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ABSTRACT

Of broad scientific and public interest is the reliability of global climate models (GCMs) to simulate future
regional and local tropical cyclone (TC) occurrences. Atmospheric GCMs are now able to generate vortices
resembling actual TCs, but questions remain about their fidelity to observed TCs.Here the authors demonstrate
a spatial lattice approach for comparing actual with simulated TC occurrences regionally using observed TCs
from the International Best Track Archive for Climate Stewardship (IBTrACS) dataset and GCM-generated
TCs from the Geophysical Fluid Dynamics Laboratory (GFDL) High Resolution Atmospheric Model
(HiRAM) and Florida State University (FSU) Center for Ocean–Atmospheric Prediction Studies (COAPS)
model over the common period 1982–2008. Results show that the spatial distribution of TCs generated by the
GFDLmodel compares well with observations globally, although there are areas of over- and underprediction,
particularly in parts of the PacificOcean. Differencemaps using the spatial lattice highlight these discrepancies.
Additionally, comparisons focusing on theNorthAtlanticOcean basin aremade. Results confirma large area of
overprediction by the FSU COAPS model in the south-central portion of the basin. Relevant to projections of
future U.S. hurricane activity is the fact that both models underpredict TC activity in the Gulf of Mexico.

1. Introduction

Following recent improvements in model resolution
and physics, global climate models (GCMs) are now be-
ing employed to study how tropical cyclone (TC) fre-
quency and intensitymight change in the future (e.g., Sugi
et al. 2002; Knutson and Tuleya 2004; Bengtsson et al.
2007; Gualdi et al. 2008; Knutson et al. 2008; Zhao et al.
2009; Bender et al. 2010; Knutson et al. 2010). TCs can
be costly events in terms of loss of life and property.
Therefore it is important to understand how these storms
may be affected by a warmer climate. GCMs have the
potential to be valuable tools in this area of research, but
before they can be used with confidence to predict fu-
ture TC attributes, it is necessary to understand how

well they represent historical TCs. Specifically, how well
do model-generated TCs match observed TCs with re-
spect to intensity, frequency, and spatial distribution?
After earlier attempts at resolving TC-like vortices

in coarse-resolution GCMs (e.g., Manabe et al. 1970;
Haarsma et al. 1993; Bengtsson et al. 1995), enhanced
computing capabilities and physical parameterizations
have resulted in better representations of tropical cy-
clones in models (e.g., Vitart et al. 1993; Sugi et al. 2002;
Oouchi et al. 2006; Bengtsson et al. 2007; Walsh et al.
2007; LaRow et al. 2008; Zhao et al. 2009). Although
these finer-resolution GCMs have been able to gener-
ate warm core vortices that resemble TCs, the resolution
and physics still fall short in some respects. Most notably,
the modeled systems are still unable to attain intensities
of observed TCs (e.g., Emanuel et al. 2008; LaRow et al.
2008; Zhao and Held 2010). In fact, Chen et al. (2007)
used mesoscale models to demonstrate that a grid spac-
ing of ;1km may be necessary to resolve hurricane
eyewall convection and wind maxima. Despite these
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shortcomings, recent studies reveal some promise in the
ability of GCMs to reproduce global TC statistics such as
storm counts and seasonal cycle on the basin scale (e.g.,
Camargo et al. 2005; Zhao et al. 2009). For example,
Zhao et al. (2009) ran a global climate model of 50-km
horizontal resolution over the period 1981–2005 and
found that the correlation of modeled and observed
yearly Atlantic Ocean hurricane counts was greater
than 0.8, although correlations were lower in the Pacific
and Indian Ocean basins.
As resolution and physics continue to improve and

new models are developed, intercomparison analyses
are needed to provide insight into the model strengths
and weaknesses. For example, Camargo et al. (2005)
examined genesis location, TC counts, intensity, and
storm lifetimes in a statistical analysis of TC-like vortices
in three low-resolution GCMs. They found that basin-
scale global TC statistics match the observed statistics
reasonably well, even for these lower-resolution models.
With the suite of higher-resolution models, individual
modeling groups have presented TC performance statis-
tics for their specific model (e.g., Bengtsson et al. 2007;
Gualdi et al. 2008; LaRow et al. 2008; Zhao et al. 2009).
However, there remains a need for a uniform frame-
work that can be used to compare the new suite of high-
resolution models with each other and with observations.
We present a spatial lattice framework, first introduced
for use in TC studies by Elsner et al. (2012), as a novel
approach to model intercomparisons. The model com-
parison we present demonstrates how the spatial lattice
approach may facilitate efficient spatial and statistical
comparison of model-generated TCs.
Here we employ the spatial lattice to see how well

the spatial distribution of actual TCs compares with the
distributions generated by two atmospheric GCMs:
the Florida State University (FSU) Center for Ocean–
Atmospheric Prediction Studies (COAPS) spectral
model and the Geophysical Fluid Dynamics Labora-
tory (GFDL) High-Resolution Atmospheric Model
(HiRAM). The methodology applied in this study to
compare regional cyclone occurrence between obser-
vations and model simulations can be used to compare
other models and other storm attributes such as in-
tensity and intensification rate.
The paper is organized as follows: observational and

model track data are presented in section 2, followed by
an explanation of the spatial lattice methodology in
section 3. Section 4 examines the spatial distribution of
observed and GFDLmodel TC occurrences using maps,
and section 5 quantifies the comparison using a per-
formance diagram. Section 6 compares the spatial dis-
tribution of observed and model TC occurrence over the
North Atlantic alone using both the GFDL and FSU

COAPS models. Comparisons are quantified using rela-
tive risk ratios. A summary is given in section 7.

2. Data

a. Observational data

Observational data used in this research come from the
International Best Track Archive for Climate Steward-
ship (IBTrACS; available online at http://www.ncdc.
noaa.gov/oa/ibtracs/; Knapp et al. 2010). For analysis
purposes, the 6-hourly data have been interpolated to
hourly intervals using the method outlined in Elsner and
Jagger (2013). Although IBTrACS includes more than
a century’s worth of track data, we subset the data from
the period 1982–2008. This is also the time period over
which the models were run. Furthermore, because these
data were obtained during the satellite era, the reliability
of the observations is quite high. Finally, the period of
study also includes the transition from the relatively in-
active period in the North Atlantic from 1970–94 to the
more recent active period after 1995 (e.g., Elsner et al.
2000; Goldenberg et al. 2001). Regardless of the cause,
the apparent nonstationary nature of the North Atlantic
TC climatology during this period is worth noting.

b. Model data

Model-derived track data are obtained from experi-
ments performed by the Hurricane Working Group of
theU.S. ClimateVariability and Predictability Research
Program (CLIVAR; http://www.usclivar.org/working-
groups/hurricane). We use data from two different high-
resolution atmospheric (uncoupled) GCMs. As with
the observational data, the modeled track data are pro-
vided at 6-hourly intervals and have been interpolated to
hourly intervals using the same algorithm as used for the
observations.
We first use cyclone tracks from the GFDL HiRAM,

version 2.2 (Zhao et al. 2009, 2012). Themodel data come
from a control simulation forced withmonthly prescribed
SSTs and sea ice concentrations for each simulated year
from the Hadley Centre Global Sea Ice and Sea Surface
Temperature (HadISST) dataset (Rayner et al. 2003).
The model features a 50-km horizontal resolution and
32 vertical levels. As described by Zhao et al. (2009),
TC-like vortices are detected and tracked using an al-
gorithm similar to that used by Vitart et al. (2003). The
algorithm searches for a coinciding (within 28 latitude
and longitude) relative vorticity maximum at 850 hPa,
a sea level pressure minimum, and a maximum in the
300–500-hPa averaged temperature field. The vortex
trajectories are considered TC tracks when the modeled
maximum surface winds exceed 15.2m s21 during at least
three (not necessarily consecutive) days (Zhao et al.
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2009). We use track data from three realizations of the
HiRAM, referred to here as r1, r2, and r3, which differ
only in their initial conditions. The initial conditions in
different HiRAM runs are obtained from 1 January of
different years from an earlier Atmospheric Model
Intercomparison Project (AMIP) run. For these long in-
tegrations, the initial conditions are completely irrelevant
to the solutions since we do not use the first year results.
The purpose is to generate different realizations of the
simulation.
We also use cyclone tracks from the FSU COAPS

global spectral model (Cocke and LaRow 2000; LaRow
et al. 2008). As with the GFDL HiRAM, the FSU
COAPS model is uncoupled with the ocean and is forced
with prescribed SSTs from the HadISST dataset. The
spectral model has 27 vertical levels and a T126 hori-
zontal resolution, which corresponds to roughly 0.948 of
latitude. The simulated TC tracks were obtained using
a similar algorithm. Because global track data were not
available from this model, FSU COAPS tracks are
compared with observations andHiRAM tracks for the
North Atlantic basin only. Again, we use tracks from
three model runs, r1, r2, and r3.

3. The spatial framework

First, a global comparison is implemented using track
data from observations and GFDL HiRAM. To set up
the spatial framework, we consider only those observa-
tions that meet or exceed 17m s21, which corresponds to
the 43rd percentile for the global IBTrACS dataset. We
also set a 17m s21 minimum threshold for the modeled
storms. Relative to observations, the model is unable to
produce storms with intensities greater than 50m s21

(category 3 on the Saffir–Simpson scale); however, after
the 17m s21 threshold is imposed, the average observed
wind speed exceeds the average model wind speeds by
less than 6ms21 for all model runs (seeTable 1). It should
be noted that the models are much more successful in
simulating minimum central pressure. The minimum
pressures from theGFDLHiRAM track data are 896.3,
905.4, and 897.0 hPa for runs r1, r2, and r3, respectively.
These values compare well with the observed minimum

pressure of 878.9 hPa. Therefore, another approach
might be to use minimum pressure from the model data
to infer wind speeds through some type of pressure–
wind relationship and then set the 17m s21 threshold
from the inferred wind speeds. However, because we
do not have data for the spatial extent of the modeled
storms and would introduce additional uncertainty by
using a pressure–wind relationship that does not in-
corporate storm size, we instead simply set the 17m s21

threshold using the raw wind speeds.
For the global spatial analysis, the data locations are

first projected onto a planar coordinate system using
a Mollweide projection (Snyder 1987). The Mollweide
projection is used because we want to examine global
distributions of TCs in equal areas. The cost of using an
equal-area projection is a sacrifice in the accuracy of
angles and shapes, which is significant at the borders of
the ellipse.
To establish the spatial lattice, we first define a com-

mon grid of equal area hexagons that cover the global
tropical and subtropical region to approximately 708N/S
latitude. We choose to use a hexagon lattice because
1) it does not require an areal correction as needed for
latitude–longitude grids and 2) relative to rectangles,
hexagons are more efficient at capturing the curved na-
ture of TC tracks (Elsner et al. 2012). The use of an areal
correction, which would be necessary if we instead relied
on latitude–longitude grids, would affect attribute
values within the grids. For example, for areally corrected
latitude–longitude grids, per-gridcell storm counts will
not necessarily be an integer count, thereby making
interpretation less intuitive and physical. With an equal-
area tessellation, however, counts are preserved as in-
tegers. This allows for a more natural and physically
meaningful interpretation of the results. We use hexa-
gons of area 7.3 3 105 km2 (slightly larger than the state
of Texas) with a diameter, measured from vertex to
opposite vertex, of 917 km. The selected area is suffi-
ciently small to capture regional (basin and subbasin)
variability. Once the hexagon grid is defined, we pop-
ulate it with track attribute data from the observational
and model datasets. Additional details, justification, and
applications for the spatial framework used here can be
found in Elsner et al. (2012).

4. Cyclone counts

As we are interested in comparing observed and
modeled spatial distributions of storms, we calculate
cyclone counts within each hexagon. Cyclone counts
represent the number of storms that ‘‘passed through’’
each hexagon in the spatial grid. One count is assigned
for each TC that enters a hexagon. For example, a

TABLE 1. Mean, minimum, and maximum wind speed values
(m s21) for observations and all three GFDL HiRAMmodel runs.
The last column gives minimum pressure P (hPa). Values shown
are only for data exceeding 17m s21.

Mean Min Max P Min

IBTrACS 31.18 17.00 82.76 878.9
HiRAM (r1) 25.86 17.00 50.82 896.3
HiRAM (r2) 25.44 17.00 52.03 905.4
HiRAM (r3) 26.01 17.00 52.69 897.0
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hexagon centered in the western North Pacific may con-
tain hundreds of storms for the period 1982–2008, while
a hexagon in the South Atlantic may contain no storms.
Counts are obtained by summing the number of unique
storm IDs within each hexagon. Therefore if a TC enters,
exits, and then reenters a hexagon, that TC is only
counted once within the hexagon. Figure 1 illustrates the
framework for the year 2005 in the Gulf of Mexico. We
sum the number of cyclones contained in each hexagon
and store this information in a polygon data frame for
further calculations. This procedure is carried out for
both observed and modeled data. It should be noted,
however, that the hexagons in Fig. 1 have a smaller area
of 1.6 3 105 km2 as compared with the hexagons of area
7.3 3 105 km2 used in the global analysis that follows.
Using the same spatial lattice to sum TC counts for

both observations and model, we can visually compare
them with ease. Figure 2 contains a map of cyclone
counts for (a) observations and (b) the GFDL HiRAM
(r1). Darker reds indicate areas with higher storm fre-
quencies over the 1982–2008 time period. Overall, the
maps for observations and themodel show a very similar
spatial distribution of TCs. In both maps, local maxima
in TC counts are present in the eastern and western
North Pacific basins as indicated by the darker red
hexagons. For observations, 223 out of the 363 hexagons
in the lattice have cyclone counts less than 25. Only two
hexagons have cyclone counts greater than 200. For the
model a total of seven hexagons contain TC counts
greater than 200 for HiRAM runs r1, r2, and r3. The

largest observed count is 255, while the largest model
counts are 295, 258, and 277 for realizations r1, r2, and
r3, respectively. As evident in Fig. 2, there is distortion
in the country border lines that is not present when we
display the hexagon grid. This is a presentation issue
that does not affect the actual analysis. The grid from
which the cyclone counts are calculated is properly pro-
jected, but the polygons are not distorted as the country
borders arewhenmapped. Furthermore, the grids remain
the same for observations and model, so comparison
still can be made accurately. However, caution should
be exercised when interpreting the precise locations of
country borders relative to the hexagons, particularly
on the map edges.
Although per-hexagonTC counts greater than 200may

seem high, they occur in particularly active regions of the
eastern and western North Pacific basins. The eastern
North Pacific is an especially active basin in terms of the
number of storms forming over a given unit of area (Gray
1968; Molinari et al. 2000). This is clearly illustrated by
the high-count hexagon (from observations) off of the
west coast of Mexico. The high-count hexagon in the
westernNorth Pacific occurs roughly within the monsoon
trough region, as geographically defined in Harr and

FIG. 1. Observed cyclone tracks (observations in gray) for the Gulf of
Mexico in 2005. The colors represent per-hexagon cyclone counts.

FIG. 2. Global per-hexagon cyclone counts for 1982–2008 for
(a) observations and (b) GFDL HiRAM (r1).
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Chan (2004). It is estimated that 60%–80% of western
North Pacific TCs develop within the monsoon trough
(Ritchie and Holland 1999; Harr and Chan 2004), which
may help explain the high TC counts in this area. The
highest TC count hexagons for the model are similarly
located in the eastern and western North Pacific, al-
though the largest counts in the western North Pacific
appear to be displaced slightly eastward of the observed
maximum.
To facilitate further comparison of the observed and

modeled TCs, we also create difference maps (Fig. 3).
For cyclone count hexagons, this is accomplished by
simply subtracting the per-hexagon modeled storm
counts from the per-hexagon observed storm counts.
Visually, these results agree well with Zhao et al. (2009).
Although the overall distributions of observed and
modeled TCs are similar, there is a significant area of
overprediction (more modeled than observed cyclones)
in the western North Pacific, and a small area of under-
prediction in the eastern North Pacific (fewer modeled
than observed cyclones). There is an additional area of
underprediction in the South China Sea. In all three
model runs, the areas of strongest overprediction (on the
order of 75–125 cyclones) exist in the western North Pa-
cific and in the eastern North Pacific. Interestingly, the
model also generates too many storms in the South At-
lantic, an area in which observed storms have been ex-
ceptionally rare (only one stormwas observed here in the
1982–2008 time period). Figures 2 and 3 also demonstrate
how the spatial lattice frameworkmay provide additional
insight into the range of over/underprediction across
space.

5. Metrics of spatial performance

The difference maps allow for a qualitative assessment
of model performance in terms of cyclone counts per
hexagon. We observe that there are numerous regions in
which the model overpredicts the number of TCs (e.g.,
western North Pacific), while there are other regions in
which the model underpredicts (e.g., Gulf of Mexico).
Although this is a useful way of assessing subregional
model performance in terms of cyclone counts, we are
also interested in comparing how well the observed and
modeled tracks match spatially over the entire globe.
Stated differently, we are interested in knowing whether
hexagons that cover areas with observed activity also
cover areas with modeled activity. A simple bias calcu-
lation provides some insight into this spatial matching
aspect of model performance.
To calculate the bias, we compare the set of hexagons

in which the observed cyclone count is greater than zero
with the set of hexagons in which the modeled cyclone

count is greater than zero.We then calculate the number
of hits, false positives, and false negatives from these sets
of hexagons. A hit is defined as a hexagon that contains
at least one observed and at least one modeled TC; a
false positive is defined as a hexagon that contains at
least one modeled TC but does not contain an observed
TC; and a false negative is defined as a hexagon that
contains at least one observed TC but does not contain
a modeled TC. We calculate the bias as defined in
Roebber (2009):

FIG. 3. Difference maps depicting global observed minus global
modeled per-hexagon cyclone counts for the GFDLHiRAM (a) r1,
(b) r2, and (c) r3.
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bias5
H1FP

H1FN
, (1)

whereH is the sum of the hits, FP is the sum of the false
positives, and FN is the sum of the false negatives for
a grid of hexagons populated with observed and model
data. For bias values near 1, there is no bias in the
model. In this case, the amount of area covered by
modeled tracks is the same as the amount of area
covered by observed tracks. If the bias is less than 1,
the area covered by observed tracks exceeds the area
covered by modeled tracks. The model is in a sense
underpredicting the spatial extent of the tracks. Con-
versely, if the bias is greater than 1, the area covered by
modeled tracks exceeds the area covered by observed
tracks and the model is overpredicting the spatial ex-
tent of the tracks.
To obtain an estimate of model bias and its uncertainty

relative to our spatial framework, we first generate 100
sets of hexagon lattices. Each lattice is randomly offset
very slightly such that the hexagons do not precisely
match in space. We then overlay the observed and
modeled track data onto each set of hexagons to obtain
per-hexagon counts as before. For themodel, we use data
from the GFDL HiRAM r1 in this section. Hexagons
containing at least one observed storm are comparedwith
hexagons containing at least one modeled storm and the
bias is then calculated from Eq. (1). These biases are
specific to gridcell size. For example, we might expect
larger biases from lattices composed of smaller hexagons.
To see the effects of grid resolution, we repeat this
process for grids with per-hexagon areas of 14.6 3 105,
9.703 105, 7.283 105 (the original grid area), 4.853 105,
and 3.64 3 105 km2. The bias calculations, broken
down by ocean basin and gridcell area, are presented
with 95% confidence intervals (CIs) in Table 2. The
CIs are based on the 2.5th and 97.5th percentiles of

the 100 bias values. Interestingly, varying gridcell sizes
in the range presented here does not statistically sig-
nificantly affect the biases. In general, there is more
overprediction than underprediction, with the most
consistent exception being the North Atlantic. The
overprediction is especially high in the South Atlantic,
where themodel produced 14 storms over the 1982–2008
period, but only one was observed. In general, there are
more false positives than false negatives, although for
most basins besides the SouthAtlantic the bias values do
not fall far from 1, indicating good agreement.
From Table 2, we also notice several basins for which

themodel appears to be unbiased. However, a bias value
of 1 is not the perfect summary of model performance.
In these cases, the number of false positives may simply
balance out the number of false negatives. To gain ad-
ditional insight to how well the model matches obser-
vations within the spatial framework, we also calculate
a ‘‘critical success index’’ (CSI) (Roebber 2009). The
CSI is expressed as

CSI5
H

H1FP1FN
. (2)

Thus, values near 1 indicate very few false negatives or
false positives, or a close match between model and ob-
servations, while values closer to zero indicatemany false
negatives, false positives, or both. Hits (H), false positives
(FP), and false negatives (FN) are defined as before.As is
done for the biases, we similarly calculate the CSI for 100
lattices and for varying gridcell sizes. These calculations,
again broken down by ocean basin and gridcell area, are
presented with 95% CIs in Table 3 (expressed as per-
centages). Formost basins besides the SouthAtlantic and
South Pacific, the GFDLHiRAMhas relatively high CSI
values, generally above 70%. As anticipated, CSI values
in the South Atlantic, in which there are numerous false

TABLE 2. Model bias values for the North Atlantic (NA), east Pacific (EP), west Pacific (WP), South Pacific (SP), north Indian (NI),
south Indian (SI), South Atlantic (SA), and all basins together (All). The large numbers are median bias values after generating 100
hexagon grids slightly offset from each other in space. The numbers in parentheses represent the 95% confidence intervals. Bias values are
provided for varying grid resolutions with per-hexagon areas (105 km2) given in the first column.

Area NA EP WP SP NI SI SA All

14.6 0.923
(0.874,1.00)

1.13
(1.06,1.22)

1.00
(0.943,1.09)

1.09
(1.03,1.16)

1.05
(0.895,1.19)

1.24
(1.13,1.34)

8.00
(5.33,20.0)

1.13
(1.10,1.16)

9.70 0.924
(0.860,0.978)

1.16
(1.04,1.27)

1.00
(0.930,1.09)

1.08
(1.01,1.13)

1.04
(0.918,1.17)

1.24
(1.14,1.36)

8.5
(5.41,12.5)

1.12
(1.10,1.16)

7.28 0.920
(0.864,0.965)

1.15
(1.09,1.23)

1.02
(0.969,1.07)

1.05
(1.00,1.11)

1.00
(0.920,1.10)

1.23
(1.13,1.34)

9.75
(5.24,13.5)

1.11
(1.09,1.14)

4.85 0.915
(0.868,0.965)

1.15
(1.06,1.22)

1.02
(0.977,1.07)

1.01
(0.979,1.05)

1.00
(0.927,1.08)

1.22
(1.17,1.29)

9.33
(5.10,16.5)

1.10
(1.08,1.12)

3.64 0.912
(0.874,0.943)

1.15
(1.08,1.22)

1.03
(0.991,1.06)

0.994
(0.959,1.03)

1.00
(0.942,1.06)

1.22
(1.15,1.28)

10.33
(6.40,17.4)

1.08
(1.06,1.10)

8262 JOURNAL OF CL IMATE VOLUME 26



positives, fall below 20% for all grid sizes. Also not en-
tirely unexpected is the slight decrease in CSI that occurs
as per-hexagon area decrease; however, these decreases
are not statistically significant, as indicated by the over-
lapping 95% confidence intervals.
Roebber (2009) also introduces a way to visually com-

pare the different metrics of performance in a single plot.
We adopt this ‘‘performance diagram’’ to display the
bias, CSI, probability of detection (POD), and success
rate (SR) for the GFDL HiRAM track data. The prob-
ability of detection is expressed as

POD5
H

H1FN
. (3)

The success rate is expressed as

SR5 12
FP

H1FP
. (4)

As displayed in Fig. 4, POD is defined along the vertical
axis and SRalong the horizontal axis. The straight dashed
lines in Fig. 4 are lines of equal bias, while the curved solid
lines represent lines of equal CSI. Using this diagram,
we can visually assess model performance on the basis of
four metrics: bias, CSI, POD, and SR. Figure 4 displays
these points (with 95%CIs) for the North Atlantic (NA),
eastern North Pacific (EP), western North Pacific (WP),
South Pacific (SP), north Indian (NI), south Indian (SI),
South Atlantic (SA), and for all basins together (ALL).
The values plotted represent the median values following
the generation of 100 hexagon grids as is done for the bias
and CSI in Tables 2 and 3. The values in Fig. 4 are cal-
culated based on grids with a per-hexagon area of 7.283
105 km2 (the same area as is used in the maps in Figs. 2
and 3).
Most points in Fig. 4 are clustered in the upper-right

portion of the diagram, which indicates a high success

rate and probability of detection. It is also clear from
Fig. 4 thatmost points lie above the ‘‘no bias’’ line (bias5
1), although the western North Pacific and northern
Indian Ocean fall very near this line. The North Atlantic
is the only basin with a bias less than 1, as mentioned
previously. The North Atlantic will be addressed further
in the following section. Figure 4 also indicates high CSI

TABLE 3.Model CSI values (%) for theNorthAtlantic (NA), east Pacific (EP), west Pacific (WP), South Pacific (SP), north Indian (NI),
south Indian (SI), South Atlantic (SA), and all basins together (All). The large numbers are median CSI values after generating 100
hexagon grids slightly offset from each other in space. The numbers in parentheses represent the 95% confidence intervals. CSI values are
provided for varying grid resolutions with per-hexagon areas (105 km2) given in the first column.

Area NA EP WP SP NI SI SA All

14.6 78.6
(73.4,84.5)

84.0
(71.4,89.5)

89.3
(82.1,94.4)

70.4
(64.2,75.8)

84.2
(70.0,95.0)

75.7
(68.0,81.3)

11.1
(5.00,18.8)

75.4
(73.4,78.2)

9.70 78.1
(73.0,81.2)

80.8
(74.8,90.1)

88.6
(82.1,95.9)

69.1
(64.8,74.7)

82.1
(71.4,91.7)

73.6
(69.1,79.0)

9.09
(4.65,14.7)

74.5
(73.4,78.2)

7.28 77.6
(72.8,84.0)

81.8
(75.0,85.9)

89.3
(80.0,94.6)

68.0
(64.2,71.9)

79.4
(69.0,93.5)

74.2
(66.1,79.7)

8.33
(4.08,14.3)

74.0
(72.8,76.2)

4.85 77.5
(73.7,81.6)

80.7
(74.3,86.4)
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FIG. 4. Performance diagram for the GFDL HiRAM (r1) based
on a hexagon grid with a per-hexagon area of 7.28 3 105 km2. The
straight dashed lines indicate the bias [as defined in Eq. (1)], the
curved solid lines indicate the CSI [as defined in Eq. (2)], and
the x and y axes represent the SR [Eq. (4)] and POD [Eq. (3)],
respectively. The points represent median values after generating
100 hexagons grids slightly offset from each other in space. Metrics
are calculated for the North Atlantic (NA), northern East Pacific
(EP), northern west Pacific (WP), South Pacific (SP), north Indian
(NI), south Indian (SI), South Atlantic (SA), and all basins together
(ALL). The crosshairs indicate the 95% confidence interval for each
point.
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values for most basins, with the clear exception being the
South Atlantic. On the basis of these metrics and our
spatial lattice approach, the western North Pacific ap-
pears to most closely match observations, with a high
probability of detection, a high success rate, a bias near
1, and a CSI close to 0.9. It should be mentioned that, as
evident in Fig. 3, the western North Pacific represents
a large area of model overprediction in terms of the
number of storms present compared to observations.
However, in terms of the area covered by TC tracks, the
model matches observations well over the western North
Pacific.
For the South Atlantic, the performance diagram in-

dicates significant model overprediction based on a high
probability of detection, a low success rate, a very low
CSI, and a very high bias. This makes sense as only one
TC was observed during this period, but 14 TCs were
generated by the GFDL HiRAM, r1. Although the
GFDL HiRAM produces few TCs over the South At-
lantic relative to other basins, for the period 1982–2008
it nevertheless generates far more TCs than observed.
All of the previous calculations are made with a

threshold of at least one TC for both model and ob-
servations. If we increase the threshold to be at least 15
TCs, for a grid of hexagons with area 7.28 3 105 km2,
the global bias value decreases to 1.01 and the global
CSI becomes 83.6% (compared to 1.11 and 74% with a
threshold of one TC). For a threshold of 50 TCs, the bias
remains at 1.01, but the CSI increases to 90.1%. Finally,
for a threshold of at least 200 TCs, the bias still remains
near 1.01, but the CSI increases to 98.8%. Therefore, it
appears that the areas that generally contain the most
observed storms also contain the most modeled storms.

6. Intermodel comparison over the North Atlantic

Wenext compare the GFDLHiRAM simulated tracks
with those generated from the FSU COAPS spectral
model. Because global tracks are not yet available for the
FSU COAPS model, we focus our comparison on the
North Atlantic basin. Once again, we select only ob-
served cyclone points with intensities exceeding 17ms21,
which corresponds to the 33rd percentile of total ob-
served storms over the North Atlantic. As with the
HiRAM, a 17ms21 wind threshold is also set for the FSU
COAPS model. The data are projected onto a planar
coordinate system using a Lambert conformal conic
projection. As was done for the global comparison, a grid
of equal-area hexagons is created, this time for the North
Atlantic basin. For the North Atlantic comparison, we
use hexagons of area 1.91 3 105 km2, which are much
smaller than the hexagons used for the global comparison
(slightly larger than the state ofWashington). This allows

for a more detailed examination of subregional spatial
variability. The hexagons are populated with observa-
tions and model data from both the GFDL HiRAM and
the FSU COAPS spectral model. Per-hexagon cyclone
counts for observations and the first run from each model
are shown in Fig. 5.
From Fig. 5 it is apparent that there are some dis-

crepancies between the FSU COAPS model and ob-
servations. The FSUCOAPSmodel appears to generate
more cyclones over the south-central portion of the
North Atlantic. Figure 5b also suggests that most of these
model-generated cyclones recurve fairly quickly. This is
consistent with LaRow et al. (2008), who attribute this
to the model’s large-scale steering flow during the first
half of the hurricane season. The framework also allows
us to directly compare the FSU COAPS model with the
HiRAM. In contrast to the FSU COAPS model, which
tends to generate too many cyclones over the North
Atlantic, the GFDL HiRAM does not generate as
many cyclones as are observed. The spatial pattern of
the HiRAM cyclones is more consistent with obser-
vations, although there are fewer modeled cyclones
over the Gulf of Mexico and Caribbean Sea than are
observed. This latter point is also true of the FSU
COAPS model.
Further comparison of the FSU COAPS model with

observations is implemented using relative ratios. We
use the ratios to examine the factor by which the mod-
eled cyclone frequency exceeds the observed frequency.
This is accomplished by first dividing the number of
cyclones in each hexagon by the total number of cy-
clones for the entire grid. These ratios are calculated for
both model and observations. We then divide the model
relative ratio by the observed relative ratio to obtain the
factor by which modeled cyclone frequency exceeds
observed cyclone frequency. The base-two logarithm of
these factors, indicated by the color bar, is shown for the
FSU model in Fig. 6a. A value greater than zero in-
dicates an overprediction by the model, while a value
less than zero indicates an underprediction. The over-
prediction region is clearly visible in the center of Fig. 6a.
It is also apparent that few modeled cyclones are present
over the Gulf of Mexico, at higher latitudes, and near the
Cape Verde Islands. Figure 6b provides the same in-
formation for the GFDLHiRAM. In general, the GFDL
HiRAM agrees better with observations, although once
again there is a notable lack of model-generated cyclones
in the Gulf of Mexico and Caribbean.
Finally, a qualitative comparison between the FSU

COAPS and the GFDL HiRAM is made. The results of
this model comparison are depicted in Fig. 7. Using the
same hexagon lattice as in Figs. 5 and 6, we compare
areas in which both models overpredict the number of
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TCs relative to observations (shown in red), the areas in
which the FSU model overpredicts but the GFDL un-
derpredicts (magenta), the areas in which the GFDL
overpredicts but the FSU underpredicts (cyan), and fi-
nally the areas in which both models underpredict (blue).
It is clear from this map that both models underpredict
over both the Caribbean and Gulf of Mexico. This is
perhaps the result of a lack of model genesis over this
subregion, premature recurving of storms generated
farther east, or both. In the FSU COAPS model, for ex-
ample, LaRow et al. (2008) note that a break in the ridge
over the central Atlantic during the peak of the hurricane
season allows more modeled storms to recurve early
rather than continue westward.
The possibility of a lack of model genesis over the Gulf

of Mexico is also addressed. Figure 8 displays counts for
per-hexagon genesis points for observations (Fig. 8a),
FSU COAPS (Fig. 8b), and GFDLHiRAM (Fig. 8c). To

FIG. 5. Per-hexagon cyclone counts in the North Atlantic basin
over the 1982–2008 time period for (a) observations, (b) FSU
COAPS (r1), and (c) GFDL HiRAM (r1).

FIG. 6. Hexagons indicate the factor by which model storm fre-
quency exceeds observed storm frequency for (a) FSUCOAPS and
(b)GFDLHiRAM.Values greater than 0 (pinks and reds) indicate
that modeled storm frequency exceeds observed storm frequency,
while values less than 0 (blues) indicate that observed storm fre-
quency exceeds modeled storm frequency.
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obtain the genesis points, we define ‘‘genesis’’ as the first
record for each individual storm in the IBTrACS and
model datasets. As expected, hexagons with the most
observed genesis points are located off the west coast
of Africa, throughout the main development region
(MDR), and also over the Caribbean andGulf ofMexico.
In contrast to observations, nearly all genesis in the FSU
COAPS model occurs over the south-central portion of
the basin, well west of Africa and east of the Caribbean
and Gulf of Mexico. In fact, the highest per-hexagon
genesis count for the FSU COAPS model is 50 storms,
significantly higher than the maxima of 13 and 15 for
observations and the GFDL, respectively. Very few
storms generated by the FSU COAPS model form over
the Gulf of Mexico or Caribbean. The distribution of
genesis points from the GFDL HiRAM more closely
matches observations; however, there is still a notice-
able lack of model genesis over the Gulf of Mexico
and Caribbean by this model as well. For the GFDL
HiRAM, the small number of modeled TCs developing
over the Gulf of Mexico and Caribbean may be a result
of large model wind shear anomalies, although another
possible cause is the general lack of simulated convec-
tive activity over this region. This is also true of the FSU
COAPS model, which generates higher than observed
wind shear over the Gulf of Mexico for the August–
October period. The FSU COAPS model also displays
a dry precipitation bias in this region.

In addition to the underprediction over the Gulf of
Mexico and Caribbean, the area of overprediction by
the FSU COAPS model is evident in the red and
magenta hexagons of Fig. 7. It is also interesting to note
that the area of GFDL HiRAM overprediction extends
farther north and east across the basin. Although Fig. 7
provides a qualitative assessment of model over- and/or
underprediction, the magnitude of the model discrep-
ancy is not apparent.

FIG. 7. Hexagons indicate subregions in which there was over-
prediction by both the FSU and GFDL models (red), over-
prediction by the FSU model and underprediction by the GFDL
(magenta), underprediction by the FSU model and overprediction
by the GFDL (cyan), or underprediction by both models (blue).

FIG. 8. Per-hexagon counts of genesis points for (a) observations,
(b) FSUCOAPS, and (c)GFDLHiRAM. ‘‘Genesis’’ is defined as the
first record for each storm listed in the IBTrACS and model datasets.
The darkest shading represents genesis counts greater than 15.
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7. Summary

GCMs are now routinely employed to study how TC
frequency may change with a warmer climate. However,
before confidence can be placed in future cyclone scenar-
ios, it is necessary to understand how well they reproduce
the historical spatial climatology. Using a methodology
based on the spatial tessellation of Elsner et al. (2012),
this study puts forward a spatial lattice approach to
quantitatively compare regional TC activity.
Global and regional comparisons are made between

actual and simulated TC occurrences using actual TCs
from the IBTrACS dataset and GCM-generated TCs
from the GFDLHiRAM and FSU COAPSmodels over
the common period 1982–2008. Globally results show
that although there are some areas of over- and under-
prediction, the spatial distribution of TCs generated by
the GFDL HiRAM compare well with observations.
Difference maps using the spatial lattice highlight the
areas in which themodel disagrees with observations. The
primary mismatch areas are found in the Pacific. Several
quantitative metrics of model success are used to examine
the ability of theGFDLHiRAMtoaccurately capture the
spatial extent of TC tracks globally and regionally. Again,
the model performs fairly well overall, with the primary
problem area being the South Atlantic. Additionally,
comparisons focusing on the North Atlantic basin are
made using both models. Results confirm a large area of
overprediction by the FSU COAPS model over the
south-central portion of the basin, and a large area of
underprediction by both models over the Gulf of Mexico
and Caribbean. The underprediction is particularly rele-
vant to projections of future U.S. hurricane activity.
As the data become publicly available, this method

can be applied to provide a comprehensive model com-
parison using all model datasets from phase 5 of the
Coupled Model Intercomparison Project (CMIP5). All
the code used to generate the results of this paper is
available online (http://rpubs.com/sestrazz/4591).
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