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Abstract

In this study analysis of data whose character was kept secret
was performed by employing a variety of nonlinearapproaches. The
idea was to test the ability of approaches stemming from the theory
of nonlinear dynamical systems to infer the true properties hidden
in the data. The approaches employed include dimension estima-
tion, nonlinear prediction, Lyapunov exponent estimation, and false
nearest neighbors. It is concluded that even though the methods
have problems and occasionally may be inconclusive, when cor-
rectly applied they are effective in delineating the dynamics under-
lying the data.

1. Introduction

In the XVIil General Assembly of the European
Geophysical Society (EGS) in Weisbaden, Germany,
3-7 May 1993, a session dealt with nonlinear time
series analysis and prediction in geophysical fluid
dynamics. Among the papers presented were several
studies dealing with the estimation of properties of
reconstructed attractors from observables. In the en-
suing discussions, questions were raised regarding
the effectiveness of “black boxes” (algorithms) when
they are used blindly, as, for example, with an observ-
able from an unknown system. The algorithms have
been developed by testing them with observables
from a priori known systems. Does this make them
always applicable? How efficiently do they perform
when they are faced with time series from an unknown
(to the investigator) time series? As a result of this
interesting discussion ADK challenged the audience
with the following simple proposition: If | provide
synthetic time series and only | know how they are
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generated, can you examine them and tell me what
they are? The challenge was accepted by AAT, GNT,
and JBE. ADK and JJH supplied us with 10 synthetic
time series from models known only to them. One
hundred thousand equally spaced in time values for
each time series were supplied. From these 10 time
series, 4 were chosen at random and analyzed. This
paper reports on the approaches used to identify the
properties of the models, followed by the presentation
of the models by ADK and JJH. in the following section
itis assumed that the concepts and method behind the
employed methods are known and extensive repeti-
tion of what can be found in many books and papers
(e.g., Tsonis 1992, and references herein) is avoided.
The theme of this contribution is the extraction of
information from data. Thus, it is similar to the Santa
Fe contest on prediction of several time series that
emerged out of informal discussions at the Complex
Systems Summer School at the Santa Fe Institute in
the summer of 1990 (Gershenfeld and Weigend 1993).
The difference is that the purpose of the analyses here
is not to investigate predictability but to assess the
ability of several approaches to investigate the dy-
namics that underlie the observables. Thus, only data
whose dynamics can be linked to available models
could be worked with.

2. Data analysis and results

a. Time series 1

Figure 1a shows the first of the four time series
investigated here. As a first step two products from
conventional lineartime series analysis are presented,
namely, the autocorrelation function and power spec-
tra (Figs. 1b and 1c, respectively). The autocorrelation
function seems to be periodic but somewhat compli-
cated. The spectra show peaks, some of which canbe
identified as combinations of two frequencies. No
significant background (broadband) noise is evident.

From Fig. 1 an argument could then be made that
what is shown is some kind of a quasi-periodic signal.
if the corresponding attractor is some torus, it should
be possibie to obtain from nonlinear methods a corre-
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lation dimension of 2, a proper embedding of 3, no
positive Lyapunov exponents, and a nonlinear predic-
tion where the skill oscillates as a function of the time
step.

1) CORRELATION DIMENSION

From Fig. 1bitis observed that for a lag equal to 75
the autocorrelation function is approximately zero. We
thus considered a delay parameter 7= 75 and con-
structed the vector

X(t) = {x(t), x(t + 7), ..., X[t + (n - 1)7]},

where nrepresents the embedding dimension and x(t)
is the first 45 000 values of our time series. Note that
this way to determine 7, even though it is widely used,
is not universally accepted. Other methods are also
available (see Tsonis 1992). We then estimated the
number of pairs of points that are separated by at least
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Fic. 1. (a) A segment of time series 1, (b) its autocorrelation
function, (c) its power spectra (index/sample size = frequency).

adistancer,N(r,n), and defined log N(r,n) as a function
of log r(Grassberger and Procaccia 1983a,b). From
this graph we produced the local slope (or the first
derivative of the function) and plotted it for various
embedding dimensions. Figure 2 shows the results for
n=3, 4, 5 (solid lines). For all embedding dimensions
we observe over a wide range of scales a plateau at
slope=2.0, indicating that the correlation dimensionis
around 2. Note that sensitivity tests with various 7’s
showed that if a proper 7 is not used wrong results are
obtained. For example, when 7 = 500 is used a
different attractor is delineated and a correlation di-
mension equal to 1.6 is estimated (dotted lines in Fig.
2). This is an important result since it points out that
when dealing with data exhibiting oscillating
autocorrelation functions the choice of 7 is critical. An
indication of chaotic dynamic may be suggested if the
wrong 7 is used! Phase-space reconstruction in 3D
further demonstrates this point (Fig. 3). When 7 =500
is used (Fig. 3a) a different structure is obtained than
when 7 = 75 is used (Fig. 3b).

An independent way to infer dimensions has re-
cently been proposed by Abarbanel and Kennel (1992)
and Sugihara and May (1990). The first method is
based on the nearest neighbors and its basic philoso-
phy is outlined in Fig. 4. If the underiying attractor is
assumed to be a circle and the motion is embedded in
one dimension then points close to 1 and 3 will be
closerneighbors. We call these neighbors false neigh-
bors because in the actual motion they are very far
apart. Thus, starting with d =1 for each point in phase
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space we find the nearest neighbor. From all the
available points we then find how many of those
nearest neighbors remain nearest neighbors as we go
tod=2,d=3, and so on. The embedding for which the
percentage of false neighbors goes to zero provides,
according to Abarbanel and Kennel, aninteger-valued
dimension of the underlying dynamics, especially if
the noise in the data is small. Figure 5 shows the
results for 7= 75 when this approach is applied to time
series 1. At embedding dimension 3 the ratio is almost
zero and remains as such for higher embeddings. This
indicates that the actual motion takes place on an
attractor embedded in three dimensions. Since a 2-
torus must be embedded in three dimensions this
result is compatible with the correlation dimension
estimate for time series 1. The other approach is
based on nonlinear prediction and it will be discussed
in a later section.

2) LYAPUNOV EXPONENTS

The Lyapunov exponents provide the rate at which
nearby trajectories diverge or converge as they evolve
according to the underlying dynamics. There are as
many Lyapunov exponents as coordinates of the
embedding space. Periodic systems have one, two,
three, or more (depending on whether or not the
motion is described by a limit cycle, a 2-torus, a 3-
torus, or some higher dimensional torus, respectively)
Lyapunov exponents that are zero, with the rest being
negative. Chaotic systems have at least one positive
Lyapunov exponent indicating the property of diver-
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Fia. 2. Slope as a function of logr for time series 1 forembedding
dimensions 3, 4, and 5 (solid lines). Results based on 7= 75, which
corresponds to a zero in the autocorrelation function. A plateau
around a value of slope = 2 is observed. The dotted lines show the
same but for 7= 500, which corresponds to a highly autocorrelated
value. Now the plateau is observed at a lower level (= 1.6).

gence of nearby trajectories. We estimated the
Lyapunov exponents of time series 1 using again the
first 45 000 points and the algorithm proposed by
Eckman et al. (1986) and obtained A, = 0.07,

(b)

Fia. 3. (a) Three-dimensional phase-space reconstruction for = 500; (b) 3D phase-space reconstruction for 7= 75.
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Fic. 4. An illustration of the principle behind estimating the
embedding dimension using nearest neighbors (see text for details).

A, =-0.009, A, =-0.11, and A, = ~0.34. The first two
Lyapunov exponents are close to zero and could be
interpreted as indicating a motion on a torus. We feel,
however, that 4, is somewhat high. Chaotic dynamical
systems whose dimension is just above 2 (e.g., the
Rossler system) exhibit a positive Lyapunov exponent
around 0.13. It may, therefore, be that a value of 0.07
is within the error bounds of a torus. We do feel,
however, alittle apprehensive in attributing these results
to either a torus or to some very mild chaotic motion.

3) NONLINEAR PREDICTION

If an underlying deterministic mechanism exists,
then the order with which the points appear in the
attractor will also be deterministic. Thus, if itis possible
to extract the rules that determine where the next point
will be located in phase space a very accurate predic-
tion will be obtained. In general, in noniinear predic-
tions it is assumed that the underlying dynamics can
be written as a map of the form

x(t+ T) = £Ixt)],
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Fia. 5. Ratio of false neighbors to the total neighbors for time series
1 as afunction of the embedding dimension. From this figure we can
estimate thataninteger-valued dimension for the underlying dynamics
is equal to 3 (in other words, the motion takes place on an attractor
embedded inthree dimensions).

where in phase space x(t) is the current state and
Xx(t+T) is the state after some time interval T.

Since the form of the attractor is not known a priori
one approach is to estimate the above mapping
locally (Farmer and Sidorowich 1987). This so-called
local approximation takes a point x(t) of the attractor
reconstructed at some proper embedded space and
considers around it a small neighborhood containing
points generated in the past. By comparing the motion
of the neighbors after a time step T one can construct
a mapping that dictates the motion of the neighbor-
hood and thus of point x(t). The form of f can be
anything, but the simplest way is to consider it linear
and construct the mapping every time step into the
future. Note that since the linear mapping may not be
the same for each time step the overall procedure is
not linear. If a system is chaotic one expects that
predictability will deteriorate with time, and thus one
should expect that the correlation r(t) between actual
and predicted values as function of prediction time
exhibits a “falloff.” Such falloff would not be expected
if the signal is periodic [r(t) is equal to one and
independent of t]. Additive noise superimposed over
a periodic signal will offset the above level by a
constant amount, and if the signal is quasi-periodic
r(t) will oscillate with t (Sugihara and May 1990;
Tsonis 1992; Elsner and Tsonis 1992; Sugihara 1993,
personai communication).

According to Sugihara and May (1990), nonlinear
prediction can by itself provide a way to determine a
proper embedding for the data. The idea is that once
a proper embedding has been found, the correlation
coefficient between actual and predicted values, r(t),
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Fic. 6. Correlation coefficient between actual and predicted value
for one-step prediction [r(1)] for time series 1 as a function of the
embedding dimension. The correlationincreases and levels off atan
embeddingdimension 3, whichindicates that thisis a properembedding
dimension.

should not change. In other words predictability will
increase as correct embedding is approached, and
after that the result will remain the same. Figure 6
shows r(1) [i.e., r(t) for the first time step prediction] as
a function of the embedding dimension for time series
1 and t7=75. As can be seen r(1) levels off and stays
at a level of about 0.9975 for embedding dimension 3
and higher. This result supports the results reported in
section 2a(1) indicating that the motion is taking place
in an attractor embedded in three dimensions.

Figure 7 shows (f) as a function of tfor embedding
dimension 3 andt=75. Here the first 10 000 points are
usedfortraining (i.e., to derive the linear mapping) and
the next 10 000 are used for testing. Thus, f(f) values
are based on a sample size of 10 000. The correlation
between actual and predicted value oscillates at a
constantlevel as the prediction time increases indicat-
ing, as mentioned above, a motion on a torus (quasi-
periodic motion).
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Fia. 7. Correlation coefficient r(t) between actual and predicted
values for time series 1 as a function of prediction step. The skill
oscillates, indicating a quasi-periodic motion.

In summary, correlation dimension estimates, false
nearest neighbors, and nonlinear prediction suggest a
quasi-periodic motion on a 2-torus. Even though the
Lyapunov exponents are not as conclusive as the
other tests, our decision is that time series 1 repre-
sents a quasi-periodic signal.

b. Time series 2

Figure 8 shows time series 2. Exactly the same
tests were applied here as well, and the results are
summarized in Tabie 1. All tests except for the
nearest neighbors test indicate a quasi-periodic mo-
tion. Here the first two Lyapunov exponents are very
close to zero and at least an order of magnitude
smaller than the rest. We therefore will consider them
as equal to zero. Thus, having four conclusive and
oneinconclusive tests, our verdictis that again we are
dealing with an observable from a quasi-periodic
system.

TasLE 1. Summary of the results for time series 2.

Autocorrelation Spectra Correlation Nearest Lyapunov r(l)vsd, r(tyvst

function dimension neighbors exponents

Decorrelation Several Estimated to be Inconclusive A, =0.009 Leveling off Oscillating

time =50 pronounced two overa A,=-0.003 atd,=3 intime at
peaks range of scales Ay =-0.21 aconstant
attributed atleasts A, =-0.95 level
tocombinations decades wide A,=-8.3
of two major
frequencies
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Fia. 8. A sample of time series 2.

¢. Time series 3

Figure 9 shows the time series and Table 2 summa-
rizes the results. Here, three tests suggest a 2-torus
andtwotests[r(1) versus d_and possibly the Lyapunov
exponents] are inconclusive. We again decide in favor
of a quasi-periodic motion.

We wish to stress here a point very much related to
the philosophy of this paper. The reported Lyapunov
exponents were in two cases inconclusive. In those
cases the first two exponents are very close to zero
and it may be that in fact they are within the error
bounds of the algorithm for a quasi-periodic motion.
This is, however, something that a given algorithm (or
“black box”) cannot resolve. Other algorithms may
perform more satisfactorily, but the bottom line is that
a blind application of an algorithm may not always be
conclusive.
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FiG. 9. A sample of time series 3.

d. Time series 4

Figure 10 shows time series 4. Visual examination
of this figure indicates that the statistical properties of
this signal do notremain the sameintime. Intermittency
and oscillation “packets” whose amplitude increases
with time are observed. We considered the three
different parts of the signal where it looks like the
statistical properties may remain constant, namely the
segment from 1-30 000, the segment from 30 000—
55 000, and the segment from 65 000-90 000, and
estimated their autocorrelation functions (Fig. 11).
Apparently, the autocorrelation structure in the three
time segments is vastly different. In fact we believe
that even within the chosen segments the statistical
properties do not remain the same. For example, in
Fig. 10 and for the first segment an apparent increase
of the amplitude of the oscillation can be observed.

TasLE 2. Summary of the results for time series 3.

Autocorrelation Correlation Nearest Lyapunov |

function Spectra dimension neighbors exponents | r(1)vs d, r(tyvs t
3 Decorrelation Several Estimatedequal Indicatingan A= 0.08 Inconclusive Oscillating
i time 7=200 pronounced totwo overa embedding A, =~0.003 intime at
; peaks range of scales ofthree Ay =~0.89 aconstant
attributed atleast5 A, =-017 level
: tocombinations decadeswide s ==10.1

of two major

| frequencies
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Fic. 10. Time series 4 in its entirety. Here, one can distinguish
three different segments where the statistical properties differ. Those
are approximately the part from 1-30 000, the part from 30 000-55
000, and the part from 65 000—-90 000 time steps.

Similar comments can be made for the other two
segments. Figure 12 shows the local slope as a
function of log r for embedding dimensions 3, 4, and
5 for the entire sequence. Notice the absence of
scaling. These functions are rather nonlinear, exhibit-
ing no plateau. Itis interesting, however, to notice that
the functions remain virtually unchanged as the em-
bedding dimension increases and they are confined at
low slope values (below 3). That prompted us to
investigate the properties of a reconstruction in three
dimensions. Figures 13a and 13b show such a recon-
struction based on the first 50 000 points and on the
whole time series (100 000 points), respectively. We
clearly see the structure of the attractor as being
something like a three-dimensional star. The geom-
etry of the structure does not change as we increase
the number of points; the structure simply grows
bigger. Given the nature of our signai this geometry
can be completely explained. Due to the intermittent
character of the time series most of the values are
found around zero. Those values result in the center
“black” sphere shown in Fig. 13. The intermittency
bursts manifest themselves as points away from that
sphere. Note, however, that there is some structure in
those bursts since the corresponding points are found
along certain directions only. The fact that the struc-
ture grows as more points are included indicates that
the provided signal, even though very long, does not
represent a full “orbit.” Consequently, we can explain
the function observedin Fig. 12. The domination of the
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Fia. 11. Autocorrelation function for the three distinct parts of time
series 4. Each segment exhibits different autocorrelation structure,
indicating the absence of a “fixed” dynamic throughout.

points around zero biases the dimension at smaller
scales toward small values. At longer scales the
algorithm begins to see the three-dimensional struc-
ture and thus the dimension approaches a value of 3.
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Fia. 12. Slope as function of log r for time series 4 for embedding
dimensions 3, 4,and 5. Based on 7= 352, which correspondstoazero
in an autocorrelation function of the entire series. Note the absence
of a plateau.
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(b)

Fia. 13. Three-dimensional phase-space reconstruction from (a) the first 50 000 points of time series 4 and (b) the entire sample.

The actual dimension is between 2 and 3, but an
accurate estimation of the dimension requires many
more points. Lyapunov exponents estimation, nonfin-
ear prediction, etc., also produce similar conclusions.
Thus, provided that this solution is stable (i.e., the
oscillation “packets” will not keep increasing in ampli-
tude forever), we have to conclude that the signal in
question does not even represent a full “orbit”! In this
case the signal might be chaotic since the
autocorrelation structure in the various segments
shows a steady amplitude decrease with lag, indicat-
ing loss in memory, and the corresponding spectra
(not shown) exhibit significant broadband structure.

3. The dynamic model

The time series analyzed above were produced by
afully nonlinear two-layerinviscid hydrodynamic model
in a rotating frame, often called an f plane. The upper
layer is confined to a parabolic ellipsoid, whereas the
bottom layer is infinite in the horizontal direction. The
appropriate nondimensional, vertically integrated hy-
drodynamic equations are well known to be

(), 2
Do,y 19_["_+_"_]=o 1
o U; +0',/Uj + % M
()
Do, 09 _, @)
Dt dx

i

1630

D 2 2), d 1 2
U o S| (1- e +n®]=0 @)

2
U

ox i

D .2, 0@ _
D”v +h =0. (4)

Here, U@ is the ith velocity component in the «
layer and h¥ is the @ =1, 2 layer thickness. Aiso, D/Dt
= d/dt+ U dldx;is the material derivative;

0 -t

%=1 0
is the rotation matrix; ande,, = (p,— p,)/p,is the density
contrast between the layers. In all, Egs. (1)—(4) repre-

sent six nonlinear coupled partial differential equa-
tions. These equations can be dimensionalized using

h* = H*h
X! = x(g-H/f*?)"
t* = t/f*

Here, ( )* quantities are dimensional, f* is the Coriolis
parameter, g* is the reduced gravity, and H* is the
upper-layer vortex-scale thickness.

General solutions to Egs. (1)-(4) must be obtained
numerically. Standard numerical recipes such asfinite
differences cannot recover the full range of nonlinear
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behavior without paying an enormous computational
penalty. Fortunately there is an alternate approach
that does fully account for the nonlinearity and is in
keeping with the spirit of dynamical systems. The first
step in implementing the approach is to focus on the
response of the confined upper layer when flow in the
lower layer is prescribed.

Following Ruddick (1987), lower-layer pressure
fluctuations are expressed in terms of the prescribed
lower-layer velocity, and, after the superscripts for
layer 1 are dropped, Egs. (1)-(4) reduce to

D d
EUi+GUUj+§h=Li’ (5)
i
D oU;
—h+h—L =0, 6
Dt oX; ©)

)

where L, = DUP/Dt + o,U®.

The next step is to use a low-order spectral expan-
sion for the field variables in the upper layer. Following
Cushman-Roisin et al. (1985), solutions are sought on
the form

U, = (G2 + Gx, + (G, - Gx, 7)
U, = (Gg+ Gx, + (G2 - G)x, (8)

h=h + (B2 + B)x2+2Bx,x, + (B2~ B)xZ. (9)

Equations (7)—(9) are valid only for h = 0, since the
vortex is confined to this region. Here, h, is the
centerline thickness of the upper layer. Also, G and G,
are the divergence and spin of the vortex velocity field,
while G, and G are the shear and normal deformation
rates. The surface boundary signature of the vortex is
determined by h,, B, B,, and B,. As shown by Kirwan
and Liu (1991), the semimajor and semiminor axes of
the vortex are given, respectively, by

5 » 112 -1/2
Ffa=ho[|B/2|—(BN+Bs) }

112 -1/2
Hb=h0[|B/2|+(B,%+B§) } .

Also, the ellipse and velocity vector orientations are
given, respectively, by
a = (1/2)tan"'(B/B,)

B = (1/2tan"(-G /Gy).
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A dynamical system of eight coupled, nonlinear
ordinary differential equations is obtained when Egs.
(7)-(9) are substituted into (5) and (6). These are

dhjdt+h,G=0 (10)

dB/dt + 2[BG + 2(B,G,, + BG)l =0 (11)

0BJadt + 2B,G + GB~2B,G, =0 (12)

dB,/dt + 2B,G + G,B + 2B,G, =0 (13)
dG/dt+ G¥2 + 2(GZ + G2 — G2 - G+ B) = L,
(14)

dG/dt + GG, + GI2 =0 (15)

dG,/dt + GG, - G+ 2B, = L, (16)

dGJdt+ GG, + G, + 2By = L, (17)
Here, L is expressed interms of its spherical, deviator,
and skew components (Eringen 1962), and

L, = dG®/dt + (GOPI2 + 2[(GR) + (GR)? - (GR)? — G2
(18)

L, = dGP/dt+ GOGP - GP (19)

Ly = dG@/dt+ GOGP - G (20)

Solutions to Egs. (10)—(17) were obtained using a
double precision, fifth-order Runge—Kutta solver that
adjusts the time step size to meet a tolerance of 10-°.
All of the solutions presented here are numerically
stable.

The unforced equations (L, = L, = L= 0) have five
known invariants (Ball 1963). These are related to
conservation of eddy (hereafter referred to as lens)
volume, potential vorticity, angular momentum, total
energy, and potential deformation (Kirwan and Liu
1991). Thus, the number of dynamically independent
variables is three for this case. Although this unforced
canonical systemis nonlinear, itis notbelievedto have
chaotic solutions. However, for appropriate initial con-
ditions the solutions can be quite complicated. With
the forcing prescribed above, only the volume and
potential vorticity invariants remain, so that the num-
ber of dynamically independent variables for such
cases is six. As reported by Kirwan et al. (1992) and
Kirwan and Lipphardt (1993), solutions to the forced
system exhibit some chaotic properties. However, a
complementary anatysis from the standpoint of dy-
namical systems theory has not yet been made.
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TasLE 3. Initial conditions for lenses 1 and 2. Here X, and Y, are the initial locations of a particle. The other symbols are explained in text.

Case h, B B, B, G G, G, G, X, Y,
Lens 1 1.0 ~0.223607 0.0 -0.238972 0.0 -0.978907 0.0 9.20442

-0.01 0.0

00 1492267 00

Prior experience with this model has shown that it
can exhibit a very wide spectrum of behavior. This
includes analytic solutions for special initial conditions
to ragged and spikey time series for the variables. The
spikey character can result from the fact that some
variables spend more time during an oscillation cycle
close to some preferred value and just a brief interval
at an extreme value. Then standard statistical meth-
ods give averages that are very close to the preferred
value since many more of these are contained in the
average than in the extreme values. Also, the stan-
dard deviation does not represent the biased charac-
ter of the scatter about the mean. The spikey character
can also frustrate spectral analysis. Even if only one
frequency is present, the spectral routine may require
many spectral amplitudes to resolve the time series.

Three test time series groups were prepared and
transmitted to the analysts. Initial conditions for these
simulations are given in Table 3. Lenses 1 and 2 were
unforced cases; that is, L, = 0 in Eqgs. (10)—(17).
Presumably these are nonchaotic cases. Lens 3 was
a forced case. The initial conditions were the same as
fens 2; however, the forcing was prescribed as the
solution for lens 2—that is, this system was resonately
forced. For a linear system this would produce secular
growth in the time series. However, for this system the
nonlinearity actually stabilizes the solution. Of course,
if the amplitudes of the forcing are large enough the
solutions will evolve (but not always quickly) to a lens
infinitely thin but of infinite radius. In addition, since the
system is forced by lens 2, which exhibits low-fre-

quency oscillations, its solutions might aiso be exhib-
iting very low frequency oscillations. See discussionin
Kirwan et al. (1992) for further details.

Table 4 shows the time series that were transmitted
to the analysts. Several points should be made con-
cerning this. First, not all of the dynamical variables
were made available. For lens 1 the only dynamical
variable was h , and as can be seen from Eq. (10) itis
coupled only to the G field (horizontal divergence); this
is a one-way coupling. Also, for lens 1 the patrticle path
datais merely a mapping andR,/R, is derived fromthe
B -field time series. For lenses 2 and 3 the deforma-
tions G, and G, were supplied along with path data.

The analysts chose to analyze lens 1 column 2
(time series 1), lens 1 column 5 (time series 2), lens 2
column 2 (time series 3), and lens 3 column 2 (time
series 4). It is clear that they correctly deduced the
essential dynamics forlenses 1 and 2 even with limited
time series and no a priori knowledge of the physics.
This was accomplished with the new techniques of
dynamical systems theory. As discussed above, clas-
sical statistical/spectral methods may not be decisive
for these two cases.

The description of lens 3 is essentially correct as
well. As mentioned above, the solution is stable. Thus
the solution will not blow up. It exhibits, however, very
low frequency oscillations, which results in nonsta-
tionary segments (like those supplied to the analysts).
In fact, those oscillations might have periodicities in
excess of 5 x 10° data points. Because of that, exact
estimation of the Lyapunov exponent spectrum from

TasLE 4. Time series supplied to analysts. The correspondence with the time series employed by the analysts is as follows: time series 1:
lens 1 col 2; time series 2: lens 1 col 5; time series 3: lens 2 col 2; time series 4: lens 3 col 2. Here, y= Gj + GZ - GZ.

Case Col1 Col 2 Col 3 Col4 Col5 Col 6 Time Step
Lens 1 T X R/R, Y 0-1000 0.01
T e e
v o0 0001
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the equations is not feasible given the computational
effort involved. Solutions are sensitive to initial condi-
tions and parameter values that are characteristic for
chaotic behavior (Kirwan and Lipphart 1993; Kirwan et
al. 1992). Thus, it is again clear that the algorithms
were able even with limited data to point out useful
properties of the system.

4. Summary

An assessment of the ability of nonlinear methods
to infer dynamics from observables was attempted
here. One group (ADK and JJH) supplied time series
whose dynamics were known to them only and the rest
of us attempted to extract as much information as
possible. From this combined effort we conclude that
nonlinear approaches stemming from the theory of
chaos can provide useful information about the under-
lying dynamical system. Preferably, not just one but all
possible approaches should be considered and the
results should be compared collectively. However,
due to the inherent problems and weaknesses of the
involved algorithms it is imperative that they are
applied properly; otherwise,; wrong conclusions can be
reached. Most of the generated series (lens 1 and lens
2) were nonchaotic. Such a design explores uniformiy
the range of dynamics of the model and reflects our
initial concern not to overwhelm the analysis with
chaotic time series (the type of data on which all those
methods were developed), but also to test the meth-
ods in cases of strong nonlinearity not necessarily
associated with chaos. In closing, we believe that a
successful response has been made to the challenge
issued at the XVIII General Assembly of the EGS.
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