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Abstract 

The possibility of changes in the dynamical behavior of our climate system as the global temperature fluctuates is investigated 
by considering the large climate variation of the Pacific ocean-atmosphere system associated with Southern Oscillation Index 
(SOI) and modem methods of time series analysis. First the nonlinear structure of SO1 is probed by estimating local Lyapunov 
exponents. We obtain the sum of all positive Lyapunov exponents (Kolmogorov entropy) as a function of time for the period 
between June 1882 and May 1987. We then demonstrate that this time series and global temperature records are coherent 
over the Nyquist frequency band from 0.0 to 0.25 cycles/year thus establishing linear relationship between many of their 
oscillatory components. Since the inverse of the Kolmogorov entropy is a measure of predictability this result indicates that 
global temperature may affect predictability with higher temperatures corresponding to lower predictability. We discuss how 
this result may eventually lead to the development of strategies for improved long-term predictions. 

1. Introduction 

Fluctuations (natural or induced) of the global 

temperature can affect many of the outputs of the 

climate system such as precipitation, sea level, veg- 

etation, ecosystems, etc. Because of the enormous 

significance of those outputs a major effort in deter- 

mining the extent of such changes and their effects 

has been undertaken in the past fifteen years or so. 

Changes, however, in the outputs of the climate sys- 

tem reflect changes in the dynamics of the system. 

Thus, changes in the dynamical behavior of the cli- 

mate system as the global temperature fluctuates 

can provide useful insights and reveal fundamental 

properties of the system. 

* Corresponding author. 

We chose to approach this problem by investigat- 

ing how global temperature affects the predictability 

of the climate system. Toward this end we need to 

consider a strong signal of our climate system with 

demonstrated nonlinear structure. A good candidate is 

the SO1 (Southern Oscillation Index) record. The com- 

plex nonlinear character of SO1 has been investigated 

and documented over the last decade from several em- 

pirical studies [l-4]. One of the basic understandings 

from these and other studies is that SO1 represents 

an output from a low-order chaotic dynamical system 

with a dimension as low as about 5 and a mean or- 

bital period of about five years. Because of the estab- 

lished nonlinear character of SO1 and its connection 

to global dynamics it presents an excellent candidate 

to empirically investigate the relation between pre- 

dictability and global temperature. Note that often SO1 
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Fig. 1. Time series of the normalized monthly mean sea-level 
pressure difference between Tahiti and Darwin. The record re- 
veals aperiodic fluctuations in the atmospheric Walker circula- 
tion over the tropical Pacific Ocean and is typically referred to 
as the Southern Oscillation Index (SOI). The record runs from 
January 1882 to January 1995 for a total of 1357 values. 

is considered a characteristic of the El Nifio/Southem 
Oscillation (ENSO) state. However, a direct connec- 
tion between SO1 and ENS0 dynamics [5-l l] should 
be made with caution as SO1 possibly includes other 
dynamics as well. 

Dynamically speaking predictability is equal to the 
inverse of the Kolmogorov entropy (K) which is equal 
to the sum of all the positive Lyapunov exponents. 
Here we assess predictability by probing the local 
structure of the attractor along the trajectory gener- 
ated by the SO1 record (Fig. 1). Our analysis is based 
on procedures that estimate local Lyapunov exponents 
along a trajectory on the attractor [ 12,131. The local 
Lyapunov exponents govern the local (over a finite 
time) growth or decay of small perturbations to orbits 
of a dynamical system. They are closely connected to 
the intricacies of the structure of the corresponding at- 
tractor and are critical to assessing the predictability 
of the system. 

2. Data analysis and results 

We assumed a time delay t = 1 and embedded the 
data in a six-dimensional space. This dimension is of- 
ten referred to as the global embedding dimension, dE. 

A delay oft = 1 corresponds to lag 1 autocorrelation, 
p(1). For SO1 p(l) - 0.5. This is close to l/e a value 
often used as the decorrelation time. Other choices of 
t between 2 and 12 did not affect the results. Deter- 
mination of the embedding dimension was guided by 
previous results [ 1,8] and from nonlinear prediction 
[ 14,151. Nonlinear prediction computes the correlation 
coefficient, r(t), between the actual and predicted val- 
ues as a function of the prediction time, t. As is sug- 
gested by Sugihara and May [15] an effective way to 
determine the proper embedding dimension is to com- 
pute r( 1) as a function of the embedding dimension 
and find at which embedding dimension r (1) is maxi- 
mized. In our case r( 1) was maximum at dE = 6. This 
result is consistent with recent results that established 
nonlinear structure in the SO1 [3,4]. Such an embed- 
ding results in n = 1352 points with the first point, 
y(l), having coordinates consisting of the first six val- 
ues of the SO1 record and the 1352nd point, y(1352), 
having coordinates consisting of the last six values of 
the SO1 record. We thus have a trajectory that is the 
sequence of points y(l), y(2), . . . , ~(1352) which we 
presume to be governed by y(i + 1) = F(y(i)) where 
F is some mapping that takes y(i) to y(i + 1). For 
a given point in our six-dimensional space the local 
Lyapunov exponents are estimated from the eigenval- 
ues of the Jacobian of small deviations about the point 
(a small neighborhood). To evaluate the Jacobians we 
used linear neighborhood maps and a local embed- 
ding dimension [ 131, dL, of six. The number of for- 
ward iterates of the 6 x 6 Jacobian was determined by 
the decomposition length, L, which was taken to be 
equal to 72. From all available points y(i), i = 1, n 

we were, therefore, able to obtain time series for six 
local Lyapunov exponents hj (i), i = 1, m, j = 1,6. 
Due to the choice of dE = 6 and L = 72 we estimated 
the local Lyapunov exponents for points y( 1) (which 
in the time domain would correspond to June 1882) 
to ~(1260) (which would correspond to May 1987). 
Thus, m = 1260. 

For SO1 we find that there exist two positive expo- 
nents (indicating expansion along two directions) one 
zero exponent (corresponding to the slowly chang- 
ing magnitude of the principal axis tangent to the 
flow) and three negative (indicating contraction along 
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the remaining directions). The sum of the positive 

Lyapunov exponents is an estimate of the metric 

(Kolmogorov) entropy, K, and is related to the ge- 

ometry of the underlying dynamics. The inverse of 

K is a measure of the predictability of the system. 

For the two positive Lyapunov exponents we obtain 

that (ht) = (l/m) CA,(i) = 0.273 (months-‘) and 

(h2) = 0.130 (months-‘). The fact that the two av- 

erage values are comparable suggests that chaotic 

dynamics in SO1 arise from the interference of two 

mechanism of instability of comparable importance. 

The sum h I+ h2 ranges from a minimum of about 0.3 

to a maximum of about 0.5 with (At + h2) = 0.403 

(months-‘). These values put the limits of predictabil- 

ity ([At + A2]-‘) of the underlying dynamics in SOI 

(not necessarily of ENS0 whose predictability limits 

are higher) between 2 and 3.3 months. Fig. 2 shows 

ht + h2 (or K) for points y(1) to ~(1260) (i.e. from 

June 1882 to May 1987). We will denote this function 

as f~(i), i = 1, 1260. 

The next step is to show that the above results are 

statistically significant and that most likely they are 

due to nonlinear structure in the SO1 record. Toward 

this end we compared the SO1 results with results 

from surrogate data. The surrogate data [ 16,171 were 

produced by computing the Fourier transform of the 

raw data (SOI), then multiplying each complex am- 

plitude by e’@ where 4 is a random variable in the in- 

rear 

Fig. 2. The sum of the positive Lyapunov exponents (month-‘) 
along the trajectory (or as a function of time) generated by 
the SO1 record. The inverse of this sum is a measure of the 
predictability of the system (see text for details). 

terval [O, 2n] and then take the inverse Fourier trans- 

form. Note that according to such a procedure the null 

hypothesis is that the data come from a linear gaus- 

sian process. The resulting random records have the 

same mean, variance and frequency distribution as the 

raw data. Unlike, however, surrogate data produced 

by shuffling the raw data, such surrogates preserve the 

autocorrelation structure of the raw data but not the 

dynamics. We generated one hundred surrogate SO1 

records (each of length 1357 values) and then we de- 

rived their f~(i), i = 1, 1260 functions. For each of 

these functions we calculated (K) and then derived 

the probability distribution of (K) which is shown in 

Fig. 3(a). Note that in the case of the surrogates it is 

not rare that more than two positive Lyapunov expo- 

nents would exist. Here K is the sum of all positive 

exponents not just the sum of the two largest expo- 

nents. The mean and standard deviation of this dis- 

tribution are 0.434 and 0.0258. From this figure we 

find that the probability that (K) will take on a value 

less or equal than 0.403 (i.e the SO1 mean value) is 

0.08 (eight surrogate records resulted in a value (K) 5 

0.403). This provides an estimate of 92% for the con- 

fidence level (one-sided test at which the null hypoth- 

esis that the SO1 mean value is equal to the surrogates 

mean value is rejected. In order to make our case even 

stronger we performed additional tests. Specifically, 

we performed Fourier analysis on the f~(i), i = 1, 

1260 functions of SO1 and its surrogates. Statistically 

significant peaks form such functions will indicate 

mean orbital periods. For SO1 the analysis indicates 

the presence of rather weak peaks at several frequen- 

cies (bold line in Fig. 3(b)). Next we considered the 

spectral density functions of all the surrogates and ob- 

tained at each frequency a distribution for the spectral 

density. The thin lines in Fig. 3(b) show the 10 and 90 

percentiles of these distributions. From this figure it 

appears that the most significant of those peaks (signif- 

icance level > 90%) is centered at a frequency of about 

0.015 cycles/month. This indicates a mean orbital pe- 

riod in SO1 of 5-6 years which is what one would 

expect. The recovery of this result provides additional 

confidence that the results in Fig. 2 are not consistent 

with linear gaussian noise and that most likely are due 

to nonlinear structure and dynamics in the SO1 record. 
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Fig. 3. Surrogate data analysis: (a) For each surrogate record we calculated (K) and then derived the probability distribution of (K) 
which is shown here. The brackets indicate averages. From this figure we find that the probability that (K) will take on a value less 
or equal than 0.403 (i.e. the SOI mean value) is approximately 0.08 (eight surrogate records resulted in a value (K) 5 0.403). This 
provides an estimate of 92% for the confidence level at which the null hypothesis that the SO1 mean value is equal to the surrogates 
mean value is rejected. (b) The bold line is the spectral density function of fK for SOI. By considering the spectral density functions 
of all the surrogates we obtain at each frequency a distribution for the spectral density, The thin lines in Fig. 3(b) show the 10 
and 90 percentiles of these distributions. From this figure it appears that the most significant peak (confidence level of - 90%) is 
centered at a frequency of about 0.015 cycle/month. This indicates a mean orbital period in SOI of five to six years which is what 
one would expect. 

Employing other procedures for surrogate data gener- 

ation that extended the null hypothesis to consider the 

possibility of monotonic nonlinear transformation of 

a linear gaussian noise [16,17] did not alter the above 

conclusion. Note that nonlinear structure in the SO1 

record has also been suggested from nonlinear predic- 

tion on the SO1 and its surrogates [3,4]. 

A careful examination of Fig. 2 reveals striking sim- 

ilarities with global temperature records [ 18-211 as it 

exhibits an overall positive trend with the following 

features: a decrease up to about 1905, a steady increase 

up to about 1940, a subsequent decrease up to about 

1970 and a rise afterwards. Such features can be identi- 

fied in almost all global temperature records as for ex- 

ample in the global marine air temperature record [21] 

(Fig. 4). These two records correlate highly but this 

could be due to the presence of the overall slight pos- 

itive trends. If, however, it is found that the detrended 

series are coherent over a band of frequencies, then 

it is more likely that the two time series are related. 

Coherence [22] is a measure of the linear correlation 

between two time series over a given frequency band 

when the phase difference is set to zero. Statistically 
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Fig. 4. The global marine air temperature record. Comparison 
with Fig. 2 reveals striking similarities between the two signals. 
Both series have an overall slight positive trend and segments 
of similar tendencies. 

significant coherence over a frequency band indicates 

linear relationship between the corresponding oscil- 

latory components. In addition, phase estimates can 

provide temporal (lead/lag) relationships between the 

two variables. Thus, coherence estimates and phase 
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Fig. 5. (a) Magnitude-squared coherence between the signals in 
Fig. 2 and 4 transformed by tanh-‘. On this scale the values 
are gaussian with unit standard deviation. The 80% and 90% 
confidence levels of this distribution are shown by the parallel 
broken lines. The bars show one standard deviation of the trans- 
formed coherence values as determined by jack-knifing over 
windows [24] for selected frequencies. (b) Phase of coherence 
between the two signals. The absence of any significant trends 
indicate no lead/lag relationships. The graphs are not extended 
to higher frequencies because the coherence remains almost 
zero everywhere. 

relationships can provide useful insights about physi- 

cal relationships. 

Fig. 5(a) shows the multiple-window [23,24] 

magnitude-squared coherence of the detrended time 

series transformed by tanh-‘. As a compromise be- 

tween statistical reliability and resolution we adapted 

a bandwidth of 0.16 cycles/year which results in 16 

Slepian sequences (0.16 x T) where T = 105 is the 

length of the series in years). On such a scale coher- 

ence estimates are roughly gaussian with unit standard 

deviation [23]. As a consequence, the statistical sig- 

nificance of the coherence between the two series can 

be made directly. The 80% and 90% confidence levels 

of this distribution are shown as the two horizontal 

lines. Remarkably the two signals have a coherence 

much above the 90% confidence level at frequencies 

(0.25 cycles/year (i.e. for time scales greater than 

about four years). Thus, the residuals of the two se- 

ries are coherent with high confidence over the above 

low-frequency band. At higher frequencies apparently 

other unknown factors inhibit high coherence. Phase 

estimates (Fig. 5(b)) show no positive or negative 

trend suggesting no lead/lag relationships between 

the two signals. We can thus conclude that warmer 

temperatures correspond to higher K values or to 

lower predictability. Similar conclusions are drawn 

when other global temperature records [18,20] are 

considered. Therefore, there is significant evidence 

that global temperature and Kolmogorov entropy, K, 

are linearly related at all frequencies lower than 0.25 

cycles/year. Thus, as the temperature of the planet 

increases predictability (1 /K) of the climate system 

decreases. Note that recent studies have raised the 

question as to what happens to entities like ENS0 

under climate change scenarios [25], but they have 

concentrated on parameters such as the amplitude of 

its cycle. Our work deals with the more fundamental 

question of whether or not predictability regulators 

exist in the climate system. 

3. Conclusions 

Dynamically speaking we may view global temper- 

ature as a controlling factor (input) whose changes 

modify the dynamics and thus the character of the sys- 

tem, a view consistent with the theory of connected 

dynamical subsystems [26]. Physically, it is possible 

that poor predictive skill is due to increased variability 

of the system. As has been suggested by model sim- 

ulations [27,28] higher temperature may result in in- 

tensification of the extremes of the hydrological cycle, 

in enhanced convective activity and other changes that 
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can alter the spatial variability of the system and thus 
its predictability (yet another pitfall of global warm- 
ing). On the brighter side our result offers the sug- 
gestion that better long-term predictions (on scales of 
several years to decades) may be anticipated if those 
predictions are made during the cooler phases of our 
climate system. As such, and especially if other fac- 
tors that relate to predictability can be found, exten- 
sion of the type of analysis presented here may lead 
to strategies for better long-term predictions. Research 
in this area is in progress and results will be reported 
later elsewhere. 

Acknowledgements 

This work has been supported by NSF grants ATM- 
9310959 to A.A. Tsonis and ATM-9310715 to J.B. 
Elsner. 

References 

[l] A. Hense, Beitr. Phys. Atmosph. 60 (1987) 34-47. 
[2] S.T. Bauer and M.B. Brown, Geophys. Res. Lett. 19 (1992) 

2055-2058. 
[3] A.A. Tsonis and J.B. Elsner, Nature 35 (1992) 217-220. 
[4] J.B. Elsner and A.A. Tsonis, Geophys. Res. Lett. 20 (1993) 

213-216. 
[S] G.K. Vallis, Science 232 (1986) 243-245. 
[6] P. Chang, B. Wang, T. Li and L. Ji, Geophys. Res. Lett. 

21 (1994) 2817-2821. 
(71 F.-F. Jin, J.D. Neelin and M. Ghill, Science 264 (1994) 

70-72. 

[8] E. Tziperman, L. Stone, M.A. Cane and H. Jarosh, Science 
264 (1994) 72-74. 

[9] M.A. Cane and S.E. Zebiak, Science 228 (1985) 1085- 
1089. 

[IO] S.E. Zebiak and M.A. Cane, Mon. Weather Rev. 115 (1987) 
2262-228 1. 

[ 1 l] S.G.H. Philander, El Niiio, La Nina and the Southern 
Oscillation (Academic Press, San Diego, 1990). 

[ 121 H.D.I. Abarbanel, R. Brown and M.B. Kennel, Int. J. Mod. 
Phys. 5 (1991) 1347-1375. 

[13] R. Brown, P. Bryant and H.D.I. Abarbanel, Phys. Rev. A 
43 (1991) 2787-2806. 

(141 J.D. Farmer and J.J. Sidorowich, Phys. Rev. Lett. 59 (1987) 
845-848. 

[15] G. Sugihara and R.M. May, Nature 344 (1990) 734- 
741. 

[I61 J. Theiler, S. Eubank, A. Longtin, B. Galdrikian and J.D. 
Farmer, Physica D 58 (1992) 77-94. 

[I71 L.A. Smith, Physica D 58 (1992) 50-76. 
[18] J.E. Hansen and S. Lebedeff, J. Geophys. Res. 92 (1987) 

13 345-13 372. 
[19] P.D. Jones, T.M.L. Wigley and P.B. Wright, Nature 322 

(1986) 430-434. 
[20] C.K. Folland, T.R. Karl and K.Ya. Vinnicov, Climate 

Change. The IPCC Scientific Assessment, eds. J.T. 
Houghton, G.J. Jenkins and J.J. Ephramus (Cambridge 
University Press, Cambridge, 1990). 

[21] N.E. Newell et al., Geophys. Res. Lett. 16 (1989) 
311-314. 

1221 M.B. Priestley, Spectral Analysis and Time Series 
(Academic Press, New York, 1981). 

[23] D.J. Thomson, Proc. IEEE 70 (1982) 105551096. 
[24] S. Kuo, C. Lindberg and D.J. Thomson, Nature 343 (1990) 

709-7 14. 
[25] D. Gu and S.G.H. Philander, J. Climate 8 (1995) 864-876. 
[26] A.A. Tsonis, Complexity 1 (1996) 23-33. 
[27] J. Hansen et al., Proc. 2nd North American Conf. 

on Preparing for Climate Change (Climate Institute, 
Washington, 1988). 

[28] K.A. Emanuel, Nature 326 (1987) 483-485. 


