimates fall within the 90% confidence level produced by using data
from 1851. This justifies using the entire record of data.

The HRC is repeated for the other eleven cities. Table 3.1 displays the number
of hurricanes passing through each city over the period 1851–2008, inclusive. The
pass through is defined by the center fix passing within a 100 km great circle distance
of the geographical center of the city. The hurricane wind speeds are broken into
the five Saffir-Simpson categories and show variation between locations. Each city
is threatened by hurricane winds and all have experienced at least Category 3 winds
(50–58 ms−1), except Tallahassee. Pensacola has experienced the most Category 1
hurricanes. Overall, Miami has experienced the most hurricanes, with 35 strikes over
the 158-year time period, and Key West has the second highest strike occurrence, 33.
Miami, Cape Coral, Port St. Lucie, and Key West have experienced Category 4 wind
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Figure 3.4: Miami’s return level. The return level as a function of return
period for hurricanes passing within 100 km of the geographic center of
Miami. The solid line shows the return level estimates from the HRC using
data over the period 1851–2008. The 90% confidence intervals are shown
as vertical lines. The dotted lines shows the return-level estimates from the
HRC using data over the period 1899–2008.

speeds. Only Miami has experienced a Category 5 hurricane (Andrew in 1992). The
Labor Day hurricane of 1935 reached Category 5 strength, but at a distance greater
than 100 km from Key West.

Looking at these results from a geographic perspective, it is seen that the “Big
Bend” area of Florida (Tallahassee through Tampa, along the Gulf coast) experiences
fewer hurricanes than the western Panhandle and southeastern peninsula. Also, the
northeast corner of the state, Jacksonville and Daytona Beach specifically, experience
fewer hurricanes than these areas as well. The peninsula of Florida protects the Big
Bend region from the strongest hurricanes approaching from the southeast, and the
southeast to northwest orientation of the coastline north of Port St. Lucie is parallel
to the tracks of hurricanes at this longitude and latitude.

Figure 3.5 shows return-level curves for the 100 km radial distance surrounding
each city center. They are plotted based on their geographic locations to help visualize
spatial patterns. As expected, areas like the Big Bend and the northeast coastline
show weaker wind speeds for a given return period when compared to areas like
the Panhandle and the southeastern coastline. The highest return levels for return
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Table 3.1: Number of hurricanes by wind speed intervals known to have
passed within a 100 km radius of the specified city center from 1851–2008.
Positions and wind speeds interpolated to 1-hourly values following the pro-
cedure outlined in Jagger and Elsner (2006).

Maximum Number of Hurricanes
Wind Speed Miami Orlando Jacksonville Tampa

(ms−1)
33–42 12 15 7 10
43–49 7 7 6 6
50–58 11 3 5 4
59–69 4 0 0 0
≥ 70 1 0 0 0

Tallahassee Cape Coral Port St. Lucie Daytona Beach
33–42 8 4 10 13
43–49 6 5 9 4
50–58 0 8 6 5
59–69 0 3 2 0
≥ 70 0 0 0 0

Pensacola Sarasota Panama City Key West
33–42 13 10 17 11
43–49 4 6 4 10
50–58 8 6 6 9
59–69 0 0 0 3
≥ 70 0 0 0 0

periods of 500 years are noted in Key West, Miami, Port St. Lucie and Cape Coral. In
contrast, Tallahassee has the lowest return levels at the longest return periods. These
results are tabulated in Table 3.2 including the 90% CI on the return-level estimates.

Table 3.3 shows the return level estimates for Miami and Pensacola with their
confidence intervals using data only back to 1899. The results using the entirety of
the data set are presented alongside for comparison. The differences can be attributed
to the exclusion of an additional 48 years of data and to data limitations. It should
be noted, however, that the differences are not large relative to the range of the CI.
In fact, the return level estimates using the shorter data period fall within the CI of
the return level estimates from the longer period.

Based on the HRC, a maximum wind speed can be estimated using the equation
u+(σ/|ξ|). Table 3.4 shows the maximum wind speed, the GPD parameters, and the
threshold for each city. This wind speed can be understood as the highest possible
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Figure 3.5: Florida cities’ return level curves. Return level curves are shown
as a function of return periods for hurricanes passing within 100 km of the
geographic center of the specified city using the HRC.
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Table 3.2: Return period for selected wind speed exceedance values. The
return levels are based on the HRC presented above and include data over
the period 1851–2008. The return period refers to the expected time between
winds of this level blowing somewhere within a 100 km radius of specified
cities. The confidence interval is the 90% interval.

Return Hurricane Wind Speed
Period (ms−1)
(Year) Miami Orlando Jacksonville Tampa

10 47.7 38.5 35.1 38.0
(43.1–52.3) (34.5–42.5) (32.1–38.1) (34.6–41.4)

20 56.4 45.1 42.2 44.0
(52.2–60.6) (41.4–48.8) (38.9–45.5) (40.7–47.3)

50 63.0 50.6 47.8 49.5
(59.6–66.4) (46.9–54.3) (44.5–51.1) (46.3–52.7)

100 65.8 53.2 50.3 52.3
(62.9–68.7) (49.7–56.7) (47.0–53.6) (49.3–55.3)

500 68.9 56.5 53.0 56.1
(66.8–71.0) (53.2–59.8) (49.7–56.3) (53.4–58.8)
Tallahassee Cape Coral Port St. Lucie Daytona Beach

10 33.2 43.9 43.9 37.0
(30.3–36.1) (39.8–48.0) (39.9–47.8) (33.7–40.3)

20 38.5 52.1 52.8 43.5
(35.5–41.5) (48.4–55.8) (49.0–56.6) (40.4–46.7)

50 43.0 58.5 60.1 49.7
(40.1–45.9) (55.5–61.5) (56.7–63.5) (46.9–52.5)

100 45.2 61.4 63.6 53.0
( 42.4–48.1) (58.9–63.9) (60.5–66.7) (50.6–55.4)

500 48.0 64.7 67.9 57.8
(45.2–50.8) (62.8–66.7) (65.1–70.7) (55.8–59.8)
Pensacola Sarasota Panama City Key West

10 41.6 39.6 39.6 45.8
(38.1–45.2) (35.9–43.3) (36.2–43.0) (41.1–50.5)

20 48.5 46.5 46.4 54.7
(45.3–51.7) (43.0–50.0) (42.9–49.9) (50.5–58.9)

50 54.0 52.8 52.1 61.4
(51.3–56.7) (49.7–55.9) (48.8–55.4) (57.8–65.0)

100 56.5 56.2 54.9 64.3
(54.2–58.8) (53.5–58.9) (51.1–57.3) (61.1–67.5)

500 59.3 60.8 58.5 67.4
(57.4–61.2) (58.7–62.9) (55.7–61.3) (64.9–69.9)
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Table 3.3: Return period for selected wind speed exceedance values for Mi-
ami and Pensacola. The return levels include data over the period 1899–
2008. The confidence interval is the 90% interval. The results using the full
data set are presented alongside for comparison.

Hurricane Wind Speed
Return (ms−1)
Period 1851–2008 1899–2008
(Year) Miami Pensacola Miami Pensacola

10 47.7 41.6 51.0 42.9
(43.1–52.3) (38.1–45.2) (45.5–56.5) (38.0–47.8)

20 56.4 48.5 59.3 50.4
(52.2–60.6) (45.3–51.7) (56.0–62.6) (46.2–54.6)

50 63.0 54.0 64.8 55.3
(59.6–66.4) (51.3–56.7) (62.9–66.7) (52.0–58.6)

100 65.8 56.5 66.8 57.0
(62.9–68.7) (54.2–58.8) (65.4–68.2) (54.2–59.8)

500 68.9 59.3 68.7 58.6
(66.8–71.0) (57.4–61.2) (67.8–69.6) (56.3–60.9)
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Table 3.4: Estimated maximum possible wind speeds. Estimates are for the
strongest winds (ms−1) within 100 km of the city center.

City σ ξ Threshold Max Wind Speed
(ms−1) (ms−1) (ms−1)

Port St. Lucie 26.5 −0.581 25 70.6
Miami 24.7 −0.699 35 70.3

Key West 23.7 −0.698 35 69.0
Cape Coral 27.0 −0.652 25 66.4

Sarasota 18.3 −0.459 25 64.9
Daytona Beach 15.9 −0.422 25 62.7
Panama City 14.2 −0.547 35 61.0

Pensacola 23.2 −0.648 25 60.8
Tampa 16.5 −0.480 25 59.4

Orlando 13.5 −0.569 35 58.7
Jacksonville 16.2 −0.662 30 54.5
Tallahassee 16.3 −0.541 20 50.1

wind speed that can be experienced within a 100 km distance of the given city center.
The list is in descending order of maximum wind speeds. At the top are Port St. Lucie
and Miami with maximum wind speeds exceeding 70 ms−1 and at the bottom are
Jacksonville and Tallahassee with wind speeds less than 55 ms−1.

The NWS also estimates statistical hurricane wind risk for selected Florida cities.
They use the HURISK model developed in Neumann (1987), which employs a Weibull
distribution for tropical cyclone wind speeds and a Poisson distribution for hurricane
frequency and estimates return periods at the county level. The latest output from
HURISK is presented in Blake et al. (2007). The HRC estimates a return level for
a given return period while the HURISK provides a return period for a given return
level. Comparisons are made by converting our HRC return levels at 33 and 50 ms−1

into return periods (Table 3.5). The HRC estimates can be converted to provide a
return period for a fixed return level via Equation 3.2.

The two procedures produce similar estimates for hurricane intensities. In four
of the ten locations, HURISK and HRC give the same return period and nine out of
ten are within one year. At major hurricane intensities the results diverge with the
HRC indicating longer return periods (lower probabilities) for the stronger storms
by an average of 16 years (an average difference in annual probability of 6%). The
other cities (i.e. Tallahassee and Orlando) are not included in this table because the
latest output from HURISK does not include a comparison. The differences in the
results are attributable to differences in the wind speed distributions used by the
two approaches. The Weibull distribution used in HURISK is appropriate for wind
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Table 3.5: Return period comparisons. Return periods (year) from HURISK
and HRC are shown for selected Florida cities. Hurricanes are denoted by
H and major hurricanes are denoted by MH. St. Lucie County is included to
show a comparison between the return periods for Fort Pierce (HURISK) and
Port St. Lucie (HRC). Lee County is included to show a comparison between
Fort Myers (HURISK) and Cape Coral (HRC). “Differ” is the return period
from HURISK minus the return period from HRC.

Return Period (Year)
HURISK HRC Differ
H MH H MH H MH

Pensacola 7 17 6 24 1 −7
Panama City 6 17 6 34 0 −17

Tampa 6 23 7 56 −1 −33
Sarasota 6 19 6 32 0 −13

Key West 5 12 5 13 0 −1
Miami 4 9 5 12 −1 −3

Daytona Beach 8 31 7 52 1 −21
Jacksonville 9 28 9 92 0 −64

St. Lucie Cty 7 17 5 16 2 1
Lee Cty 6 15 5 16 1 −1
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speeds at all intensities, however by using the more frequent weaker hurricanes the
distribution tends to produce a heavy tail (Darling, 1991; Jagger et al., 2001). A
heavy tail is indicative of higher probabilities for the most extreme speeds. These
higher probabilities translate to shorter return periods as noted in the table for major
hurricanes. Thus while HURISK is appropriate for estimating the wind risk of typical
hurricanes, it may overestimate the threat of winds in the most extreme hurricanes.
For estimating the return period of the strongest hurricane wind speeds it might be
better to use a GPD as is done in the HRC.

Having examined hurricane return levels across the state, next it is considered
whether the statistical wind risk from hurricanes is changing over time. A stationary
climate is assumed in the results presented in this section. This assumption is exam-
ined in the following section by considering evidence for changes in the frequency and
intensity of hurricanes in the vicinity of Florida.

3.3 Changes in Frequency and Intensity

The usefulness of a return level estimate depends to some extent on the assumption
that the hurricane climate is stationary. Explicitly, the methodology of estimating
the return levels presupposes that the frequency and intensity of hurricanes is not
changing over time. Trends in frequency are examined using linear regression and
trends in intensity are examined using quantile regression (Koenker and Bassett,
1978) as used recently in Elsner et al. (2008b). Quantile regression is an extension of
linear regression applied to quantiles of the response variable. A quantile is a point
taken from the inverse cumulative distribution function so that the 0.5 quantile is the
value such that 50% of the values are less than the value.

Because of the rarity of hurricanes affecting any small area the uncertainty on a
trend estimate will be large. So here the data are examined for trends in the frequency
and intensity of hurricanes falling within a 1000 km radius of 26◦N latitude and 82◦W
longitude off the southwest coast (Figure 3.6). This is the area described by Hamid
et al. (2009) in an attempt to identify storms that could conceivably impact Florida.
Possible effects of climate change could influence hurricanes that pass within this
vicinity of Florida, so including a wide search radius around Florida allows for insight
into the potential changes that a warmer climate may bring.

The Florida Commission on Hurricane Loss Projection Methodology, created dur-
ing the 1995 Florida Legislative session to evaluate hurricane risk models, advises
modelers to consider hurricanes in this area as a potential threat to Florida. This
is done for the purposes of comparing different statistical risk models used by the
insurance industry (Hamid et al., 2009; Jagger and Elsner, 2009) using a common set
of hurricanes. The area encompasses cyclones that affect the Panhandle, west, and
northeast coasts of Florida, as well as cyclones that approach south Florida from the
vicinity of Cuba and the Bahamas. This location and data back to 1899 are used
because, according to Landsea et al. (2004), the turn of the 20th century is the ap-
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Figure 3.6: Florida threat area. The threat area around Florida is shown
with a black circle. This area is described by Hamid et al. (2009) as a 1000
km radius of a location (26◦N latitude and 82◦W longitude) off the southwest
coast of Florida.

propriate place to start for reliable landfall records for the United States. The data
include 162 individual hurricanes over the period 1899–2008, inclusive.

The frequency and intensity of hurricanes as a function of year are shown in Figure
3.7. There is no upward or downward trend in the occurrence rate of hurricanes
or major hurricanes in the vicinity of Florida, but there does appear to be a low
frequency fluctuation that matches variations in SSTs (Saunders and Harris, 1997;
Landsea et al., 1999; Wang et al., 2008). The strongest hurricanes appear to be
getting stronger. The trend lines represent the 50th and 90th percentile regressions of
maximum wind speed on year. The maximum wind speed is the highest wind speed
for each hurricane within the Florida threat area. The upward trend at the median is
7 ms−1 per century with a standard error of 3 ms−1 per century. The upward trend at
the 90th percentile is 13 ms−1 per century with a standard error of 6 ms−1 per century.
If only the years from 1950 onward are included, the upward trend increases to 21
ms−1 per century with a standard error of 20 ms−1 per century. The trends assume
the data are uniformly reliable over the period of record. This assumption may not
hold up under closer scrutiny of the influence that changes in measuring techniques
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have on the wind estimates. These results suggest that the return levels presented in
the previous section might be too low for estimates of future hurricane wind risk.

To better understand the upward trends in hurricane wind speeds, the hourly
intensification rates along the hurricane tracks within the Florida threat area are
estimated. The intensification is the time change of the maximum hurricane wind
speed. The data set is divided into values that are above zero indicating hurricane
strengthening and values below zero indicate hurricane weakening. Then the maxi-
mum value of strengthening (intensification) along the track of each hurricane within
the threat area is taken to obtain one intensification value per hurricane. These val-
ues are multiplied by 24 to express the maximum hourly intensification in terms of
a daily rate and plot them as a function of year in Figure 3.8. The 10th, 50th, and
90th percentiles are analyzed for trends using quantile regression. Significant upward
trends in intensification rates are observed. The greater intensification rates of late
do not necessarily imply more intense hurricanes at the point of landfall. These up-
ward trends are consistent with increasing ocean heat content noted over the Gulf of
Mexico and the western Caribbean (Carton and Santorelli, 2008). This relationship
between hurricanes and SSTs is further explored in Chapter 5.

3.4 Florida Wind Risk in Summary

Hurricanes top the list of most destructive and costly natural disasters in the
United States. Estimates of return levels for the strongest hurricane winds provide
emergency planners and the insurance industry information by which to make deci-
sions. In this chapter, standard hurricane data are used to model wind speed return
levels for the strongest hurricanes passing within a 100 km radius of twelve cities in
Florida. The model is based on the GPD with parameters estimated locally by bor-
rowing information on the frequency and intensity of hurricanes over larger regions.
This procedure is termed the HRC.

Not unexpectedly, it was found that the likelihood of extreme wind occurrence
from hurricanes varies across the state. Areas in the northeast, such as Jacksonville,
and in the Big Bend, between Tampa and Tallahassee, have longer return periods
for a given strong wind speed compared with areas such as Miami in the southeast
and Pensacola in the Panhandle. Thus the annual threat of a catastrophic hurricane
event is highest in the southeast and the western Panhandle of the state.

The sensitivity of the return level estimates was examined by limiting the input
data to the more recent years (1899 and after). The return levels are quite similar
indicating that, despite the greater level of uncertainty on the records prior to 1899,
the frequency and intensity of the strongest hurricanes are consistent over the longer
period of record.

An implicit assumption underlying the results is that of stationarity, which was
examined by trend analysis on hurricane frequency and intensity in the vicinity of
Florida. It was found that the frequency of hurricanes and major hurricanes is rather
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Figure 3.7: Hurricane frequency and intensity. Frequency and intensity of
hurricanes in the vicinity of Florida are shown. (a) Frequency of all hurri-
canes as a function of time. (b) Frequency of major hurricanes (Category 3
and above) as a function of time. (c) Intensity (maximum sustained wind
speed in ms−1) as a function of time with trend lines shown for the 50th and
90th percentiles.
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Figure 3.8: Trends in the maximum intensification rate of hurricanes as a
function of quantile. The maximum intensification rate is calculated as the
rate of change between hourly observations. Trends are estimated coefficients
from quantile regression in units of ms−1/hr per year. The point-wise 90%
confidence band is shown in grey. The solid line is the trend from a least-
squares regression of the rate of intensification as a function of year, and the
dashed lines delineate the 90% confidence band about this trend.
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constant through time. However, there is evidence of upward trends in the intensity of
the strongest hurricanes. In fact at the 90th percentile the upward trend is estimated at
13 ± 6 ms−1 per century. This is occurring in conjunction with statistically significant
upward trends in the intensification rates and is consistent with rising ocean heat
content over the Gulf of Mexico.

The study can be improved by determining a method to adjust the return level
estimates to reflect the upward trends in hurricane intensity. One possibility is to
model hurricane frequency as a function of time or sea temperature and integrate
the modeled frequencies over, say 100 years. The ratio of the modeled frequency
to the historical frequency could provide a scaling factor for the rate parameter of
the Poisson distribution in the HRC. A similar adjustment could be made for the
parameters of the GPD.

In the next chapter, the GPD approach is used to estimate return levels for hur-
ricane storm surge at three AFB locations along the U. S. Gulf coast. It furthers
the study by exploring the relationship between storm surge and wind speed within
hurricanes using a bivariate copula model.
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CHAPTER 4

COMBINED WIND AND SURGE
RISKS FROM HURRICANES ALONG

THE U. S. GULF COAST

The previous chapter showed that hurricanes create extreme winds in areas around
Florida, and that these winds are becoming more extreme over time. Although this
is certainly an important characteristic to model, it is also interesting to consider
another principal hazard of hurricanes; the storm surge. Storm surge refers to the
wall of water that is pushed onshore as the momentum of the hurricane tracks inland.
Storm surge is a unique variable to model because it is highly dependent upon the
topography and terrain of the surface it passes over. It was not monitored as closely
as wind speeds in the earlier portion of the 20th century creating relatively short
observational records. Up until recently, there was not an available raw data set of
sufficient length that allowed for the modeling of storm surge at a given location.
Thankfully, a global storm surge dataset has been created that allows for statistical
analysis (refer to Chapter 2).

In previous research, the univariate statistical risk of hurricane characteristics has
been calculated in various ways. Most notably, researchers have employed EVT to
estimate the occurrence of variables beyond those that have been recorded in known
data sets, as was shown in Chapter 3. In the case of this study, EVT is used to
estimate the occurrence of hurricane storm surge events at three locations along the
Gulf coast. In particular, a POT approach and the GPD are used to estimate the
likelihood of occurrence. The analysis is focused on three locations; Eglin Air Force
Base (EAFB) near Valparaiso, Florida (30.46◦N, 86.55◦W), MacDill Air Force Base
(MAFB) in Tampa, Florida (27.85◦N, 82.50◦W), and Keesler Air Force Base (KAFB)
in Biloxi, Mississippi (30.41◦N, 88.93◦W).

It is also a goal of this study to understand the relationship between hurricane
wind speed and storm surge at these locations. To get an estimate of the overall risk
of losses, Liu et al. (2009) use a multivariate compound EVD to combine the risk of
typhoon hazards in China. Here another way to combine the likelihood of a wind
and surge occurrence from hurricanes is presented using a bivariate statistical model.
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In particular, data from hurricane events with high winds and storm surges are used
in a copula model. The copula model allows for the estimation of the dependency
between high winds and surge. In this chapter, a proof-of-concept for the approach
is offered using data in the vicinity of the three AFBs.

In this chapter, Section 4.1 describes how the data described in Chapter 2 are
further subset and collated for the AFBs. Section 4.2 describes the methodology and
results for the univariate risk model using storm surge. Section 4.3 describes the
statistical relationship between wind and surge and presents the methodology and
results for the bivariate copula risk model. Section 4.4 summarizes the important
points of this chapter.

4.1 Collating Wind and Surge Events

For each of the three locations mentioned above, the hurricane events (≥ 33 ms−1)
that passed within a 140 km radius of the geographic centers of the AFBs are collected
using the entire available HURDAT record (again, using the 1-hourly interpolated val-
ues). This radius is used because, according to Keim et al. (2007), the 140 km radius
is one-half of the typical width of the swath of hurricane force winds for hurricanes
that exceed 50 ms−1. This subset of hurricanes is used at each location to find the
matching peak surge location and height for events in SURGEDAT.

A 140 km radius is drawn around each surge event to find the corresponding
maximum wind speed along the hurricane track that has come within that specified
distance. This is the maximum wind speed closest to the recorded surge event. Each
location now has a sample of hurricane occurrence, location, wind speed, and surge
height data. For EAFB and MAFB, the years of data span from 1896–2004. For
KAFB, the years of data span from 1893–2005. No hurricane events are included
outside of these ranges due to a lack of observational surge data. Table 4.1 shows
an example of five hurricane wind and storm surge pairs that affected one of the
locations; KAFB. It includes the name and year of the hurricane, the surge height
in meters, the longitude (Slon) and latitude (Slat) of the surge height, the maximum
wind speed nearest the surge in ms−1, and the longitude (Wlon) and latitude (Wlat)
of the wind speed.

As a note, the 140 km radius around EAFB could be changed to an oval due
to the rectangular shape of the base. This could be considered in future studies
when modeling storms around EAFB. It may allow for additional hurricanes to be
considered.

Figure 4.1 is a conceptual model describing the data collation. The light gray
rectangle denotes an arbitrary piece of coastline. All hurricanes (arrow) that come
with 140 km of the AFB (dark gray rectangle) are collected. All of the surge events
(blue square) that are associated with those tracks are collected. A 140 km radius
(blue circle) is drawn around the surge event to find the closest maximum wind speed
(green triangle) along the track (circle not drawn to scale). Note this maximum wind
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Table 4.1: Sample of data used for analysis. Includes five hurricanes that
affected KAFB, including the name, year, surge height, surge location, wind
speed, and wind location.

Name Year Surge (m) Slon Slat Wind (ms−1) Wlon Wlat

Katrina 2005 8.47 −89.3 30.3 57.3 −89.6 29.3
Ivan 2004 4.57 −87.3 30.3 55.2 −88.1 29.4

Danny 1997 1.99 −87.8 30.2 36.5 −89.1 29.7
Florence 1988 1.83 −89.9 30.3 35.1 −89.3 28.9

Elena 1985 3.05 −85.0 29.7 56.7 −86.4 29.5

speed is different than the maximum wind speed at landfall (red circle). It also may
not be the maximum wind speed the hurricane produced over its entire life cycle.
Using the data, two sets of distances are calculated. D1 is the distance between the
recorded wind event and the recorded surge event (the distance between the green
triangle and the blue circle). D2 is the distance between the surge event and the AFB
(the distance between the blue circle and the dark gray rectangle). These will be
used in various regression models later to test the significance. As a note about the
schematic: the shapes of the variables are arbitrary, and the surge and wind locations
are point observations. The polygons used here are simply for representation.

An index is added to the data that notes the position of the maximum wind speed
relative to the surge location. If the wind speed occurred to the left of the surge
location, it was given an index of 1. If the wind speed occurred to the right of the
surge location, it was given an index of 0. It is well known that the highest magnitude
of wind speeds is in the right, front quadrant of the hurricane. This index is used in
later regression analyses as an attempt to test that relationship.

Figure 4.2 shows the study area at EAFB, MAFB, and KAFB. For EAFB, the
boundary of the AFB is shown with a red polygon. For MAFB and KAFB, the AFB
is very small so they are denoted by single red point at the base’s center location.
The storm surge event locations are shown with squares. An inset map is included to
show the global location of these surge events. The inset map includes a bounding box
in the southeastern United States showing where, specifically, the surge events come
from. There are 20, 18, and 17 surge events recorded within 140 km of the EAFB,
MAFB, and KAFB central location, respectively. At KAFB, a few of the locations
are duplicates so the number of squares is less than the number of surge events.

4.2 Storm Surge Risk

As before, all analysis and modeling was performed using the open source R
Project for Statistical Computing software (R Development Core Team, 2010). Specif-
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Figure 4.1: Conceptual schematic depicting data collation. Shows a hypo-
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in the southeastern United States showing where the locations are globally.
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ically, the ismev (Introduction for Statistical Modeling of Extreme Values) (Coles and
Stephenson, 2010) and copula packages (Yan, 2007; Kojadinovic and Yan, 2010) were
utilized.

The first portion of this analysis calculates the statistical risk of storm surge at the
three AFBs using a POT extreme value model. This model is characterized by the
GPD as it only considers surge events that pass a certain threshold u. The theorem
for the GPD is described in detail in Chapter 1, and is shown in an application in
Chapter 3. At each AFB, the surge data are collected and modeled using the GPD
theorem. The threshold chosen for the model is 1.2 meters. The threshold of 1.2 was
chosen because it is a value that can be used at all three AFBs that includes enough
data to fit the model while excluding the more common lower surge height values.

Following Jagger and Elsner (2006), Malmstadt et al. (2010), and the GPD theo-
rem, the exceedances S − u are modeled as samples from a family of GPDs, so that
for an individual hurricane with maximum surge S,

Pr(S > h|S > u) =

(

1 +
ξ

σ
[h− u]

)−1/ξ

(4.1)

= GPD(h− u|σ, ξ)

where σ > 0 and σ + ξ(h − u) ≥ 0. For negative values of the shape parameter (ξ)
the GPD family of distributions has an upper limit of Smax = u+ σu

|ξ|
.

The frequency of storms with surge heights of at least u follows a Poisson dis-
tribution with a rate, λu, the threshold crossing rate. Thus the number of hurri-
canes per year with surge levels exceeding h is a thinned Poisson process with mean
λh = λu Pr(S > h|S > u). This is the POT method and the resulting model is
completely characterized for a given threshold u by σ, ξ, and λu; the GPD parameters
and the threshold crossing rate, respectively.

Since the number of storms exceeding any surge height h is a Poisson process, the
return period for any h has an exponential distribution, with mean r(h) = 1/λh. By
substituting for λh in terms of both λu and the GPD parameters then solving for h
as a function of r we can find the corresponding return level for a given return period
as

rl(r) = u+
σ

ξ

[

(r · λu)
ξ − 1

]

. (4.2)

As a note, this is the same theorem as described for Florida winds in the previous
chapter. Here it has been adjusted to deal with storm surge values.

Return levels for surge heights at EAFB, MAFB, and KAFB using the GPD
theorems described above are shown in Figure 4.3. Surge height exceedance levels in
meters are shown on the x-axis and the probabilities of annual exceedance are shown
on the y-axis. The dots are the empirical points used in the model, and the red lines
indicate the 95% CI around the model. The CI values are calculated using the delta
method that employs the use of the quantile function for the GEV equation given in
Equation 1.4 and the estimated covariance matrix of the GEV parameters (µ, σ, and
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Figure 4.3: The annual exceedance probability for storm surge heights (m).
Return levels are shown on the x-axis and the probabilities of annual ex-
ceedance are shown on the y-axis. The 95% CI is shown with red lines. (a)
EAFB, (b) MAFB, and (c) KAFB.

ξ). The plot is interpreted as follows. EAFB (a) can expect surge height levels of 2.4
m (1.4–3.4) with an annual probability of 10%. MAFB (b) can expect surge height
levels of 2.1 m (1.3–3.0) with an annual probability of 10%. KAFB (c) can expect
surge height levels of 2.8 m (0.90–4.6) with an annual probability of 10%.

Table 4.2 shows the surge height exceedance estimates for 10, 20, 50, 100, and 500
years, including the 95% CI at EAFB. The 500 year return level for this area is just
over 5.5 meters (4.5–6.6). Table 4.3 shows the surge height exceedance estimates for
10, 20, 50, 100, and 500 years, including the 95% CI at MAFB. A major difference
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Table 4.2: Surge height return level estimates for specified return periods at
EAFB. The CI listed is the 95%.

Year Surge Height (m) Confidence

10 2.36 (1.38–3.35)
20 3.43 (2.41–4.44)
50 4.39 (3.48–5.30)
100 4.89 (4.04–5.73)
500 5.57 (4.52–6.62)

between MAFB and EAFB is that the 500 year return level for MAFB is only 4.6
meters (3.9–5.2), almost one full meter below EAFB. Table 4.4 shows the surge height

Table 4.3: Surge height return level estimates for specified return periods at
MAFB. The CI listed is the 95%.

Year Surge Height (m) Confidence

10 2.14 (1.26–3.03)
20 3.05 (2.18–3.91)
50 3.80 (3.10–4.49)
100 4.15 (3.58–4.72)
500 4.58 (3.93–5.23)

exceedance estimates for 10, 20, 50, 100, and 500 years, including the 95% CI at
KAFB. This location has the highest return level for 500 years at 8.5 meters (6.7–
10.3).

4.3 Relationship between Wind and Surge

The next step of analysis is to analyze the individual surge and wind variables, as
well as assess their relationship with one another. Figure 4.4 shows the relationship
between maximum sustained wind speed (ms−1) and surge height (m) at EAFB,
MAFB, and KAFB. The regression model is shown with a red line. The significant
(.001) relationship between these variables at EAFB is as follows: for every 1 ms−1

increase in wind speed, surge heights are expected to increase by 0.11 m. On the third
and fourth axes, the marginal distributions of the respective variables are shown. At
EAFB, there are no surge heights above 6 m (max 5.55), nor wind speeds above 57
ms−1 (max 56.88).
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Table 4.4: Surge height return level estimates for specified return periods at
KAFB. The CI listed is the 95%.

Year Surge Height (m) Confidence

10 2.75 (0.94–4.55)
20 4.70 (2.85–6.55)
50 6.44 (4.79–8.10)
100 7.32 (5.85–8.80)
500 8.50 (6.73–10.27)

The significant (.01) relationship between these variables at MAFB is as follows:
for every 1 ms−1 increase in wind speed, surge heights are expected to increase by
0.06 m. At MAFB, there are no surge heights above 5 m (max 4.57), nor wind
speeds above 63 ms−1 (max 62.73). The significant (.002) relationship between these
variables at KAFB is as follows: for every 1 ms−1 increase in wind speed, surge heights
are expected to increase by 0.11 m. At KAFB, there are no surge heights above 9 m
(max 8.47), nor wind speeds above 80 ms−1 (max 79.96). This location experienced
the highest surge height out of all three locations with Hurricane Katrina (2005), and
the highest wind speed with Hurricane Camille (1969).

AT EAFB, the relationship between wind and surge was tested including a third
variable, position of the wind speed relative to the surge. Again, if the wind speed
occurred to the left of the surge location, it was given an index of 1. If the wind speed
occurred to the right of the surge location, it was given an index of 0. If a storm travels
to the left of the surge event, the right front quadrant would be nearest the surge. It
is tested to see if maximum sustained wind speed occurring to the left of the surge
event produces a higher surge than if it occurs to the right. A significant value (0.10)
of 0.78 leads us to reject the null hypothesis that there is no relationship and suggest
that maximum wind speeds occurring to the left of a surge height location produce
a higher surge. Neither distance variable as described above were significant at this
location. The Akaike Information Criterion (AIC) is a measure of the goodness of fit
of a statistical model. The lower the value, the better the fit. The smaller AIC value
of 54.9 versus 56.2 suggests that the model using only wind and surge as variables
better represents reality.

At MAFB, it is found that the model is improved by including D1. As a reminder,
this represents the distance from the maximum wind location and the location of the
surge height. It is found that both the distance and the maximum wind speed have
a significant relationship with surge. For every 1 ms−1 increase in wind speed, surge
heights are expected to increase by 0.07 m (significance of 0.001), and for every
1 km increase between the wind and surge height locations, surge is expected to
increase by 0.02 m (significance of 0.004). This suggests that the greater the distance
between wind and surge, the greater the surge will be. The relationship between wind,
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Figure 4.4: Maximum sustained wind speed (ms−1) regressed on storm surge
height (m) at EAFB, MAFB, and KAFB. The red line shows the linear
model. The adjacent axes show the marginal distributions of the respective
variables.
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surge, and position of the wind speed relative to surge was also tested at MAFB. A
significance value (0.02) of −1.18 leads us to reject the null hypothesis that there is no
relationship and suggest that maximum wind speeds occurring to the left of a surge
height location produce a lower surge. This result is opposite from EAFB. Surge is a
very localized event and the orientation of the east/west versus north/south coastline
at EAFB and MAFB might be the reason for this difference. The smaller AIC value
of 40.5, compared to 44.5 and 48.7, suggests that the model including surge, wind,
and distance between wind and surge is the most appropriate model at MAFB.

At KAFB, it is found that the model can, again, be improved by including D1.
It is found that both the distance and the maximum wind speed have a significant
relationship with surge. For every 1 ms−1 increase in wind speed, surge heights
are expected to increase by 0.10 m (significance of 0.003). For every 1 km increase
between the wind and surge height locations, surge is expected to decrease by 0.05 m
(significance of 0.07). This suggests that the shorter the distance between wind and
surge, the greater the surge will be. This is opposite then at MAFB, perhaps, again,
due to the orientation of the coastlines. The smaller AIC value of 62.9, compared to
65.0, suggests that the model including the three variables better represents reality.
The relationship between wind, surge, and position of the wind speed relative to
surge was tested. The model did not produce significant results, so there is no need
to pursue the inclusion of this variable any further.

4.3.1 Bivariate Dependence

Extreme wind speeds and deep storm surges from hurricanes work in conjunction
to cause severe widespread damage when major hurricanes make landfall. The tradi-
tional way to estimate a combined likelihood of occurence is to use copulas. Copulas
describe the dependency structure between two random variables (Coles et al., 1999).
Here the dependency arises from different physical processes (air and water) arising
from the same meteorological conditions associated with hurricanes. Specifically, the
objective is to develop a measure of dependence for wind and surge (W,S). The
model developed finds a return period (year), Z, for a given occurrence level of wind
speed and storm surge. Tawn (1988) and Coles et al. (1999) describe the theory and
dependence measures for extreme values analysis such as this. The copula function
for a measure of extremal dependence is described as follows.

Based off the theorem discussed in Chapter 1, for any random vector, (W,S), the
distribution function F (w, s) = Pr(W ≤ w, S ≤ s) provides a complete description of
dependence between variables W and S. Marginal aspects can play an influence on
the variables and can be removed by observing that, subject to continuity conditions,
there is a unique function C(·, ·) with domain A = [0, 1]x[0, 1] such that

F (w, s) = C{FW(w), FS(s)}, (4.3)

where FW and FS are the marginal distribution functions given by
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FW(w) = F (w,∞) and FS(s) = F (∞, s). (4.4)

The function C is the copula and it contains complete information about the
joint distribution of W and S apart from the marginal distributions. C describes
the association between the two variables after transformation to variables U and V ,
with Uniform [0, 1] margins, via (U, V ) = {FW(W ), FS(S)}. For a more complete
summary of dependence measures, see Coles et al. (1999); Nelsen (1998); Joe (1997)
and Yan (2007). The code used to create this copula for one location is available in
the Appendix of this dissertation. The data necessary to run the code at all locations
(as well as another copy of the code) is available at http://jtrepanier.wordpress.
com/data/.

First the correlation between wind and surge is determined. Next, a two-dimensional
normal copula is defined with the parameter equal to the sample correlation value.
The dimension is the number of variables, here being wind and surge. An elliptical
copula is the copula corresponding to an elliptical distribution by the Sklar’s theorem
(Fang et al., 1990). Let F be the multivariate cumulative density function (CDF)
of an elliptical distribution, Fi is the CDF of the ith margin, and F−1

i is its inverse
function, i = 1, . . . , p. The elliptical copula determined by F is

C(ui, . . . , up) = F [F−1

1 (u1), . . . , F
−1

p (up)] (4.5)

Elliptical copulas are popular in finance and risk management because they are
easy to implement (Yan, 2007). The model was also tested using a copula created
with a t-distribution. Little difference was found in the results.

The wind and surge data are fitted to separate Weibull distributions and the
parameter values are obtained for these marginals using a maximum-likelihood pro-
cedure (Venables and Ripley, 2002). The multivariate density is generated from the
copula definition and the Weibull parameters (shape ξ and scale σ). The copula-based
multivariate density is fitted to the data using a maximum-likelihood procedure. The
normal copula is redefined using the updated correlation parameter value. The multi-
variate density is generated from the new copula definition and the updated Weibull
parameter values. This provides a fitted copula model using the observational data.

The density is plotted on a two-dimensional grid spanned by the range of wind
and surge values. The joint probability of the wind and surge based on the copula
density is determined using a function created in the R program (R Development
Core Team, 2010). The per event probability, [Pr (W > wmax, S > smax)] times the
hurricane frequency (the number of hurricanes divided by the total number of years),
provides the annual event frequency. That is, the yearly frequency of events with W
exceeding wmax and S exceeding smax. The yearly probability of an event is then
1−exp(−frequency), where exp() is the exponent function, and the return period is 1
divided by 1− exp(−frequency), or roughly 1 divided by the frequency plus 0.5 year.
For small frequencies, the return period is roughly 1 divided by the frequency. This
provides the probability of specific wind and surge events.
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Figure 4.5: Density plot and wind speed/surge level return periods for
EAFB. (a) Density plot for the EAFB copula. The points shown are the
empirical data. Maximum sustained wind speeds (ms−1) are shown on the
x-axis and maximum surge heights (m) are shown on the y-axis. (b) Return
period information for wind and surge levels at EAFB. Each line represents
a specific return period year. The years shown are 20, 30, 50, 75, 100, 150,
200, 300, and 500.

In Figure 4.5(a), the joint density plot for EAFB is shown with the observed data
points. Contours, in units of events per bin size, are plotted at intervals of .001
starting at .001. The bin size is in units of meters times ms−1 and the number of bins
is 50 times 50 over a range from 0 to 6 m and 20 to 65 ms−1. The model represents
the data well. In Figure 4.5(b), the return period probability of specific wind and
surge events are shown. Contours are given at 20, 30, 50, 75, 100, 150, 200, 300, and
500 years. A 500 year return period has an annual probability of 1/500 or 0.2%.

In Figure 4.6(a), the joint density plot for MAFB is shown with the observed data
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Figure 4.6: Density plot and wind speed/surge level return periods for
MAFB. (a) Density plot for the MAFB copula. The points shown are the
empirical data. Maximum sustained wind speeds (ms−1) are shown on the
x-axis and maximum surge heights (m) are shown on the y-axis. (b) Return
period information for wind and surge levels at MAFB. The years shown are
20, 30, 50, 75, 100, 150, 200, 300, and 500.

points. The bin size is in units of meters times ms−1 and the number of bins is 50
times 50 over a range from 0 to 5 m and 25 to 70 ms−1. The model, again, represents
the density distribution of the observed data well. In Figure 4.6(b), the return period
probability of specific wind and surge events are shown. The lines represent specific
years. Contours are given at 20, 30, 50, 75, 100, 150, 200, 300, and 500 years.

In Figure 4.7(a), the joint density plot for KAFB is shown with the observed data
points. The bin size is in units of meters times ms−1 and the number of bins is 50
times 50 over a range from 0 to 9 m and 15 to 80 ms−1. The match between the
model and data appears to be good although the highest surge does not correspond
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Figure 4.7: Density plot and wind speed/surge level return periods for
KAFB. (a) Density plot for the KAFB copula. The points shown are the
empirical data. Maximum sustained wind speeds (ms−1)are shown on the
x-axis and maximum surge heights (m) are shown on the y-axis. (b) Return
period information for wind and surge levels at KAFB. The years shown are
20, 30, 50, 75, 100, 150, 200, 300, and 500.

with the fastest wind nor does the fastest wind correspond with the highest surge.
In Figure 4.7(b), the return period probability of specific wind and surge events are
shown. Contours are given at 20, 30, 50, 75, 100, 150, 200, 300, and 500 years.

KAFB is the most vulnerable for high wind speeds and high storm surges on the
shortest time spans when comparing to EAFB or MAFB. MAFB experiences slightly
higher wind speeds than EAFB, but the surge values are lower. This could be due to
coastline orientation. As it was discussed earlier, the index value denoting the side of
landfall was a significant factor at EAFB and MAFB when describing the relationship
between wind and surge. It could be considered an important factor with the return
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period results. The results can be further analyzed in Tables 4.5, 4.6, and 4.7. Esti-
mates of uncertainty around these point estimates, shown in parenthesis, are based
on 1000 Monte Carlo simulations. The Monte Carlo simulations use random draws
of the Weibull parameters for the marginals (two parameters for the wind marginal
and two for the surge marginal) and a random draw from the copula dependency to
generate return periods. The uncertainty is expressed as the interquartile range (25th

to 75th percentiles) of the simulated return periods.

Table 4.5: Wind speed and surge level return periods for EAFB. Return
period year information for Saffir-Simpson Category 1–4 wind speeds are
shown along with 3, 4, and 5 meter surges. The quartile pointwise CI is
shown in parentheses.

Return Period (Year)
Wind

Speed (ms−1) Surge Height (m)
3 4 5

33 15.6 41.9 174.1
(13.6-18.6) (31.6-56.1) (100.5-298.3)

43 17.2 42.9 174.7
(14.7-20.6) (32.3-57.6) (101.3-300.6)

50 28.3 54.7 189.3
(22.5-36.4) (40.1-77.2) (110.9-344.1)

59 244.0 293.0 546.0
(128.0-496.4) (153.7-632.1) (274.3-1309.2)

4.4 Combined Risk in Summary

Hurricanes are capable of generating significant economic and human loss. Losses
result from high winds and overwhelming surge. The purpose of this study was to
(1) describe the univariate risk of storm surge at three AFBs along the U. S. Gulf
coast, and (2) describe the dependency structure between extreme wind speeds and
storm surges at these locations. EVT and a POT model, using a GPD, are used to
calculate the univariate risk. It is found that Eglin Air Force Base can expect a 2.3
meter surge, on average, once every 10 years, MacDill Air Force Base can expect a 2.1
meter surge, on average, once every 10 years, and Keesler Air Force Base can expect
a 2.8 meter surge, on average, once every 10 years.

This chapter demonstrates a methodology for estimating the return period of the
joint hazard based on a bivariate copula model. Wind and surge data from historical
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Table 4.6: Wind speed and surge level return periods for MAFB. Return
period year information for Saffir-Simpson Category 1–4 wind speeds are
shown along with 3, 4, and 5 meter surges. The quartile pointwise CI is
shown in parentheses.

Return Period (Year)
Wind

Speed (ms−1) Surge Height (m)
3 4 5

33 21.6 93.2 920.4
(18.1-26.0) (59.3-146.0) (336.7-2683.3)

43 22.5 94.1 921.6
(19.0-27.4) (60.5-147.9) (339.7-2685.8)

50 26.8 100.8 937.9
(22.3-33.6) (65.1-160.9) (353.2-2750.4)

59 60.3 163.8 1166.3
(43.8-86.8) (100.9-287.9) (460.0-3701.7)

Table 4.7: Wind speed and surge level return periods for KAFB. Return
period year information for Saffir-Simpson Category 1–4 wind speeds are
shown along with 3, 4, and 5 meter surges. The quartile pointwise CI is
shown in parentheses.

Return Period (Year)
Wind

Speed (ms−1) Surge Height (m)
3 4 5

33 11.0 15.5 24.7
(10.2-12.5) (13.8-18.5) (20.5-31.4)

43 12.1 16.3 25.3
(11.2-14.1) (14.5-20.2) (21.2-32.7)

50 14.8 18.6 27.3
(13.3-17.9) (16.5-23.5) (22.9-36.2)

59 26.3 29.7 38.3
(21.9-34.0) (24.9-40.1) (31.0-54.9)
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hurricanes are collated and an elliptical copula with Weibull margins is specified.
Density plots and probability plots are shown to summarize the results. Eglin Air
Force Base can expect a hurricane with at least 50 ms−1 winds and surge heights of
at least 3 m, on average, once every 28 years (23–36). MacDill Air Force Base can
expect a hurricane with at least 50 ms−1 winds and surge heights of at least 3 m, on
average, once every 27 years (22–34). Keesler Air Force Base can expect a hurricane
with at least 50 ms−1 winds and surge heights of at least 3 m, on average, once every
15 years (13–18). From these results, it is suggested that Keesler Air Force Base has
the highest probability of experiencing extreme wind speeds and high storm surges
at the shortest time periods.

The broad impact of this individual study is the hope that locations around the
world that experience these natural weather phenomena will adopt this methodology
to better understand their statistical risk of hurricanes. Many locations rely simply
on the expectation of certain wind levels, when there is another deadly factor they
could be considering. This methodology provides a way to assess the frequency of
hurricane wind speeds along with hurricane storm surges at any location where surge
and wind speed data are available.

The final research chapter of this dissertation extends the univariate hurricane
wind risk approach by mapping the GPD parameters as a function of location across
the North Atlantic and Gulf of Mexico. Spatial variations in the model parameters
may provide new insight into hurricane behavior that is lost in traditional climato-
logical and meteorological approaches.
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CHAPTER 5

SPATIAL RISK OF HURRICANE
WINDS OVER THE GULF OF MEXICO

AND NORTH ATLANTIC

The likelihood of a hurricane occurrence, no matter how it is calculated, is a very
localized attribute. As previously seen in Chapters 3 and 4, a univariate statistical
risk represents the probability of occurrence for a specific variable at a given location.
In this chapter, the probability of hurricane wind occurrence is estimated at various
locations across the Gulf of Mexico (GoM) and the North Atlantic (NAtl). This
statistical risk is calculated using the same univariate approach applied in the previous
chapters. The innovative method provided by this study is the way in which the
parameters and return level estimates of wind risk are calculated and visualized;
using hexagonal tessellations.

Space is used to help understand the particular characteristics that make hur-
ricanes dangerous. In past literature, hurricane occurrence estimates are provided
across space using different approaches. One of the first attempts at calculating
return periods was a study conducted by Simpson and Lawrence (1971) where the
authors analyzed the number of strikes at multiple locations over a particular time
period. A more recent example of a similar method is in Keim et al. (2007) where
the authors analyze 105 years of hurricane storm occurrence at 45 locations along
the U. S. coast. Other approaches are also prevalent in the literature that involve
including other variables besides frequency (e.g., intensity, forward speed, size) and
more advanced statistical methods to analyze them. For example, Jagger and El-
sner (2006) consider how climate variables affect hurricanes, including the El Niño
Southern Oscillation, the North Atlantic Multidecadal Oscillation, the North Atlantic
Oscillation, and the global temperature.

Geographic research focuses on how phenomena change through space and time.
A hurricane is a phenomenon that has the attributes of moving from one location
to another over a period of time. Not only does it move, but each individual hur-
ricane has a different shape dimension that causes the space affected to be different
for each event. It is the goal of this research to bridge the gap between the mete-
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orological/climatological approaches used most frequently in past literature and the
geographical research of analyzing space.

As mentioned in Chapter 1, the only geometric shapes that completely cover the
Atlantic basin without any overlap are squares, triangles, and hexagons (Brettschnei-
der, 2008). A hexagon represents the best compromise between overlap and uniformity
and can be tessellated where no area is left uncovered. All of the interior angles of
a hexagon are equal, and the sides are of equal length, so the hexagon best approxi-
mates the idealized shape of a circle. This allows for a tessellation with a shape most
similar to the object of interest.

In this chapter, the GoM and NAtl are tessellated with hexagonal shapes to see if
there is a relationship between location and the various parameters of the univariate
risk model. It is assumed that there is a latent spatial process characterized by
geographic information that drives hurricane characteristics, much like the study in
Cooley et al. (2007). The parameters, or characteristics, of interest include the λ, or
rate of occurrence, the σ, or scale of wind speeds, and the ξ, or shape that dictates
the tail ends of the distribution (the extremes). It is very important to note that the
scale that σ represents is not the same as the way geographers typically use scale. It
does not refer to spatial dimension, but rather to the dispersion of wind values at the
particular hexagon (a statistical scale). The thirty year return level is also mapped
over space to test the relationship between return period and location. Thirty years
is chosen to represent the typical homeowner’s mortgage.

Tobler (1970) states that all things are related, but nearby things are more related
than distant things. Visualizing the latent model parameters using hexagons allows
for insight into whether this is the case over the GoM and NAtl. Latent variables
are those that cannot be observed but are instead output from a model. Using the
Moran’s I test, the effect that spatial autocorrelation plays in the parameters, if any, is
estimated. The final portion of analysis introduces a covariate; SST. The relationship
of local SST on the parameters is estimated using a GWR model. This covariate is
included to test the relationship of warming SSTs on hurricane frequency, intensity,
and return levels. In a warming climate, this insight could be beneficial to policy
makers as they prepare for the potential of more extreme weather patterns.

In this chapter, Section 5.1 discusses the details about data collection and de-
scribes how the basin is tessellated. Section 5.2 discusses the calculation of the GPD
parameters and visualizes the results. In this section, the effect of the modifiable areal
unit problem (MAUP) is also visualized by changing the sizes of the hexagons. Sec-
tion 5.3 shows the effect of spatial correlation on the parameters. Section 5.4 includes
the GWR models for each parameter and the thirty year return level using SST as
the covariate. Significance is included using the t-statistic. Section 5.5 summarizes
the main points of this chapter.
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5.1 Data Collation

The 1-hourly hurricane data utilized in this study are the same as presented in
Chapter 2. Specifically, all hurricane events (with winds reaching at least 33 ms−1)
that occurred from 1854 to 2009 are included. The range of years used corresponds
with the available SST data currently on record. The study area domain is dictated
by the occurrence of hurricane winds across the NAtl and GoM. Before the data
are subset any further, the hurricane tracks are first geographically projected to the
World Geodetic System 1984 coordinate frame. This is done using the R Program
for Statistical Computing (R Development Core Team, 2010) and the packages rgdal
(Keitt et al., 2012) and sp (Pebesma et al., 2011). They are then reprojected to a
Lambert conformal conic (LCC) planar projection using the parallels 23 and 38◦ N
and a center longitude of 60◦ W. In order to subset the hurricane data to particular
locations, the hexagonal tessellations must be created. As a note, the R syntax
to create the hexagons is available in the Appendix of this dissertation. The data
necessary can be found at jtrepanier.wordpress.com/data.

The question of size becomes important when creating the hexagonal tessellation.
Keim et al. (2007) provides a summary of the size of typical hurricanes, while not-
ing that there is considerable variability in the size of hurricanes and that spatial
dimensions are not well correlated with storm intensity. For major hurricanes the
hurricane intensity swath is 240 km wide, with tropical storm conditions stretching
an additional 80 km to the right and 40 km to the left. This suggests that the area
of a storm of this magnitude is over 100,000 square kilometers. 125 hexagons are
fit to the area dictated by the wind speed occurrences. The area is covered by 110
equal area hexagons, so the additional are removed. Each has an area of 761,821
square kilometers. This is an area slightly larger than Texas. This was chosen as
a compromise between the scale (size) of a hurricane and the representation of the
data. Stated another way, in order to have enough data at each hexagon, the size
cannot be too small, and, in order to have estimates that are considered regional, the
size cannot be too large. Additional estimates are attempted using different sizes in
the Subsection 5.2.2 as an attempt to understand the effect of the MAUP on this
approach.

The wind speeds are subset so that each hexagon has an individual set of storms.
At this point, each projected hexagon has a subset of projected hurricane wind speeds
that occurred within that hexagon. Hexagons from the original 110 that do not have
wind speed values are removed. 54 hexagons remain. Some hurricanes have more than
one value per hexagon, while others have only one. The number depends on how long
the hurricane took to travel through the hexagon. For the extreme value model, only
one maximum wind value per hurricane per hexagon is needed. For example, if the
first hexagon has five hurricane events with a series of values per event, only the
maximum per hurricane wind speed is needed, providing five maximum values. Each
hexagon’s wind speed values are subset to include only the maximum per hurricane
value within each hexagon. Now each hexagon has a subset of maximum values for
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all hurricanes that passed through the hexagon. As a note, in order to fit the GPD
model to the data, there needs to be a sufficient amount. Any hexagons with less than
12 hurricane events are not included. These occur only at the edges of the domain
where hurricane occurrences are less frequent in the record. A final 38 hexagons are
left for analysis over the GoM and NAtl.

The NOAA’s extended reconstructed SST data set for the NAtl is described in
Chapter 2. The specific SST data used in this chapter are for the domain bounded by
0◦ and 70◦ N latitude and 100◦ W and 10◦ E longitude for the set of months starting
with January 1854 through November 2009. The data are further subset to include
only the average combined SST per hexagon from August, September, and October
(ASO), as these heat values are during the peak of the hurricane season and are
indicative of the amount of available energy for hurricanes to form. See the Appendix
for how this is done. The ncdf package provides functions for working with netCDF
files in R (Pierce, 2011). Each hexagon has the maximum per hurricane wind speed
and the average ASO SST.

5.2 Estimation of Extreme Value Model

Modeling the return period estimates for extreme hurricane winds at each hexagon
is done in the same way that wind risk in Florida was calculated in Chapter 3 and
the same way that surge risk was calculated at the three AFBs in Chapter 4. As a
reminder, the estimation is explained again.

The statistical risk of extreme winds at all the hexagons is calculated using a POT
extreme value model. This model is characterized by the GPD as it only considers
wind events that pass a certain threshold u. The threshold chosen for the model
is 33 ms−1, or a Category 1 hurricane on the Saffir-Simpson Scale. This particular
threshold value was chosen because it excludes any wind values below hurricanes
strength, but does not place the threshold so high that there would be too few data
points for analysis at each hexagon.

The exceedances W − u are modeled as samples from a family of GPDs, so that
for an individual hurricane with maximum wind W ,

Pr(W > v|W > u) =

(

1 +
ξ

σ
[v − u]

)−1/ξ

(5.1)

= GPD(v − u|σ, ξ)

where σ > 0 and σ + ξ(v − u) ≥ 0. For negative values of the shape parameter (ξ)
the GPD family of distributions has an upper limit of Wmax = u+ σu

|ξ|
.

The frequency of hurricanes with intensity of at least u follows a Poisson distri-
bution with a rate, λu, the threshold crossing rate. Thus the number of hurricanes
per year with wind speed levels exceeding v is a thinned Poisson process with mean
λv = λu Pr(W > v|W > u). This is the POT method and the resulting model is
completely characterized for a given threshold u by σ, ξ, and λu. Since the number
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of hurricanes exceeding any wind speed v is a Poisson process, the return period for
any v has an exponential distribution, with mean r(v) = 1/λv. By substituting for
λv in terms of both λu and the GPD parameters then solving for v as a function of
r, the corresponding return level for a given return period is represented as

rl(r) = u+
σ

ξ

[

(r · λu)
ξ − 1

]

. (5.2)

The GPD model is run at each hexagon on the maximum per hurricane wind
speeds above a threshold of 33 ms−1. Not only is insight gained about return pe-
riods of particular levels of hurricane wind speeds, but there is also access to the
parameters estimated from the model. This includes the rate, λ, the scale, σ, and
the shape, ξ, parameters. Each of these parameters, as well as the thirty year return
level, are displayed at each hexagon in the next subsection. Before examining the
parameters, however, it is important to understand what might be gained from this
type of visualization.

By viewing the parameters in this way, a form of latent variable modeling is being
done. In statistics, latent variables are those that are not observed but are rather
inferred through a mathematical model. In this chapter, the GPD model is providing
the latent variables that represent a threshold crossing rate, the overall dispersion of
the wind speeds, and the shape of the tail ends of the distribution at each hexagon.
These are visualized, as well as modeled further in a GWR model with SST values
to provide insight into the way that hurricane characteristics behave over space. In
particular, the threshold crossing rate, or λ, will show the area (defined by hexagon)
that is most susceptible to the number of maximum hurricane occurrences above the
Category 1 level. The scale, or σ parameter describes the stretching or shrinking
of the distribution of the wind speed, so it provides insight into the dispersion of
the winds above threshold u at the individual hexagons. The shape, or ξ parameter
dictates the tail end of the distribution, so it is this parameter that represents the
most extreme levels within a particular hexagon. The values are > −1 because if
ξ < −1, the likelihood is unbounded and maximum likelihood fails within the model.
Finally, the thirty year return level will provide insight into the location that can
expect the highest wind speeds on a fixed time period.

5.2.1 Visualization of Latent Variables

Figure 5.1 shows each variables plotted over space. Figure 5.1(a) shows the rate
of hurricane occurrence in units of hurricanes per year. The hexagons over Florida,
Bermuda and the far western Atlantic suggest that these locations experience at least
one hurricane with winds reaching 33 ms−1 annually. Considering that hurricanes drop
in intensity as they approach and cross land, these estimates are most accurate out in
the ocean. For example, the eastern coast of the U. S. might not receive a landfalling
hurricane each year, but a 33 ms−1 hurricane wind speed will pass through the hexagon
somewhere. Near the edges of the map nearest Africa, the annual probability becomes
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very low. This makes physical sense since many NAtl tropical cyclones originate off
the western coast of Africa and are not yet hurricane strength.

Figure 5.1(b) shows the scale parameter in ms−1 at each hexagon. The brighter val-
ues of yellow indicate locations where the scale of the distribution is higher. The map
suggests that the peninsula of Florida, the Western Antilles Islands, and the south-
western Caribbean Sea are the most susceptible to wind speeds above the threshold
crossing rate having a greater dispersion. Stated another way, these locations experi-
ence the greatest range in hurricane wind speeds (i.e., they receive Category 1, 2, 3, 4,
and 5 wind speeds). Again, towards the eastern most edge of the map, the values are
low as the wind speeds do not vary much in these hexagons. This is also a product
of the origination of NAtl tropical cyclones. Any hurricane force winds occurring are
usually low.

Figure 5.1(c) shows the shape parameter, which is a dimensionless quantity, at
each hexagon. This represents the tail ends of the distribution of the wind speeds.
The two hexagons in the southeastern most corner of the map have values that are
< −1, which means the model was unable to fit the ξ parameter to the subset of
winds at these hexagons. This is due to the low scale parameter as witnessed in
Figure 5.1(b). The overall dispersion of the winds in these hexagons is too low to fit
a maximum likelihood estimate. Therefore, these two hexagons have been removed
from the map. The darker hexagons over the center of the map, the peninsula of
Florida, and the Western Antilles Islands suggest that these locations experience the
most extreme wind events. The blue hexagon in the North, and the two blue hexagons
near the east central are likely low due to the dispersion of the data and the low rate
values. That is, the lack of extreme, or maximum, data in these hexagons causes the
model estimates to be slightly skewed at these locations.

Figure 5.1(d) shows the thirty year return level estimate in ms−1 at each hexagon.
This map is different from the previous three because it is a final estimate calculated
after considering the three previous parameters. The results are to be expected.
The eastern and northern most edges of the map have very low return levels in each
hexagon due to the minimal historic occurrences of hurricanes in these locations. The
areas over the western Caribbean and the center of the GoM have the highest return
level of all locations.

Based on this GPD model, every hexagon has a theoretical maximum wind speed
that can be calculated as

u+

(

σ

|ξ|

)

. (5.3)

Figure 5.2 shows the empirical maximum wind speed compared to the theoretical
maximum wind speed. The theoretical wind speed can be understood as the highest
possible wind speed that can be experienced within the hexagon. Figure 5.2(b) sug-
gests that the maximum possible wind speeds can occur over the southeastern U. S. ,
the GoM, portions of northern Central America, and over the northern tip of South
America. Any location with green, orange, or red hexagons can theoretically expect
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Rate (hurricanes/year)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

b

σ (ms−1)
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c

ξ [Dimensionless]
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d

30 Year Return Level (ms−1)
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Figure 5.1: Each variable plotted per hexagon. (a) λ parameter, or rate of
hurricanes exceeding 33 ms−1 per year. (b) σ parameter, or scale (dispersion)
of wind speeds in ms−1. (c) ξ parameter, or shape of the distribution tails.
This is a dimensionless quantity. (d) The thirty year return level in ms−1.
The maps are projected in a Lambert conformal conic planar projection with
parallels at 23 and 38◦ N and a center longitude of 60◦ W.
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a

Observed Maximum Wind (ms−1)
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b

Theoretical Maximum Wind (ms−1)
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Figure 5.2: Comparison of empirical maximum wind and theoretical maxi-
mum wind. (a) Empirical wind speed (ms−1). (b) Theoretical wind speed
(ms−1).

Category 5 wind speed levels (≥ 69 ms−1). Any hexagons that have been removed
from the map in Figure 5.2(b) were done so due to model fit problems.

The parameters above are dependent to some level on the size of the hexagon
chosen. Next, different sizes are compared to visualize the effect of the MAUP.

5.2.2 Hexagon Size Comparison

A good strategy to test the effect of the modifiable areal unit problem is to see
how much the parameter estimates change when using different hexagon sizes (see
Elsner et al. (2011)) and see if the change influences the conclusions. Figures 5.3,
5.4, 5.5, and 5.6 all show the parameter and model estimates using different hexagon
sizes. When n = 75, the area of each hexagon is 1.27 million km2. When n=100,
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the area of each hexagon is 952,276 km2. When n=125 (as it does in the chapter),
the area is equal to 761,821 km2. As it is seen in Figures 5.3, 5.4, 5.5, and 5.6,
the results do not vary greatly with different hexagon size. The size chosen for the
results is done so because it allows for enough values per hexagon for the model to run
successfully, while keeping the estimates at a regional size for application purposes.
For comparison, all color intervals for the maps are the same per parameter.

Now that the parameters and the thirty year return level estimate have been
mapped and discussed, it is interesting to test if the variables are spatially correlated.
Hurricanes pass through space over similar environmental conditions so it is possible
that the parameters from one location to the next are spatially dependent.

5.3 Spatial Autocorrelation

Metrics of spatial autocorrelation can reveal if there is a local dependency between
observations that is not accounted for by the independent variables. Stated another
way, it tests to see if there is a dependency between observations that occur near one
another in space and time. Since the model is used on the maximum per hurricane
wind speeds in each hexagon, locations may influence one another. A maximum wind
speed in one hexagon will not be that dissimilar from the maximum wind speed from
the same hurricane in a nearby hexagon. A common metric for spatial autocorrelation
can help provide insight into whether a given parameter is dependent upon nearby
values of the same parameter.

This common metric is Moran’s I (Moran, 1950) defined as

I =
n

s

yTWy

yTy
(5.4)

where n is the number of hexagons, y is the vector of values within each hexagon
(e.g., rate parameter) where the values are deviations from the overall mean, W is a
weights matrix, s is the sum over all the weights, and the subscript T indicates the
transpose operator.

Values of Moran’s I range from −1 to +1 with a value of zero indicating a pattern
with no spatial autocorrelation. Although not widely used in climate studies, de Beurs
and Henebry (2008) use it to identify spatially coherent eco-regions and biomes related
to the North Atlantic oscillation. To compute Moran’s I a weights matrix is needed.
The weights matrix is square with the number of rows and columns equal to the
number of hexagons. Here the weight in row i, column j of the matrix is assigned
a non-zero value if hexagon i is contiguous with hexagon j. Otherwise it is assigned
a zero. The spdep package (Bivand, 2011) in R (R Development Core Team, 2010)
has functions for creating weights based on contiguity (and distance) neighbors.

A contiguity-based neighborhood list is created from the spatial hexagons. The
list is ordered by hexagon number starting with the southwestern most hexagon.
This hexagon has three neighbors; hexagon numbers 2, 8, and 9. Hexagon numbers

67



Rate (hurricanes/year), n=75
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Rate (hurricanes/year), n=100

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Rate (hurricanes/year), n=125
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Figure 5.3: Comparison of rate parameter at three different hexagon sizes.
n = 125 is the size used in the chapter analysis.
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σ (ms−1), n=75

0 5 10 15 20 25 σ (ms−1), n=100
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σ (ms−1), n=125
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Figure 5.4: Comparison of σ parameter at three different hexagon sizes.
n = 125 is the size used in the chapter analysis.
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ξ [Dimensionless], n=75
−1.0 −0.8 −0.6 −0.4 −0.2 0.0 ξ [Dimensionless], n=100

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

ξ [Dimensionless], n=125
−1.0 −0.8 −0.6 −0.4 −0.2 0.0

Figure 5.5: Comparison of ξ parameter at three different hexagon sizes.
n = 125 is the size used in the chapter analysis.
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30 Year Return Level (ms−1), n=75

30 40 50 60 70 80 30 Year Return Level (ms−1), n=100
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30 Year Return Level (ms−1), n=125
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Figure 5.6: Comparison of the thirty year return level at three different
hexagon sizes. n = 125 is the size used in the chapter analysis.
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increase to the west and north. A hexagon has at most six contiguous neighbors.
Hexagons at the borders have fewer neighbors. Figure 5.7 shows a graph of the
hexagon connectivity, here defined by first-order contiguity.

Figure 5.7: Graph of hexagon connectivity defined by first-order contiguity

The weights are the inverse of the number of neighbors. For instance, the six
neighbors of a fully connected hexagon each have a weight of 1

6
. Now that a neighbor-

hood matrix and a weighting scheme exists, the value of Moran’s I can be computed.
The value of 0.53 indicates positive spatial autocorrelation in the frequency, or rate,
of occurrence at the hexagons. The value of 0.66 indicates positive spatial auto-
correlation in the σ, or scale, parameter. The value of 0.19 suggests there is very
little spatial correlation of the dimensionless ξ parameter. Finally, the value of 0.71
indicates positive spatial autocorrelation for the 30 year return level at the hexagons.

The positive spatial autocorrelation witnessed in these parameters is to be ex-
pected for two reasons. First, the data are arbitrarily subset into hexagons for this
project. An individual hurricane passed through a series of hexagons and a maximum
wind speed value per hexagon was recorded. A maximum occurring in one hexagon
from a given hurricane will likely be very similar to another maximum occurring from
the same hurricane at a nearby hexagon. The second cause for the positive spatial
autocorrelation is the physical mechanics that control hurricane formation. Warm
SSTs are necessary for a hurricane to form. If a given hurricane event traveled over
warm SSTs, and a different hurricane event took a similar path over the same warm
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temperatures at a different time, both of these hurricanes could have similarly high
maximum wind speed values.

Insight into the Moran’s I statistic is obtained by noting that it is equivalent to
the slope coefficient in a regression model of Wy on y, where Wy is called the spatial
lag variable (see Equation 5.4). Let yi be the set of parameters in each hexagon when
i = λ, σ, ξ and the thirty year return level. A spatial lag variable for each i can be
created using the functionality in R (R Development Core Team, 2010). For each
parameter value there is a corresponding value representing the mean parameter over
the neighboring hexagons. For a completely connected hexagon the average is taken
over the adjoining six neighboring values.

Scatter plots of the neighborhood average versus the latent variables are shown
in Figure 5.8. Figure 5.8(a) shows the rate parameter, Figure 5.8(b) shows the σ
parameter, Figure 5.8(c) shows the ξ parameter, and Figure 5.8(d) shows the thirty
year return level. In each plot, the slope of the least-squares regression line through
the points is the value of Moran’s I. The scatter plot of the rate, σ, ξ, and the
thirty year return level suggests the possibility of a significant amount of spatial
autocorrelation. Hexagons with high values tend to be surrounded, on average, by
other hexagons with high values and vice versa as evidenced by the upward slope of
the regression lines. The ξ value is the least spatially correlated. This is likely due to
the sensitivity of ξ to the most extreme events.

To test the significance of these Moran values, the expected value of Moran’s I
under the hypothesis of no spatial autocorrelation is

E(I) =
−1

n− 1
(5.5)

where n is the number of hexagons. This allows the testing of the significance of the
sample Moran’s I. The output shows the standard deviate of Moran’s I computed
as I minus the expected value of I divided by the square root of its variance. The
p-value is the chance of observing a standard deviate this large or larger assuming
there is no spatial autocorrelation. For the rate and σ parameters, and the thirty
year return level, the p-values are extremely small leading to a conclusion that there
is significant autocorrelation of these parameters. For the ξ parameter, the p-value of
0.01 provides moderate evidence to reject the null hypothesis of zero autocorrelation.
Moran’s I and the corresponding significance test are sensitive to the definition of
neighbors and to the neighborhood weights, so conclusions stated are conditional on
the neighborhood definition.

Understanding the dependency of the parameters is important in order to truly
understand the conclusions gained from the study. The goal of the final portion
of analysis is to test the relationship between the different latent variables and the
ocean’s surface temperature. This can provide insight into the effect that a warmer
SST value might have on a particular hurricane characteristic.
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Figure 5.8: Moran’s scatter plot. (a) Scatter plot of the per hexagon annual
probability versus the neighborhood average annual probability. (b) Scatter
plot of the per hexagon scale parameter, σ, versus the neighborhood average
σ. (c) Scatter plot of the per hexagon shape parameter, ξ, versus the neigh-
borhood average ξ. (d) Scatter plot of the per hexagon thirty year return
level versus the neighborhood average thirty year return level. Neighbors
are defined by spatial contiguity. The slope of the best-fit line is Moran’s I
as a measure of spatial autocorrelation.
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5.4 Local Parameter Relationship with SST

Models that exploit spatial autocorrelation are called spatial regression models. If
significant autocorrelation exists, spatial regression models have parameters that are
more stable and statistical tests that are more reliable than non-spatial alternatives.
A GWR model allows the relationship between the response and the explanatory
variable to vary across the domain (Brunsdon et al., 1998; Fotheringham et al., 2000).
GWR allows one to see where an explanatory variable contributes strongly to the
relationship and where it contributes weakly. It is similar to a local linear regression.

With GWR the SST parameter is replaced by a vector of parameters, one for each
hexagon. The relationship between the response vector and the explanatory variables
is expressed mathematically as

y = Xβ(g) + ε (5.6)

where g is a vector of geographic locations, here the set of hexagons with different
latent variables and

β̂(g) = (XTWX)−1XTWy (5.7)

where W is a weights matrix given by

W = exp

(

−D2

h2

)

(5.8)

where D is a matrix of pairwise distances between the hexagons and h is the band-
width. The elements of the weights matrix, wij, are proportional to the influence
hexagons j have on hexagons i in determining the relationship between X and y.
Weights are determined by an inverse-distance function (kernel) so that values in
nearby hexagons have greater influence on the local relationship compared with val-
ues in hexagons farther away. The bandwidth controls the amount of smoothing. It
is chosen as a trade-off between variance and bias. A bandwidth too narrow (steep
gradients on the kernel) results in large variations in the parameter estimates (large
variance). A bandwidth too wide leads to a large bias as the parameter estimates are
influenced by processes that do not represent the conditions locally. Here, an adaptive
bandwidth is chosen that allows the estimates to vary depending on the location of
the samples.

It is interesting to see the percent change in the intercept values of each variable
across the hexagons. This suggests which latent variable is more sensitive to SST.
There is an 18.5% change in the λ, a 4.0% change in the σ, a 62.4% change in the ξ,
and a 5.6% change in the thirty year return level. This suggests that the ξ parameter
is the most sensitive to SSTs. The ξ parameter represents the most extreme events,
so these results suggest that the maximum intensity of hurricanes is most sensitive to
a changing SST value.

The results for the GWR model of SST on λ are shown in Figure 5.9. In Figure
5.9 it can be seen the rate of hurricane occurrence is only affected by SSTs near the
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SST Effect on Rate (hurricanes per year/oC)
0.0155 0.0160 0.0165 0.0170 0.0175 0.0180 0.0185 0.0190 0.0195

Figure 5.9: Marginal effect of SST on the number of hurricanes per year (rate).

northern perimeter of the domain. This is because hurricanes do not occur very often
in these locations now because the required environmental conditions (i.e., the SST
values) are not met during most of the season. Any increase in the SST values will
alter the frequency of hurricanes in these hexagons.

The results for the GWR model of SST on σ are shown in Figure 5.10. In Figure
5.10 it is shown that the scale of hurricane wind speeds over the Caribbean Sea, GoM,
and western Atlantic are influenced by SST values more so than the other hexagons.
This suggests that as SSTs increase in warmth, the range of wind speeds occurring
in these hexagons will also increase. That is, more hurricanes of differing magnitudes
will occur.

The results for the GWR model of SST on ξ are shown in Figure 5.11. In Figure
5.11 it is shown that the parameter representing the most extreme values is most
heavily influenced by SST in the GoM, Caribbean Sea, and the very western portion
of the Atlantic. This suggests that as SSTs increase, the most extreme events will
become even more intense.

Finally, the results for the GWR model of SST on the thirty year return level
are shown in Figure 5.12. In Figure 5.12, it is shown that SST values have the
greatest influence, again, over the western Atlantic, GoM, and Caribbean Sea. As
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SST Effect on σ (ms−1/oC)
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Figure 5.10: Marginal effect of SST on σ (ms−1).
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SST Effect on ξ ([Dimensionless]/oC)
−0.0055 −0.0050 −0.0045 −0.0040 −0.0035 −0.0030 −0.0025 −0.0020 −0.0015

Figure 5.11: Marginal effect of SST on ξ [Dimensionless].
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SST Effect on 30 Yr Wind (ms−1/oC)

1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23

Figure 5.12: Marginal effect of SST on the thirty year return level (ms−1).

SSTs increase, the expected return level for a fixed time period will increase.

Each of these plots suggests the overall influence of the ocean’s surface tempera-
ture on individual hurricane characteristics. This provides an insight into hurricane
characteristics that only a geographic approach can supply.

5.5 Spatial Risk Summary

Hurricane wind speeds are mapped using a hexagonal tessellation over the GoM
and NAtl Ocean. This approach provides a unique insight into the way that hurricane
characteristics vary over space. A GPD extreme value model is used to calculate
parameters of interest using the maximum hurricane wind speed values known to
occur in each hexagon. Specifically, the λ, or rate, the σ, or scale, and the ξ, or shape,
parameters are catalogued. The rate represents the number of expected hurricanes per
year and is highest over Florida, Bermuda, and the western Atlantic. These locations
can expect the highest number of hurricanes exceeding 33 ms−1 in any given year.
The scale represents the dispersion of wind speeds occurring in each hexagon and is
highest over the Florida peninsula, the Western Antilles Islands, and the southwestern
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Caribbean Sea. These locations experience the widest range of wind speeds, meaning
they receive many different levels of hurricanes. The shape parameter represents the
tail end of the distribution, where stable model values nearest to −1 suggest the most
extreme tails. The locations over the Florida peninsula and Western Antilles Islands
experience the most extreme events.

Not only are the latent parameters visualized, but the thirty year return level is
as well. Thirty years is chosen to represent the average homeowner’s mortgage. The
results estimated can provide potential and current homeowners with their overall
likelihood of hurricane occurence during the time they might own a home. The
western Caribbean Sea and the Gulf of Mexico experience the highest return level for
thirty years. The hexagons surrounding these locations also experience thirty year
return levels exceeding 50 ms−1, or a Category 3 hurricane.

The effect of the MAUP is tested by visualizing these parameters at different sized
hexagons. The size chosen for this study was based on a trade off between having
enough data at the locations (not too small), while still having a regional application
for each hexagon (not too large). The effect of spatial autocorrelation was calculated
using the Moran’s I statistic. It was found that the rate, σ, and thirty year return
level are all significantly autocorrelated throughout space. Due to the nature of
how hurricanes form, and how these data were subset, this is to be expected. The ξ
parameter had only moderate significance of minimal autocorrelation. This difference
is likely due to the particular sensitivity of the ξ parameter to the most extreme of
events.

The final portion of analysis was to test the relationship between the average
August through October SST values per hexagon with each of the parameters and
the thirty year return level using a GWR model. Based on the rate of change in
the intercept value of the GWR models, the ξ parameter is the most sensitive to
a change in SST values. The model suggests that as SSTs increase, the range of
wind speeds occurring in the hexagons over the Caribbean Sea, the GoM, and the
western Atlantic, will also increase. That is, more hurricanes will occur of differing
magnitudes. The model for the thirty year return level suggests, again, that as SSTs
increase, the expected return level for a fixed time period will increase over those
same locations.

Based on these results, it can be suggested that as the oceans’ surfaces increase
in temperature, the expected maximum intensity for hurricanes will increase over
the GoM, the Caribbean Sea, and the western Atlantic. This is important for any
population of people living in these locations because it provides them with a deeper
understanding of the expected risk as they move into the future. The unique approach
offered by this study allows for a spatial visualization of hurricane characteristics that
has never been attempted before. By visualizing the latent variables of the GPDmodel
in this way, the geographic element of individual hurricane characteristics is supplied.

80



CHAPTER 6

CONCLUDING REMARKS

Throughout this dissertation, multiple methodologies have been presented to calculate
the statistical risk of hurricane characteristics at a particular location. Specific locales
were focused on, but these methodologies have the benefit of being useful wherever
a hurricane record can be produced. In this concluding chapter, the methods and
results of the three studies are summarized. The implications of these results are
discussed as they relate to society and overall vulnerability. The vulnerability of any
system (at any scale) is a function of the exposure and sensitivity of that system
to any hazardous condition, as well as the ability or capacity of the system to cope
with and adapt from the effects of that condition (Parry, 2002). In this case, the
hazardous condition refers to the hurricane strike itself with the characteristic high
wind speeds and deep storm surges. A discussion is offered relating this particular
hazardous condition to societal vulnerability.

6.1 Study Summaries

In Chapter 3, extreme value theory was used to create a statistical model that
can calculate the probability of hurricane winds in different cities around Florida. In
particular, this extreme value model was based on the peaks over threshold approach,
where only wind speeds above a certain threshold are considered in the estimation.
All values over a specified threshold fit the generalized Pareto distribution. This
particular approach is useful when dealing with hurricanes because lower wind speed
levels are expected in many areas where hurricanes are common, but the most extreme
events are fairly rare. This thresholding approach allows for particular insight into
the most extreme events that other extreme value distributions, such as the Weibull,
do not. The model created, the Hurricane Risk Calculator, used wind speeds from
neighboring locations to calculate return periods (frequency of occurrence) of partic-
ular return levels (magnitudes) for a 100 km distance around twelve Florida cities.
Uncertainty for these results was provided using the delta method, which assumes
that the estimates are asymptotically normal from a knowledge of the limiting vari-
ance of the estimator. More broadly stated, the delta method is a fairly general
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central limit theorem. It was found that Miami experiences hurricane wind speeds
that blow at 50 ms−1 (45.5–54.5) [90% CI] or stronger, on average, once every twelve
years. In comparison, Pensacola experiences hurricane wind speeds that blow at 50
ms−1 (46.9–53.1) [90% CI] or stronger, on average, once every 24 years. The second
portion of this study assessed whether or not hurricane wind speeds and frequency
in the vicinity of Florida have been changing over the period of record. A quantile
regression is applied to the hurricane wind speeds around Florida and results show
that the strongest hurricanes are getting stronger as a consequence of higher offshore
intensification rates. This suggests that the return period estimates might be too
conservative, or too low, as the intensity of hurricane winds increases into the future.

In Chapter 4, the probability of hurricane storm surge occurrences was estimated
using the same peaks over threshold approach as used in the first study. This was
conducted at three Air Force Bases along the U. S. Gulf coast to provide the overall
statistical risk of surge events at various military infrastructures. It is found that
Eglin Air Force Base near Valparaiso, Florida can expect a 2.4 m (1.4–3.4) surge,
on average, once every 10 years. MacDill Air Force Base in Tampa, Florida can
expect a 2.1 m (1.3–3.0) surge, on average, once every 10 years. Keesler Air Force
Base in Biloxi, Mississippi can expect a 2.8 m (0.90–4.6) surge, on average, once
every 10 years. These results suggest that the Mississippi coastline is more at risk of
higher storm surge events than either the panhandle or western coast of Florida. The
second portion of this study was aimed at creating a bivariate statistical approach
that could assess the local risk of hurricane storm surge and hurricane wind speeds.
This bivariate probability was quantified using a copula model on observed data. The
copula has marginals with Weibull distributions and a correlation parameter for the
dependent relationship between wind and surge. The quartile pointwise uncertainty
is quantified using a Monte Carlo procedure. Eglin Air Force Base can expect wind
speeds blowing at 50 ms−1 and surge heights of 3 meters, on average, once every 28
years (23–36). MacDill Air Force Base can expect wind speeds blowing at 50 ms−1

and surge heights of 3 meters, on average, once every 27 years (22–34). Keesler Air
Force Base can expect wind speeds blowing at 50 ms−1 and surge heights of 3 meters,
on average, once every 15 years (13–18). From these results, it is suggested that
Keesler Air Force Base has the highest likelihood of extreme wind speeds and high
storm surges at the shortest time periods when comparing these three locations.

In the final study of this dissertation, Chapter 5, a unique spatial approach was
offered for the assessment of hurricane risk. Hexagonal shapes were used to tessellate
the Gulf of Mexico and North Atlantic Ocean and the likelihood of wind speed oc-
currence was mapped over space. The peaks over threshold model presented in the
previous chapters was used to estimate the return periods for hurricane winds at each
hexagon over the domain. In calculating this model, three parameters are produced,
as well as the specified return level estimates. The first parameter, λ, estimates the
rate of hurricane occurrence per year at each hexagon using the available maximum
wind speed data. The second parameter, σ, estimates the scale (statistical) of the
available wind speed data. In other words, it represents the overall dispersion of the
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values. The third parameter, ξ, is a dimensionless quantity that represents the tail
end of the distribution of wind speeds. Stated another way, ξ represents the most
extreme events (those that do not occur very often). Each of these parameters, as
well as the thirty year return level are mapped out in each hexagon over the spatial
domain. By visualizing the parameters in this way, the locations most affected by the
particular characteristics become apparent. λ is highest over the Florida, Bermuda,
and the western Atlantic. These locations can expect the highest number of hurri-
canes exceeding 33 ms−1 in any given year. σ is highest over the Florida peninsula,
the Western Antilles Islands, and the southwestern Caribbean Sea. These locations
experience the widest range of wind speeds, meaning they receive many different lev-
els of hurricanes. ξ is lowest (values closer to −1 represent extremes) over the Florida
peninsula and Western Antilles Islands. These locations experience the most extreme
events. The thirty year return level is highest over the western Caribbean and the
Gulf of Mexico, suggesting that these locations experience the highest wind speeds
on a fixed temporal scale.

Using a geographically weighted regression model, the relationship between the
average August through October sea surface temperatures per hexagon with each of
the parameters and the thirty year return level is tested. This is done to estimate the
overall influence of sea surface temperatures on individual hurricane characteristics.
The significance of the results was estimated using the t statistic. The model sug-
gests that as sea surface temperatures increase, the range of wind speeds occurring
in the hexagons over the Caribbean Sea, the GoM, and the western Atlantic, will
significantly increase. That is, more hurricanes will occur of differing magnitudes.
The model for the thirty year return level suggests that as the water temperatures
increase, the expected return level for a fixed time period will significantly increase.
Both the λ and ξ parameters did not have a significant relationship with sea surface
temperature.

Each of these studies provided a statistical assessment of hurricane risk at various
locales. Now that each has been presented and the results are understood, it is
interesting to consider what these estimates suggest for the societies living in the
locations experiencing the highest risk. The next, and final, section of this dissertation
provides a brief discussion of how hurricane hazards relate to societal vulnerability.

6.2 Societal Risk

Adaptation, in evolutionary biology, refers to the development of a genetic char-
acteristic that allows the organism to prevail or survive an environmental stressor
or change. Adaptation, in the human context, refers to a process, outcome, or ac-
tion that can better the system’s ability to cope with, manage, or adjust to some
changing condition (Smit and Wandel, 2006). O’Brien and Holland (1992) believe
that the process of adaptation occurs when a group of people add new and improved
methods of coping to their environment to their “cultural repertoire”. Denevan (1983)
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believed this adaptation is a process of change in response to a shift in the physical
surroundings or internal processes (like economics). The latter definition broadens
the range of the types of stresses/changes that can influence a group of people to
adapt. Denevan (1983) believed that any society that can quickly respond/cope to
a change are considered to have high “adaptability” or “capacity to adapt”. Though
inequality exists throughout the United States, for the most part there are enough
advanced warning systems and emergency management that unexpected changes can
be responded to and coped with quickly. The unexpected change of interest here;
hurricane strikes. Of course, the interaction between the environment and human
societies is only one constraint of many that influence the vulnerability of a particu-
lar population to various social, economic, political, and environmental risks (Fraser
et al., 2003). However, this dissertation provides a more thorough understanding of
the environmental risks that play a part in establishing vulnerability. Human societies
can use the information presented here to change how they interact with hurricane
strikes to lead to less life loss and less monetary loss.

Human societies can do little to defend in the way of the physical mechanisms
necessary for creating hurricanes. It is unlikely that hurricane mechanics could ever be
stopped or redirected by man. It is possible, however, to advance our understanding
of the occurrence of these events so that societies can adapt and be better prepared
when an event does happen. The studies in this dissertation provide the knowledge
of the statistical risk of events at the various locations of interest, so that they may
adapt or change their preparation for a hurricane event. The code provided in the
Appendix allows for the combined risk methodology to be repeated at any location
that can provide a data set of hurricane winds and surges (or any other co-occurring
variables in a phenomenon), suggesting that this methodology can be applied at any
location experiencing hurricanes, typhoons, cyclones, etc.

One of the forefront research areas for adaptation deals directly with climate
change. One of the main concerns is how our policies might be able to offset any
negative consequences of climate change by including some adaptation (or mitigation)
to the expected effects (Parry, 2002). The United Nations Framework Convention
on Climate Change, a convention that commits countries to mitigate greenhouse
gas emissions, considers adaptations from this perspective: to what degree can a
particular adaptation lessen the expected negative impacts of climate change? It is
not the purpose of this dissertation to supply any particular adaptation methods,
but rather provide the risk information necessary so those who create policies have
as much data as possible when making decisions. In particular, a few portions of
the studies look directly at the influence of climate change on hurricane occurrence.
For example, in Chapter 3, the intensity of the most extreme hurricanes was found
to be increasing through time. All else being equal, if sea surface temperatures are
known to be increasing, it is possible that an increased surface temperature will make
hurricanes more extreme. The results presented in Chapters 3 and 5 suggest that
as the climate changes and sea surface temperatures increase, hurricane maximum
intensity will be affected trending toward more extreme events.
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Research that focuses on the relative adaptive capacity of a particular region
or group of people considers vulnerability as the beginning points (rather than the
outcome) (Parry, 2002). This helps focus attention specifically on the regions that
are particularly vulnerable to the effects of climate change. The intent of this type of
research is to target where adaptation initiatives should take place. The information
presented here provides insight into locations at highest risk of hurricane strikes.
Statistical risk estimates are separate from societal vulnerability, but they can be
used to understand the expected risk of hurricane strikes at a particular societal
level. Policy and decision makers can use the information to adjust their policies to
better represent the expected risk. Especially at a time when the threat of climate
shifts is high, policy makers can use the information provided in this work to prepare
for a more tumultuous hurricane future. It is possible for decision makers to allocate
resources in an efficient way by focusing on the areas that have the highest probability
of hurricane wind speeds, storm surges, or occurrences. Insurance companies can also
use this information to adjust their premiums. Most importantly, individual citizens
living in the societies analyzed can use the information to understand the level of
hurricane risk they live in during the summer months. The goal is to provide them
with enough information to lessen their risk by becoming better prepared.
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APPENDIX A

APPENDIX

A.1 Chapter 4 Code

Here are the steps in detail to create the copula presented in Chapter 4. The data
can be found at jtrepanier.wordpress.com/data. The code below is only for Eglin
Air Force Base, but can be altered to adjust for the location and variables of interest.

Read in the data and grab the wind and surge variables of interest. Remove any
NA values.

> dateafb = read.table("EAFBfinal.txt", header = T)

> dateafb = data.frame(W = eafb$WmaxMS, S = eafb$SmaxM)

> dateafb = na.omit(dateafb)

Next the correlation between wind and surge is determined.

> r = cor(dateafb$W, dateafb$S)

Next, acquire the copula package in R (Yan, 2007; Kojadinovic and Yan, 2010)
and define a two-dimensional normal copula using the ellipCopula function with the
parameter equal to the sample correlation value. The dimension is the number of
variables, here being wind and surge.

> library("copula")

> myCopula = ellipCopula(family = "normal", dim = 2,

+ param = r)

Next fit the wind and surge data to separate Weibull distributions and obtain the
parameter values for these marginals using the maximum-likelihood procedure in the
fitdistr function (MASS) (Venables and Ripley, 2002).

> library(MASS)

> parW = fitdistr(dateafb$W, "weibull")

> parS = fitdistr(dateafb$S, "weibull")
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Then generate the multivariate density from the copula definition and the Weibull
parameters (shape ξ and scale σ) using the mvdc function (copula).

> myMvd = mvdc(myCopula, margins = c("weibull",

+ "weibull"), paramMargins = list(list(shape = parW$est[1],

+ scale = parW$est[2]), list(shape = parS$est[1],

+ scale = parS$est[2])))

Next, fit the copula-based multivariate density to the data using a maximum-
likelihood procedure in the fitMvdc function (copula). The first argument is the data
(as a matrix), the second is a multivariate copula with Weibull margins, and the third
is a vector containing the original parameter estimates.

> start = c(parW$est, parS$est, r)

> model = fitMvdc(as.matrix(dateafb), myMvd, start = start,

+ optim.control = list(trace = TRUE, maxit = 20))

Finally, redefine the normal copula using the updated correlation parameter value
and generate the multivariate density from the new copula definition and the updated
Weibull parameter values. This provides a fitted copula model using the data.

> myCopula2 = ellipCopula(family = "normal", dim = 2,

+ param = model@estimate[5])

> myMvd2 = mvdc(myCopula2, margins = c("weibull",

+ "weibull"), paramMargins = list(list(shape = model@estimate[1],

+ scale = model@estimate[2]), list(shape = model@estimate[3],

+ scale = model@estimate[4])))

The density is plotted on a two-dimensional grid spanned by the range of wind
and surge values. This is done using the contour function (graphics) and the smvdc

function (Becker et al., 1988). The smvdc function was created to use in conjunction
with contour, which determines the joint probability of the wind and surge based on
the copula density. This can be found for download at jtrepanier.wordpress.com/
data.

> source("scopula.R")

> ctr = contour(myMvd2, smvdc, xlim = c(20, 70),

+ ylim = c(0, 8))

The per event probability, [Pr (W > wmax, S > smax)] times the hurricane fre-
quency (the number of hurricanes divided by the total number of years), provides
us with the annual event frequency. That is, the yearly frequency of events with W
exceeding wmax and S exceeding smax. The yearly probability of an event is then
1-exp(-frequency), where exp() is the exponent function, and the return period is 1
divided by 1-exp(-frequency), or roughly 1 divided by the frequency plus 0.5 year.
For small frequencies, the return period is roughly 1 divided by the frequency. This
provides the probability of specific wind and surge events.
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> rate = nrow(dateafb)/(2005 - 1896)

> ctr$z = 1/(ctr$z * (1 - ppois(0, rate)))

Then plot out the density of the copula model and include the empirical points.

> contour(myMvd2, dmvdc, xlim = c(20, 65), ylim = c(0,

+ 6), xlab = expression(paste("Maximum Sustained Wind Speed (m",

+ s^-1, ")")), ylab = "Maximum Surge Height (m)",

+ las = 1, cex.axis = 1.4, cex.lab = 1.4, col = "white",

+ drawlabels = FALSE)

> abline(h = seq(0, 6, 2), v = seq(20, 70, 10),

+ col = "lightgray")

> contour(myMvd2, dmvdc, xlim = c(20, 65), ylim = c(0,

+ 6), xlab = expression(paste("Maximum Sustained Wind Speed (m",

+ s^-1, ")")), ylab = "Maximum Surge Height (m)",

+ las = 1, cex.axis = 1.4, cex.lab = 1.4, add = T)

> points(dateafb[, 1], dateafb[, 2], pch = 16)

Then plot out the yearly probability of an event and include the empirical points.

> contour(ctr, levels = c(1, 2, 5, 10, 20, 30,

+ 50, 75, 100, 150, 200, 300, 500), main = "",

+ ylab = "Maximum Surge Height (m)", xlab = expression(paste("Maximum Sustained

+ s^-1, ")")), xlim = c(40, 65), ylim = c(3,

+ 6), drawlabels = FALSE, cex.axis = 1.4,

+ cex.lab = 1.5, las = 1, labcex = 1.5, col = "white")

> abline(h = seq(3, 6, 1), v = seq(40, 70, 10),

+ col = "lightgray")

> contour(ctr, levels = c(1, 2, 5, 10, 20, 30,

+ 50, 75, 100, 150, 200, 300, 500), main = "",

+ ylab = "Maximum Surge Height (m)", xlab = expression(paste("Maximum Sustained

+ s^-1, ")")), xlim = c(40, 65), ylim = c(3,

+ 6), drawlabels = TRUE, cex.axis = 1.4,

+ cex.lab = 1.5, las = 1, labcex = 1.5, add = T)

> points(dateafb[, 1], dateafb[, 2], pch = 16)

Calculate the CI. This will take some time. Read a summary of the results.

> cs = mvrnorm(1000, mu = model@estimate, Sigma = model@var.est)

> cs[, 5] = ifelse(cs[, 5] > 1, 1, cs[, 5])

> mar = c("weibull", "weibull")

> rp = numeric()

> wt = c(33, 43, 50, 59)

> st = c(3.04, 4, 4.96)
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> ns = 1000

> for (j in 1:ns) {

+ shw = cs[j, 1]

+ scw = cs[j, 2]

+ shs = cs[j, 3]

+ scs = cs[j, 4]

+ cc = cs[j, 5]

+ mC = ellipCopula(family = "normal", dim = 2,

+ param = cc)

+ mM = mvdc(mC, margins = mar, paramMargins = list(list(shape = shw,

+ scale = scw), list(shape = shs, scale = scs)))

+ mysim = contour(mM, smvdc, xlim = c(20, 70),

+ ylim = c(0, 8))

+ mysim$z = 1/(mysim$z * (1 - ppois(0, rate)))

+ for (i in 1:4) {

+ for (k in 1:3) {

+ rp = c(rp, mysim$z[mysim$x == wt[i],

+ mysim$y == st[k]])

+ }

+ }

+ }

> rpSamples = t(array(rp, c(12, ns)))

A.2 Chapter 5 Code

The following is the code showing how to work with spatial data sets in R (R
Development Core Team, 2010), as was done in Chapter 5. The data can be found
at jtrepanier.wordpress.com/data. An explanation of the best.use data can be
found in (Jagger and Elsner, 2006). The code to calculate the model parameters
within Chapter 5 is not provided. This shows you how to deal with spatial data, as
well as read in and subset SST data.

First load in the cyclone data set and subset to look at specified years of interest.
Change the wind speeds (as knots) to meters per second and only grab hurricanes
(≥ 33 ms−1).

> load("best.use.RData")

> begin = 1854

> end = 2009

> years = begin:end

> Wind.df = best.use[best.use$Yr >= begin & best.use$Yr <=

+ end, ]

> Wind.df$WmaxS = Wind.df$WmaxS * 0.5144
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> threshold = 33

> Wind.df = Wind.df[Wind.df$WmaxS >= threshold,

+ ]

Load the package for spatial data and assign coordinates and projection informa-
tion.

> require(sp)

> coordinates(Wind.df) = c("lon", "lat")

> ll = "+proj=longlat +datum=WGS84"

> proj4string(Wind.df) = CRS(ll)

> slot(Wind.df, "coords")[1:3, ]

Transform the map to Lambert Conformal Conic.

> lcc = "+proj=lcc +lat_1=38 +lat_2=23 +lon_0=-60"

> require(rgdal)

> Wind.sdf = spTransform(Wind.df, CRS(lcc))

> slot(Wind.sdf, "coords")[1:3, ]

Generate hexagon centers and create hexagon polygons.

> hpt125 = spsample(Wind.sdf, type = "hexagonal",

+ n = 125, bb = bbox(Wind.sdf) * 1.2, offset = c(0,

+ -1))

> hpg125 = HexPoints2SpatialPolygons(hpt125)

Next overlay hexagons on the hurricane locations.

> Wind.hexid125 = overlay(Wind.sdf, hpg125)

Then split the data frame by hexagon number.

> Wind.split125 = split(Wind.sdf@data, Wind.hexid125)

Create a vector of ID names for the data frame.

> hexID125 = paste("ID", names(Wind.split125),

+ sep = "")

Finally, create a spatial polygons data frame with a dummy slot in the data
location. This allows you to fill further data slots with whatever information you
choose. For example, with maximum wind speeds or model parameters (as was done in
Chapter 5). Now, each hexagon over a location of interest has geographic coordinates
associated with it as well as whatever data information entered.
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> hexID125 = as.integer(names(Wind.split125))

> int125 = rep(3, length(hexID125))

> int125 = as.data.frame(int125)

> names(int125) = "test"

> row.names(int125) = paste("ID", hexID125, sep = "")

> hspdf125 = SpatialPolygonsDataFrame(hpg125[hexID125,

+ ], int125, match.ID = TRUE)

> hspdf125@data

The following code shows how to read in SST data and pull out the values of
interest. The data can be found at jtrepanier.wordpress.com/data.

First load the data and grab the August through October monthly SST values per
grid location.

> load("ncdataframe.RData")

> sehur = paste("Y", years, sep = "")

> sstAug = ncdataframe[paste(sehur, "M", formatC(8,

+ 1, flag = "0"), sep = "")]

> sstSep = ncdataframe[paste(sehur, "M", formatC(9,

+ 1, flag = "0"), sep = "")]

> sstOct = ncdataframe[paste(sehur, "M", formatC(10),

+ sep = "")]

Then average the monthly location values.

> sstAugmean = rowMeans(sstAug)

> sstSepmean = rowMeans(sstSep)

> sstOctmean = rowMeans(sstOct)

Get the average SST value from all three months and assign geographic coordi-
nates.

> ASOsst = cbind(sstAugmean, sstSepmean, sstOctmean)

> avgsst = rowMeans(ASOsst)

> avgsst = as.data.frame(avgsst)

> avgsst$lon = ncdataframe$lon

> avgsst$lat = ncdataframe$lat

Project the SST values.

> coordinates(avgsst) = c("lon", "lat")

> proj4string(avgsst) = CRS(ll)

> SST.sdf = spTransform(avgsst, CRS(lcc))

Calculate the spatial average of SSTs per hexagon.
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> ssta = overlay(SST.sdf, hspdf125, fn = mean)

Then add the SST data to the spatial data frame created above. This is just one
example of the type of data you can put into this slot.

> hspdf125$avgsst = ssta$avgsst

Should any questions or concerns exist about this code or the data available, please
contact the author of this dissertation.
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