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ABSTRACT

When the reconstruction of attractors from observables is sought, the Grassberger-Procaccia algorithm for
estimating the correlation dimension is often used. An overview of recent developments concerning data re-
quirements and algorithm performance is presented within. In view of these developments the significance of
previously estimated dimensions of weather and climate attractors is discussed.

1. Introduction

Lately, ideas from the theory of nonlinear dynamical
systems and chaos have been applied to many problems
from many different disciplines, including atmospheric
sciences. The main goal is the search for low-dimen-
sional chaos and the extraction of the properties of the
underlying attractors, if any. The procedure often in-
volves an observable (time series) and a reconstruction
of the attractor. The reconstruction is achieved by tak-
ing a scalar time series x(¢;) and its successive time
shifts (delays) as coordinates of a vector time series
given by

X(t) = {x(t), x(t; + 7),- - -, x(t; + (n— 1)7)},
ey

where #n is the dimension of the vector X (¢;) (often
referred to as the embedding dimension) and 7 is an
appropriate delay (Packard et al. 1980; Ruelle 1981;
Takens 1981). For proper reconstructions the embed-
ding dimension # should be equal or greaterto2D + 1,
where D is the dimension of the manifold containing
the attractor. Such an embedding preserves the topo-
logical properties of the attractor. More specifically the
embedding will be a diffeomorphism—a differentiable
mapping with a differentiable inverse—from the true
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phase space to the delay space. This is Whitney’s theo-
rem and, strictly speaking, is valid only when we have
an infinite and dense set in our disposal. When we only
have a limited dataset the theorem may not be valid.
In fact, in those cases the word embedding is used
loosely as any topologist will argue.

For an n-dimensional phase space, a “cloud” or a
set of points will be observed. From this set the various
dimensions and exponents that characterize the un-
derlying attractor can be calculated. The most popular
approach is to calculate the correlation dimension. Ac-

- cording to this approach (Grassberger and Procaccia

1983a,b), given the cloud of points one finds the num-
ber of pairs N(r, n) with distances less than a distance
r. In this case, if for significantly small r, we find that

N(r, n) o r, (2)

then the scaling exponent d, is the correlation dimen-
sion of the attractor for that ». Since the dimension of
the underlying attractor is not known, we test Eq. (2)
for increasing values of # and check for a saturation
value D,, which will be an estimation of the correlation
dimension of the attractor. For more details on the
aforementioned procedures and the applications re-
lated to weather and climate, see the review articles by
Tsonis and Elsner (1989, 1990).

This brief report will discuss three important issues
pertaining to the applications of the aforementioned
procedures: 1) the choice of 7, 2) how many points.are
enough, and 3) what do the results mean?
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2. The choice of 7

When we reconstruct the attractor by producing a
cloud of points at a given embedding dimension, those
points should be independent of each other. Otherwise
x(t + 7) =~ x(t) and the points tend to fall on the
diagonal. As a result the estimation of the correlation
dimension may be biased (typically underestimated ).
Therefore, 7 must be chosen so as to result in points
that are not correlated to previously generated points.
Thus, a first choice of 7 should be in terms of the de-
correlation time of the time series under investigation.
The question now arises: How do we define the de-
correlation time? A straightforward procedure is to
consider the decorrelation time equal to the lag at which
the autocorrelation function for the first time attains
the value of zero. Other approaches consider the lag at
which the autocorrelation function attains a certain
value like 1/e, 0.5 (Schuster 1988), or 0.1 (Tsonis and
Elsner 1988). Another suggestion for the choice is to
take 7 equal to 7/ n where T is the dominant periodicity
(as revealed by Fourier analysis) and 7 is the embed-
ding dimension. In this way 7 gives some measure of
statistical independence of the data average over an
orbit and it is an appropriate approach if the autocor-
relation function is periodic. As it was pointed out,
however, by Frazer and Swinney (1986) the autocor-
relation function measures the linear dependence
among successive points and may not be appropriate
when we are dealing with nonlinear dynamics. They
argue that what should be used as 7 is the local mini-
mum of the mutual information that measures the
general dependence among successive points. Evi-
dently, no one of the aforementioned rules has emerged
as the undisputed rule for choosing 7, but the mutual
information approach appears to have the edge. Nev-
ertheless, a very reassuring practice is experimenting
with various 7’s (while repeating the aforementioned
constraints) in order to address possible effects of the
choice of . Note that in most (if not all) of the studies
reporting on low-dimensional attractors in weather and
climate, care has been taken to address the choice of
7. Commonly, the delay parameter has been derived
by means of the autocorrelation function.

3. How many points?

Figure 1 shows the correlation dimension d> as a
function of the embedding dimension » for data rep-
resenting the pulse of rainfall [a time series of the time
At (s) between successive raingage signals each corre-
sponding to the collection of 0.01 mm of rain]. Here
the calculation of d, at higher embedding dimensions
is not achieved by shifting successively one time series
by a delay parameter but by introducing a new event

of size 2200 (i.e., an independent time series of the

same meteorological convective character) every time
we increase the embedding dimension. Thus, the ob-
served points in an n-dimensional point are indepen-
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FI1G. 1. Correlation dimension d, versus embedding dimension n
(a) for data representing pulse of storm rainfall (points) and (b) a
random sample (crosses).

dent and the need of defining a suitable 7 is overcome.
Keeping this example in mind, what follows is an in-
depth discussion on some facts concerning the correct
application and limitations of the Grassberger-Pro-
caccia algorithm.

For a finite dataset one can argue that there is a
distance (or radius) r below which there are no pairs
of points (depopulation). At the other extreme, when
the radius approaches the diameter of the cloud of
points, the number of pairs will increase no further as
the radius increases (saturation). The scaling region
would always be found somewhere between depopu-
lation and saturation. As it has been pointed out by
Essex et al. (1987) and Tsonis and Elsner (1990) the
scaling region may be completely masked if the number
of points N(r, n) is not sufficiently large or when the
embedding dimension is increased beyond a critical
embedding dimension #n.. This unavoidably brings us
to the following question: What is the necessary num-
ber of points N for a given embedding dimension?

This problem can be approached by assuming that
in all embedding dimensions # less than the dimension
of the object in question, the object is space filling like
uniformly distributed random numbers in the interval
[0, 1]. The painful exercise of determining the mini-
mum number of points was first tackled by Smith
(1988), who concluded that this number is equal to
42™, where m is the smallest integer above the dimen-
sion of the object, which under the aforementioned
assumption is the dimension in which the random
numbers are embedded in. Thus, for m = 4, if Nis not
at least equal to 3 111 696 no accurate estimate of d,
can be obtained. Such a restrictive figure put in doubt
all the reports claiming low-dimensional attractors
since none of these reports used such great numbers
of data points. In fact, Smith’s result effectively “killed”
all hopes for estimating the dimension of low-dimen-
sional attractors irrespective of the availability of data,
since even supercomputers could not handle such vast
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samples. But accurate estimates for 1 = 4 can be ob-
tained with as little as 5,000 points (see Tsonis and
Elsner 1990). This number is significantly lower than
3111 696. Why this great discrepancy? The only ex-
planation is that the 42 conclusion is in error. In fact,
it has been recently demonstrated (Nerenberg and

Essex 1990) that Smith’s procedure to obtain the 42 -

estimate is flawed and that the data requirements are
not as nearly as extreme. In fact, the minimum number
of points Ny, required to produce no more than an
error A (typically 4 = 0.05n) is

N = V2[T(n/2 + 1)]'72

min T (4 Ink) D72
20k — DT(n+4/2) 7" n + 2
[T(1/2)°T(n + 3/2) 2

(3)

where 7 is the embedding dimension, and I'(x) is the
gamma function. The parameter k indicates how wide
the scaling interval is. Recall that 4, is estimated via a
relation d, = [InC(#') — InC(r)]/[In(r") — In(r)]. The
parameter k is then defined as k = r'/r. For a faster
use for A = 0.05x (or in other words for a 95% confi-
dence) and for k = 4 the Eq. (3) can be approximated
for n < 20 by

Nin o 10(2+04m)

(4

Thus, for 7 = 4, Ny, ~ 103 ~ 4000 points as men-
tioned above.

The aforementioned discussion unavoidably brings
us to the next very important point. Because of the
underlying assumptions all the theoretical calculations
and derivations of the necessary number of points as
a function of embedding dimension presented up to
this point are valid only as long as the embedding di-
mension 7 is less than correlation dimension D,. In
addition, it is quite possible that estimates of the num-
ber of points would depend on the type of the attractor
(nonuniform, fractal); an issue that has not yet been
addressed in those calculations. Recently, Lorenz
(1991) considered a three-variable chaotic system and
produced a model by taking seven linearly coupled
copies of that system. The model is described by 21
equations and for a choice of the coupling cocfhicient
its dimension is equal to 17. Lorenz applied the Grass-
berger-Procaccia algorithm using 4000 values of a se-
lected variable from the model. He found that if N is
not too large then the algorithm underestimates the
dimension. However, 1) different variables can yield
different estimates, and 2) suitably selected variables
can some times yield a fairly good estimate. Such a
variable is one that is strongly coupled with the rest of
the variables of the model. If this result holds for all
chaotic systems then it is not the sample size we should
worry about but the choice of the observable!

Over and above these important issues, it is not
known at this point whether or not (and especially for
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fractal sets) the need for data increases at the same rate
with embedding dimension when n > D,. Experimen-
tation with known dynamical systems indicates that in
this case even though the need for data may increase
it may not be as severe as it is predicted by the afore-
mentioned formulas! For example, Fig. 2 shows slope
versus logr plots of a sample of size 2000 for an ob-
servable from the Hénon map for embedding dimen-
sions 2, 3,4, 5,6, 7, and 8. We observe that for n = 2,
d, = 1.25 (which the Hausdorff-Besicovitch dimension
of the Hénon map). Subsequently, we observe that up
to embedding dimension 8, fairly accurate estimates
of the correlation dimension can be obtained. In fact,
we do not observe too much fluctuation or an under-
estimation of @, with increasing embedding dimension.
Similar results are obtained for other dynamical sys-
tems like the logistic map and the Lorenz system. The
data used to produce Fig. 1 tell a similar story, but the
slope versus logr curves exhibit more scatter due the
presence of noise in real world data. Of course, even-
tually (i.e., for n > D,) fluctuations may mask any
scaling region. These results provide some evidence
that for fractal sets the need for data may increase at
a much slower rate for embedding dimensions higher
than the correlation dimension of the attractor. We
should point out, however, that such a conclusion may
not be valid for every dynamical system or dataset. Do
we, therefore, in cases where saturation is observed
at an embedding dimension n; > D,, neced N
~ 103041 points or just N ~ 10@+04Dd points
(again provided that #, is not much higher than D;)?
If we assume that N ~ 10+04P2 data points are re-
quired (see also Nerenberg and Essex 1990), we find
from Fig. 3 that many of the studies reporting on low-
dimensional attractors in weather and climate come
very close to satisfying the requirements (and may
come even closer if we fix our accuracy to 0.10» instead
of 0.05#r).

4. What does a finite dimension mean?

Coming back to Fig. 1, we may now present the
results obtained if a random sample of the size 2200
is used in the calculations. These results are indicated
by crosses and clearly show that there is a great differ-
ence between the random sample and the rainfall data.
Which brings us to the final point we would like to
discuss. The results in Fig. 1 simply indicate that the
rainfall data are different than a sequence of random
numbers. Random samples are simulated so that they
have similar statistical properties (such as probability
distribution, spectra, etc.) with the actual data and are
often referred to as surrogate data. Do the results in
Fig. | alone provide strong evidence that there is an
underlying attractor in the rainfall data?

The importance of this question lies in the fact that
given a strange attractor, a finite correlation dimension
follows, whereas the opposite statement may not be
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FIG. 3. The solid curve is the function expressed by Eq. (3). The other symbols depict number
of points used, and attractor dimensions reported by various investigators. Everything close or
above the solid line can be considered as convincing evidence regarding the existence of low-
dimensional attractors in weather and climate. Note that the solid line represents the needed

number of points assuming that n = D,.

true. As many will argue there is no theorem that says
given a finite correlation dimension an associated sys-
tem has a strange attractor! To complicate things,
counter examples of certain Hamiltonian, or random
systems yielding finite correlation dimensions, or both
have been presented.

Benettin et al. (1986), Osborne and Caponio (1990),
Chernikov et al. (1989), Bishop and Lomdahl (1986),
Bishop et al. (1986), and others have presented ex-
amples of Hamiltonian systems having a small finite
correlation dimension. As we know, Hamiltonian sys-
tems cannot have an attractor.

In addition, Osborne et al. (1986) and Osborne and
Provenzale (1989) have argued that a certain class of
random sequences would exhibit a finite correlation
dimension. This class of random sequences includes
self-affine sequences that exhibit a power law spectra
of the form P(f;) = Cf x?for 1 < a < 3 and are com-
monly referred to as fractional Brownian motions
(fBms) or colored noise. In this case the trail of n-
independent realizations (each one representing one
phase space dimension) is self-similar with a theoret-
ically predicted fractal dimension equal to 2/(a — 1).
When the Grassberger-Procaccia algorithm is applied
to trails or to trajectories reconstructed from a single
sequence via the method of delays, a finite correlation
dimension (close to the fractal dimension of the trail )
is obtained. Thus they suggested that a finite value for
the correlation dimension cannot be indicative of a
dynamical system with a finite number of degrees of
freedom. It can only indicate a lower bound for the
actual number of degrees of freedom, which might be
infinite! For the first time it was shown that the algo-

rithm could not differentiate between chaos and this
type of noise (colored noise).

As it turns out, however, the observation of Osborne
and Provenzale may have no relevance to the practical
estimation of dimensions from time series. We must
note that the concept of fractal dimension can be ap-
plied to time series in two distinct ways. The first is to
indicate the number of degrees of freedom in the un-
derlying dynamical system. The second is to quantify
the self-similarity of the trajectory in phase space. The
Grassberger—Procaccia algorithm yields the first one.
It does not really provide an estimate of the self-sim-
ilarity of the trajectory. For example, applying the al-
gorithm to an observable from the Lorenz system re-
sults in a dimension of about 2.07. This value has
nothing to do with the self-similarity of the Lorenz
trajectory (which by the way is not self-similar). Theiler
(1991) attacked this issue in an analytical way and
proved that Osborne and Provenzale’s anomalous
scaling C(r, n) oc r*®~Y would not have been observed
had they used the required number of points (which
in the case of fBms is very large due to their very long
correlations) or if they had evaluated the correlation
integral for smaller r’s. Instead, the scaling C(r, n)
oc r" would have been observed.

The aforementioned developments raise several
questions as far as the application of the algorithm is
concerned. Can the algorithm really be “fooled” or is
it simply not properly applied? Most importantly, what
are Hamiltonian systems, or fBms, or both good for
in the interpretation of data like those sampled from
physical systems? Hamiltonian systems in nature are
at best rare and fBms are nonstationary processes. For



2554

fBms the autocorrelation function C({) oc {'7¢ for
N — oo. Therefore, C({) never reaches the value of
zero. Thus, no pairs are really independent. In addition
for finite N the decorrelation time is a function of N.
Because of their properties, Mandelbrot (1983) re-
marked that fBms are not effective candidates for
modeling natural processes. If any natural process were
an fBm, it would have by now grown enough to destroy
nature. Therefore, by definition natural processes are
not fBms and cannot exhibit 1/f* spectra. The argu-
ment that some data might, during a finite time, mimic
an fBm can be dealt with by simply testing the data
for stationarity or by looking at the autocorrelation
function for various lengths of the record or by making
sure that the dataset is longer than the length of a dom-
inant period or by nonlinear prediction (Tsonis and
Elsner 1992).

5. Conclusions

This work was designed to address some of the cur-
rent issues in estimating correlation dimensions. We
have explained some ways according to which the al-
gorithm might be working and at the same time we
have demonstrated the existence of certain weaknesses,
which make it (and other similar methods) somewhat
more qualitative thus often requiring subjective judg-
ment about where an attractor of a given dimension
exists. In fact, both Grassberger (1986) and Ruelle
(1990) in their critique of work reporting on low-di-
mensional attractors were not fully aware of issues dis-
cussed here, such as the critical embedding dimension
(see also Essex and Nerenberg 1991). Consequently,
we showed that several studies reporting on attractors
in weather and climate might have used enough points.

There are several possibilities here. In weather and
climate we deal with coarse data in which small-scale
processes are absent to begin with. These large-scale
coarse data are likely to obey to a closed dynamics,
which need not appeal to the small-scale processes.
Many of the attractors deduced in geophysics are likely
to be of this kind. For one thing, owing to the sampling
time, they discard fully developed turbulence, which
certainly corresponds to a highly dimensional attractor.
In his latest work Lorenz (1991) showed that many of
the reported dimensions might be significantly lower
than the actual dimensions if not enough points were
used. On the other hand, he showed that the number
of points need not be very large if the right variable is
considered. Lorenz also demonstrated that if NV is small,
the estimated dimension using a weakly coupled vari-
able from the 21-equation model ought to resemble
the estimate using a variable of a original three-variable
system. Consequently, real-data studies reporting on
low-dimensional attractors may not be altogether
meaningless; they just need to be reinterpreted. Lorenz
states that, as Tsonis and Elsner (1989 ) suggested, the
atmosphere might be viewed as loosely coupled sub-
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systems. In this case these studies attempt to measure
the dimension of a subsystem.

During our evaluation we have established that due
to existing algorithm weaknesses all results present just
evidence rather than proof of existence. Recall that the
first work reporting on a low-dimensional climatic at-
tractor (Nicolis and Nicolis 1984) had a question mark
on its title!

We conclude that evidence for low-dimensional at-
tractors should be “fortified” by additional evidence
such as Lyapunov exponents, model simulations, and
nonlinear forecasting. The latter especially may provide
the best test of underlying determinism (Tsonis and
Elsner 1992). As stated in Sugihara and May (1990)
“prediction, is after all the sine qua non of determin-
ism.” Even though research in this area is in an early

" stage, preliminary results (Elsner and Tsonis 1992)

have reported that nonlinear prediction using climatic
records similar to those used in Nicolis and Nicolis
(1984) supports previous conclusions about the exis-
tence of attractors in climate.
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