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ABSTRACT

A statistical procedure for estimating the risk of strong winds from hurricanes is demonstrated and applied

to several major cities in Florida. The procedure, called the hurricane risk calculator, provides an estimate of

wind risk over different length periods and can be applied to any location experiencing this hazard. Results

show that the city of Miami can expect to see hurricane winds blowing at 50 m s21 [45.5–54.5 m s21 is the 90%

confidence interval (CI)] or stronger, on average, once every 12 yr. In comparison, the city of Pensacola can

expect to see hurricane winds of 50 m s21 (46.9–53.1 m s21, 90% CI) or stronger once every 24 yr. A quantile

regression is applied to hurricane wind speeds in the vicinity of Florida. Results show that the strongest

hurricanes are getting stronger as a consequence of higher offshore intensification rates.

1. Introduction

Every year hurricanes threaten the United States with

the potential for catastrophic losses of life and property.

The risk of a catastrophe varies by location. The state of

Florida is particularly vulnerable due to its position sur-

rounded by warm seas. According to Blake et al. (2007),

40% of all U.S. hurricanes and major hurricanes hit

Florida; and 83% of category 4 or higher hurricane strikes

have hit either Florida or Texas. Due to increasing pop-

ulations and economic development in the areas prone to

devastation, average economic losses are increasing over

time (Malmstadt et al. 2009). For society to better cope

with and mitigate these disasters, a more precise estimate

of the risk of high winds on the local level is needed. In-

deed, companies can use this kind of information to sell

catastrophe bonds that break down potential hurricane

wind losses by municipality.

Here, we consider wind risk from a hurricane as the

probability of a region experiencing winds of hurricane

force or greater within a specified period. Within this

context, risk is an attribute of a region that is determined

by the size and location of the region and not by the

potential for loss of life or property. Risk is an un-

observed and changing quantity that is estimated using a

statistical procedure. The procedure provides an estimate

of the exceedence wind speed (return level) as a func-

tion of the return period (inverse of the annual proba-

bility). The primary goal here is to quantify the level of

risk of hurricane winds of varying magnitudes blowing

over a particular region over a given time period. This

method can provide useful return-level estimates for

homeowners on a 20–30-yr mortgage as well as provide

information at similar time scales as offered for the

100-yr flood plain in the hydrology literature (Bin et al.

2008).

In particular, the present work estimates return levels

of hurricane winds affecting Florida cities and examines

the case for secular trends in the intensity and frequency

of hurricanes in the vicinity of the state. This is an ap-

plication of the Elsner et al. (2008a) model, where in-

formation from past cyclones affecting the city and its

vicinity are combined through the parameters of an

extreme-value distribution to estimate return levels. This

paper goes beyond the initial work by automating the

procedure and applying it to cities in Florida. This pro-

cedure, called the hurricane risk calculator (HRC), bor-

rows information from a larger region to estimate the

distribution parameters for a smaller region. The meth-

odology implicitly assumes a stationary climate with re-

gard to the occurrence and intensity of the wind events.

Here, we shed some light on this assumption by exam-

ining the case for trends in hurricane activity in and

around the state of Florida using the method of quantile

regression as introduced in the study of hurricane cli-

matology in Elsner et al. (2008b).
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The paper begins with a description of the data used

for this study in section 2. Section 3 discusses the statis-

tical procedure for estimating local wind risk. Section 4

gives the results of the return-period calculations for se-

lected Florida cities. Section 5 presents the methods and

results of the trend analysis of hurricanes in the vicinity of

Florida. Section 6 summarizes the results and emphasizes

the important conclusions of this study. The work is im-

portant in providing reliable estimates of hurricane wind

return periods for the population centers of Florida and

for demonstrating a statistically significant trend in hur-

ricane intensification rates in the vicinity of the state.

2. Hurricane data

For this study, the wind speed estimates used in the

HRC are derived from the National Hurricane Center’s

Hurricane Database (HURDAT, or best track; see

Landsea et al. 2004). This is the official record of tropical

cyclones for the Atlantic Ocean, Gulf of Mexico, and

Caribbean Sea, including those that have made a U.S.

landfall. This record consists of the 6-hourly cyclone lo-

cation and intensity for individual storms back to 1851.

For cyclones prior to 1931, the 6-h information is in-

terpolated from once-daily (1200 UTC) estimates. For

cyclones in the period 1931–56, the 6-h information

is interpolated from twice-daily observations (0000 and

1200 UTC). Analyses were previously conducted on

storms during the second half of the nineteenth and

early twentieth centuries to improve the quality of the data

(Fernandez-Partagas and Diaz 1996; Landsea et al. 2004).

There remain limitations to these data that are rele-

vant to the present study. Storm information over the

earlier part of the record is less certain than information

over the more recent decades (Landsea et al. 2004). This

time variation in uncertainty is likely larger in the col-

lection of tropical cyclones occurring over the open ocean,

but presents itself to some degree in land-falling hurri-

canes. Unless the area was at least sparsely populated at

the time of landfall, the hurricane wind speed may not

have been recorded. Despite the limitations, these data

are frequently used for hurricane risk analysis (Emanuel

et al. 2006). Our approach is to show results from the

HRC using all the data and then compare these results

with results from the procedure using the shorter more

reliable set of years.

The hurricane data were interpolated hourly for the

geographic position of the hurricane center (center fix)

and wind speed using splines described in Jagger and

Elsner (2006). Splines are parsimonious smooth repre-

sentations of the data that preserve local properties.

Figure 1 shows hurricane intensity as a function of storm

hour using the raw and 1-hourly spline interpolated values

for one case. We see that the spline smoothing preserves

the 6-hourly wind speed and gives a nonlinear interpo-

lation of values at each hour between these values. The

advantage of the hourly interpolated values is that the

chance of missing a hurricane passing through any given

area is greatly reduced. For example, with the 6-hourly

data and an average translational velocity of 18 km h21,

we would expect to miss about 10% of all hurricanes

crossing a circular region with a radius of 75 km (smallest

search radius used in this study). In contrast, we would

expect to miss only about 0.2% of the hurricanes (2 in

1000 storms) crossing through the same region using

hourly data. The missing track proportion is calculated

assuming uniform track density and a fixed wind speed.

As noted in Neumann (1987), estimated return levels

assume that the hurricane climatology over the past

158 yr will remain unchanged. Also, for this study, the

occurrence of a hurricane within the city is independent

of future hurricanes within the same city. This latter as-

sumption is reasonable, but as we explore in section 5 of

this paper there is some evidence that Florida’s hurricane

climate is changing. We begin by looking at the procedure

for estimating return levels locally.

3. Methodology

The climatological probability of hurricane winds can

be estimated in various ways. Heckert et al. (1998) use

the peaks-over-threshold model and a reverse Weibull

FIG. 1. Interpolated wind values. Hurricane wind intensity (m s21)

is plotted as a function of storm hour for Hurricane Andrew (1992).

The first observation of the storm is the 0 storm hour. The boldface

line and accompanying points show the 6-hourly observed wind

speeds (maximum sustained) as taken directly from HURDAT.

The smooth line shows the hourly spline interpolation used in this

work and as derived in Jagger and Elsner (2006).
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distribution to obtain the mean recurrence intervals for

extreme wind speeds at various locations along the U.S.

coastline. Chu and Wang (1998) use extreme value dis-

tributions to model return periods for tropical cyclone

wind speeds in the vicinity of Hawaii. Jagger et al. (2001)

use a maximum likelihood estimator to determine a lin-

ear regression for the parameters of the Weibull distri-

bution for tropical cyclone wind speeds in coastal counties

of the United States.

Jagger and Elsner (2006) produce estimates for ex-

treme hurricane winds near the United States using a

generalized Pareto distribution (GPD). The approach

includes covariate information to adjust the return levels

depending on climate factors, like the El Niño and the

North Atlantic Oscillation. The approach is modified in

Elsner et al. (2008a) to estimate hurricane return levels

for Lake Shelby, Alabama, as a way of comparing geo-

logical proxies of past hurricanes with historical records.

Parisi and Lund (2008) use a similar approach but add

a component for the day of hurricane occurrence.

Here, we automate the approach of Elsner et al. (2008a)

to estimate local return levels for 12 cities in Florida and

we call it the HRC. Specifically, the distribution of the

maximum wind above a threshold value u is assumed to

follow a GPD. The threshold value for the extreme value

model is determined using the mean residual life plot

(Davison and Smith 1990). This plot is produced by av-

eraging the difference in the observed wind speeds above

a specified level as a function of the level. For example, at

a wind speed level of 30 m s21, we subtract 30 from each

observed wind speed and average only the positive values

(excesses). This is repeated for all wind speed levels. The

mean excess is the expected value of the amount by which

the observations exceed the particular level. In other

words, if extreme values follow a GPD, then the expected

value of the excesses is a linear function of the threshold.

Following Jagger and Elsner (2006), the exceedences

W 2 u are modeled as samples from a family of GPDs, so

that for an individual hurricane with maximum wind W,

Pr(W . yjW . u) 5 1 1
j

s
(y � u)

� ��1/j

5 GPD(y � ujs, j), (1)

where s . 0 and s 1 j(y 2 u) $ 0. For negative values of

the shape parameter (j), the GPD family of distributions

has an upper limit of Wmax 5 u 1 su/jjj.
The frequency of storms with intensity of at least u

follows a Poisson distribution with a rate lu, which is the

threshold crossing rate. Thus, the number of hurricanes

per year with winds exceeding y is a thinned Poisson

process with mean ly 5 lu Pr(W . yjW . u). This is

called the peaks-over-threshold (POT) method, and the

resulting model is completely characterized for a given

threshold u by s, j, and lu, which are the GPD param-

eters and the threshold crossing rate, respectively.

Since the number of storms exceeding any wind speed

y is a Poisson process, the return period for any y has

an exponential distribution, with mean r(y) 5 1/ly. By

substituting for ly in terms of both lu and the GPD

parameters, then solving for y as a function of r, we can

find the corresponding return level for a given return

period as

rl(r) 5 u 1
s

j
[(r 3 l

u
)j� 1]. (2)

For a more complete description of the statistical theory

supporting this model, please refer to Coles (2001), and

for an example of the application of POT to maximum

wind speeds in hurricanes, refer to Jagger and Elsner

(2006).

This model estimates how long on average an area can

expect to wait to experience a hurricane of a given in-

tensity. Unfortunately for most small areas like cities,

there are too few historical hurricanes to provide a sta-

ble estimate of the model parameters. Therefore, the

parameters at the smaller radial distance are extrapo-

lated using linear regression from multiple correlated

sets of parameters taken at larger radial distances sur-

rounding the location. An example of how this is done in

the HRC is provided in the next section.

4. Results

The locations of the 12 cities used in this study were

obtained from the U.S. Geological Survey’s database

(which is available online at http://geonames.usgs.gov)

and describe the geographic center of the city limits as

recognized by the federal government. Each city is cho-

sen based on its level of population density, as well as its

potential risk for hurricane damage. Twelve cities were

chosen to map out the spatial differences for locations

from the western panhandle to the northeast coast of the

state (Fig. 2).

The city center is considered the geographic center of

the city limits as defined by the federal government. A

100-km radial circle is drawn around each center. The

2000 U.S. Census information is used to show Florida’s

county population per square kilometer.

The HRC procedure is outlined here for Miami.

Figure 3 shows the GPD model parameters and their

90% confidence intervals for increasing radial distances

from the geographic center of the city from 75 to 200 km at

increments of 25 km. Each parameter is estimated based
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on the statistical procedure described in the previous

section and plotted as a function of radius from the city

center. A confidence interval (CI) about the mean re-

turn level is obtained by scaling the CI obtained from

using a larger radial distance (see Elsner et al. 2008a).

This is done by, first, calculating the return levels for

a given return period and, then, by assuming the esti-

mate is asymptotically normal from a knowledge of the

limiting variance of the estimator (delta method). Note

that for radii larger than 125 km the change in param-

eter values is linear. We exploit this linear relationship

and determine a separate bivariate regression for each

parameter as a function of the search radius between 125

and 200 km. The regression line (solid) is used to ex-

trapolate the parameter value at the radial distance of

100 km for each parameter (point indicated on the re-

gression line). Thus, parameters at the small radial dis-

tance of interest are extrapolated using the parameters

at larger radial distances.

The threshold u used in the model varies for each lo-

cation depending on the mean residual life plot produced.

The choice is a compromise between having wind speeds

high enough for a proper GPD fit but enough of them that

the parameter estimates of the GPD are reliable. The

thresholds range from 20 to 35 m s21. With a proper

threshold, the values of j are greater than 21 and the

change as a function of radius is small. Figure 4 shows

the j parameter from Miami’s estimates as an example.

The dotted line shows the j parameter using a threshold

that is too high for the model (40 m s21) and the solid line

shows j using a threshold that is appropriate for the

model (35 m s21). Although the choice of the precise

threshold is somewhat arbitrary, for each location we

check to see that the choice made is not overly sensitive

to the search radius.

The return-level curve for Miami using data from 1851

and parameters extrapolated to a radius of 100 km is

shown in Fig. 5. The return period in years is shown

along the horizontal axis with a log scale. The return

level indicating wind speeds (m s21) is shown along the

vertical axis with a linear scale. The 90% uncertainty

range on the return levels is shown with vertical lines. The

model curve indicates that Miami (within a 100-km radius

from the city center) can expect a hurricane of at least

FIG. 2. The 12 FL cities used in this study are shown with the city centroid location denoted

with a square. The 100-km radial distance from the city center is shown with a circle. This

distance is used in the HRC and encompasses each city. County shading represents the pop-

ulation density per square kilometer.
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33 m s21, with a 90% uncertainty of (26.9–39.1 m s21)

on average once every 5 yr and a hurricane of at least

50 m s21 (45.5–54.5 m s21) on average once every 12 yr.

Since the estimate is over an area and wind speeds di-

minish rapidly as the hurricane moves over land, it most

accurately represents the portion of the area over (or

nearest) the ocean. For comparison, we reran the model

using hurricanes limited to the period 1899–2008. The

return-level curve is similar (dashed line). The estimates

using data from 1899 produce higher return levels for

return periods in the range from about 5 to 100 yr. How-

ever, the estimates fall within the 90% confidence level

produced by using data from 1851.

The HRC is repeated for the other 11 cities. Table 1

displays the number of hurricanes passing through each

city over the period 1851–2008, inclusive. The pass

through is defined by the center fix passing within a

100-km great-circle distance of the geographical center of

the city. The hurricane wind speeds are broken into the

five Saffir–Simpson categories and show the variations

between locations. Each city is threatened by hurricane

winds and all have experienced at least category 3 winds

(50–58 m s21), except Tallahassee. Pensacola has expe-

rienced the most category 1 hurricanes. Overall, Miami

has experienced the most hurricanes, with 35 strikes over

the 158-yr time period, and Key West has the second-

highest strike occurrence, 33. Miami, Cape Coral, Port

St. Lucie, and Key West have experienced category 4

wind speeds. Only Miami has experienced a category 5

hurricane (Andrew in 1992). The Labor Day hurricane of

1935 reached category 5 strength, but at a distance greater

than 100 km from Key West.

Looking at these results from a geographic perspective,

it is seen that the ‘‘Big Bend’’ area of Florida (Tallahassee

through Tampa, along the Gulf coast) experiences fewer

hurricanes than the western panhandle and southeast-

ern peninsula. Also, the northeast corner of the state,

Jacksonville and Daytona Beach, specifically, experience

FIG. 3. Values for the HRC parameters (l, s, and j) as a function

of radial distance. Parameter values are obtained from a maximum

likelihood procedure using the fastest wind speeds from hurricanes

occurring within a radial distance of the geographic center of Mi-

ami. The thick solid line indicates the regression line of the pa-

rameter vs distance from the city center.

FIG. 4. Miami’s j threshold parameter as a function of radial

distance. The dotted line shows the parameter using a 40 m s21

threshold. The solid line shows the parameter using a 35 m s21

threshold.
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fewer hurricanes than these areas as well. The peninsula

of Florida protects the Big Bend region from the stron-

gest hurricanes approaching from the southeast, and the

southeast-to-northwest orientation of the coastline north

of Port St. Lucie is parallel to the tracks of hurricanes at

this latitude and longitude.

Figure 6 shows return-level curves for the 100-km ra-

dial distance surrounding each city center. These curves

are plotted based on their geographic locations to help

visualize the spatial patterns. As expected, areas like the

Big Bend and the northeast coastline show weaker wind

speeds for a given return period when compared to areas

like the panhandle and the southeastern coastline. The

highest return levels for return periods of 500 yr are noted

in Key West, Miami, Port St. Lucie, and Cape Coral.

In contrast, Tallahassee has the lowest return levels at

the longest return periods. These results are tabulated

in Table 2, including the 90% CI on the return-level

estimates.

Table 3 shows the return-level estimates for Miami and

Pensacola with their confidence intervals using data only

back to 1899. The results using the entirety of the dataset

are presented alongside for comparison. The differences

can be attributed to the exclusion of an additional 48 yr of

data and to data limitations. It should be noted, however,

that the differences are not large relative to the range of

the CI. In fact, the return-level estimates using the shorter

data period fall within the CI of the return-level estimates

from the longer period.

Based on the HRC, a maximum wind speed can be

estimated using the equation u 1 (s/jjj). Table 4 shows

the maximum wind speed, the GPD parameters, and the

threshold for each city. This wind speed can be under-

stood as the highest possible wind speed that can be

experienced within a 100-km distance of the given city

center. The list is in descending order of maximum wind

speeds. At the top of the list are Port St. Lucie and Miami,

with maximum wind speeds exceeding 70 m s21, and at

the bottom are Jacksonville and Tallahassee, with wind

speeds of less than 55 m s21.

The National Weather Service (NWS) also estimates

hurricane wind risk for selected Florida cities. They use

the HURISK model developed in Neumann (1987),

which employs a Weibull distribution for tropical cy-

clone wind speeds and a Poisson distribution for hur-

ricane frequency and estimates return periods at the

county level. The latest output from HURISK is pre-

sented in Blake et al. (2007). The HRC estimates a re-

turn level for a given return period while the HURISK

provides a return period for a given return level. Com-

parisons are made by converting our HRC return levels

at 33 and 50 m s21 into return periods (Table 5). The

HRC estimates can be converted to provide a return

period for a fixed return level via Eq. (2).

The two procedures produce similar estimates for hur-

ricane intensities. In 4 of the 10 locations, HURISK and

FIG. 5. Return level as a function of return period for hurricanes

passing within 100 km of the geographic center of Miami. The solid

line shows the return-level estimates from the HRC using data over

the period 1851–2008. The 90% confidence intervals are shown as

vertical lines. The dotted lines show the return-level estimates from

the HRC using data over the period 1899–2008.

TABLE 1. Number of hurricanes by wind speed intervals known

to have passed within a 100-km radius of the specified city center

from 1851 to 2008. Data source: NHC HURDAT. Positions and

wind speeds are interpolated to 1-h intervals following the pro-

cedure outlined in Jagger and Elsner (2006).

Max wind

(m s21) Miami Orlando Jacksonville Tampa

33–42 12 15 7 10

43–49 7 7 6 6

50–58 11 3 5 4

59–69 4 0 0 0

$70 1 0 0 0

Tallahassee

Cape

Coral

Port

St. Lucie

Daytona

Beach

33–42 8 4 10 13

43–49 6 5 9 4

50–58 0 8 6 5

59–69 0 3 2 0

$70 0 0 0 0

Pensacola Sarasota

Panama

City

Key

West

33–42 13 10 17 11

43–49 4 6 4 10

50–58 8 6 6 9

59–69 0 0 0 3

$70 0 0 0 0
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HRC give the same return period and 9 out of 10 are

within 1 yr. At major hurricane intensities, the results

diverge with the HRC, indicating longer return periods

(lower probabilities) for the stronger storms by an average

of 16 yr (an average difference in annual probability of

6%). The other cities (i.e., Tallahassee and Orlando) are

not included in this table because the latest output from

HURISK does not include a comparison. The differences

FIG. 6. Return-level curves as a function of return periods for hurricanes passing within 100 km of the geographic center of the specified

Florida city using the HRC.
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in the results are attributable to differences in the wind

speed distributions used by the two approaches. The

Weibull distribution used in HURISK is appropriate

for wind speeds at all intensities; however, by using the

more frequent weaker hurricanes, the distribution tends

to produce a heavy tail (Darling 1991; Jagger et al. 2001).

A heavy tail is indicative of higher probabilities for the

most extreme speeds. These higher probabilities trans-

late to shorter return periods, as noted in the table for

major hurricanes. Thus, while HURISK is appropriate

for estimating the wind risk of typical hurricanes, it may

overestimate the threat of winds in the most extreme

hurricanes. For estimating the return period of the stron-

gest hurricane wind speeds, it might be better to use a

GPD, as is done in the HRC.

Return levels from the HRC are expected values rep-

resenting an estimate of what magnitude hurricane we

can anticipate seeing, on average, over all similar n-yr

intervals. It is worthwhile to consider the range of maxi-

mum hurricane winds over all possible n-yr intervals. This

is done by determining the predictive distribution of

maximum winds. Figure 7 shows the predictive distri-

bution of exceedence probabilities as a function of wind

speed for given time intervals for a 100-km radius around

the city of Miami. For relatively short time intervals

(e.g., 10 yr) the maximum wind speeds range is quite

large. For instance, the 90% prediction interval for the

20-yr maximum wind speeds ranges between 40 and

68 m s21. But for longer time intervals, the range of

wind speeds representing the 90% prediction interval

is much narrower. The prediction interval is wider than

the CI, as the former includes the additional variation

associated with the spread of future values about the

expectation.

TABLE 2. Return period for selected wind speed exceedence values. The return levels are based on the HRC presented above and

include data over the period 1851–2008. The return period refers to the expected times between winds of this level blowing somewhere

within a 100-km radius of specified cities. The wind speed confidence interval in parentheses is the 90% interval.

Return period

(yr)

Hurricane wind speed (m s21)

Miami Orlando Jacksonville Tampa

10 47.7 (43.1–52.3) 38.5 (34.5–42.5) 35.1 (32.1–38.1) 38.0 (34.6–41.4)

20 56.4 (52.2–60.6) 45.1 (41.4–48.8) 42.2 (38.9–45.5) 44.0 (40.7–47.3)

50 63.0 (59.6–66.4) 50.6 (46.9–54.3) 47.8 (44.5–51.1) 49.5 (46.3–52.7)

100 65.8 (62.9–68.7) 53.2 (49.7–56.7) 50.3 (47.0–53.6) 52.3 (49.3–55.3)

500 68.9 (66.8–71.0) 56.5 (53.2–59.8) 53.0 (49.7–56.3) 56.1 (53.4–58.8)

Tallahassee Cape Coral Port St. Lucie Daytona Beach

10 33.2 (30.3–36.1) 43.9 (39.8–48.0) 43.9 (39.9–47.8) 37.0 (33.7–40.3)

20 38.5 (35.5–41.5) 52.1 (48.4–55.8) 52.8 (49.0–56.6) 43.5 (40.4–46.7)

50 43.0 (40.1–45.9) 58.5 (55.5–61.5) 60.1 (56.7–63.5) 49.7 (46.9–52.5)

100 45.2 (42.4–48.1) 61.4 (58.9–63.9) 63.6 (60.5–66.7) 53.0 (50.6–55.4)

500 48.0 (45.2–50.8) 64.7 (62.8–66.7) 67.9 (65.1–70.7) 57.8 (55.8–59.8)

Pensacola Sarasota Panama City Key West

10 41.6 (38.1–45.2) 39.6 (35.9–43.3) 39.6 (36.2–43.0) 45.8 (41.1–50.5)

20 48.5 (45.3–51.7) 46.5 (43.0–50.0) 46.4 (42.9–49.9) 54.7 (50.5–58.9)

50 54.0 (51.3–56.7) 52.8 (49.7–55.9) 52.1 (48.8–55.4) 61.4 (57.8–65.0)

100 56.5 (54.2–58.8) 56.2 (53.5–58.9) 54.9 (51.1–57.3) 64.3 (61.1–67.5)

500 59.3 (57.4–61.2) 60.8 (58.7–62.9) 58.5 (55.7–61.3) 67.4 (64.9–69.9)

TABLE 3. Return period for selected wind speed exceedence values for Miami and Pensacola. The return levels include data over the

period 1899–2008. The wind speed confidence interval in parentheses is the 90% interval. The results using the full dataset are presented

alongside for comparison.

Hurricane wind speed (m s21)

1851–2008 1899–2008

Return period (yr) Miami Pensacola Miami Pensacola

10 47.7 (43.1–52.3) 41.6 (38.1–45.2) 51.0 (45.5–56.5) 42.9 (38.0–47.8)

20 56.4 (52.2–60.6) 48.5 (45.3–51.7) 59.3 (56.0–62.6) 50.4 (46.2–54.6)

50 63.0 (59.6–66.4) 54.0 (51.3–56.7) 64.8 (62.9–66.7) 55.3 (52.0–58.6)

100 65.8 (62.9–68.7) 56.5 (54.2–58.8) 66.8 (65.4–68.2) 57.0 (54.2–59.8)

500 68.9 (66.8–71.0) 59.3 (57.4–61.2) 68.7 (67.8–69.6) 58.6 (56.3–60.9)
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Having examined hurricane return levels across the

state, we next consider whether the wind risk from hur-

ricanes is changing over time. A stationary climate is

assumed in the results presented in this section. We

examine this assumption in the following section by

considering evidence for changes in the frequency and

intensity of hurricanes in the vicinity of Florida.

5. Trends

The usefulness of a return-level estimate depends to

some extent on the assumption that the hurricane cli-

mate is stationary. Explicitly, the methodology of esti-

mating the return levels presupposes that the frequency

and intensity of hurricanes are not changing over time.

Trends in frequency are examined using linear regression

and trends in intensity are examined using quantile re-

gression (Koenker and Bassett 1978), as was used re-

cently in Elsner et al. (2008b). Quantile regression is an

extension of linear regression applied to quantiles of the

response variable. A quantile is a point taken from the

inverse cumulative distribution function so that the 0.5

quantile is the value such that 50% of the values are less

than the value.

Because of the rarity of hurricanes affecting any small

area, the uncertainty on a trend estimate will be large.

So, here, we examine the data for trends in the frequency

and intensity of hurricanes falling within a 1000-km ra-

dius of 268N and 828W off the southwest coast (Fig. 8).

This is the area described by Hamid et al. (2009) in an

attempt to identify storms that could conceivably impact

Florida. The Florida Commission on Hurricane Loss

Projection Methodology (FCHLPM), created during the

1995 Florida legislative session to evaluate hurricane risk

models, advises modelers to consider hurricanes in this

area as a potential threat to Florida. This is done for the

purposes of comparing different risk models used by the

insurance industry (Hamid et al. 2009; Jagger and Elsner

2009) by using a common set of hurricanes. The area

encompasses cyclones that affect the panhandle, west,

and northeast coasts of Florida, as well as cyclones that

approach south Florida from the vicinity of Cuba and

the Bahamas. We use this location and data back to 1899

because, according to Landsea et al. (2004), the turn of

the twentieth century is the appropriate place to start for

reliable landfall records for the United States. The data-

set includes 162 individual hurricanes over the period

1899–2008, inclusive.

The frequency and intensity of hurricanes as a func-

tion of year are shown in Fig. 9. There is no upward or

downward trend in the occurrence rates of hurricanes or

major hurricanes in the vicinity of Florida, but there does

appear to be a low-frequency fluctuation that matches

variations in sea surface temperatures (Saunders and

Harris 1997; Landsea et al. 1999; Wang et al. 2008).

The strongest hurricanes appear to be getting stron-

ger. The trend lines represent the 50th and 90th per-

centile regressions of maximum wind speed vs year. The

maximum wind speed is the largest wind speed for each

hurricane within the Florida threat area. The upward trend

at the median is 7 m s21 century21 with a standard error of

3 m s21 century21. The upward trend at the 90th percen-

tile is 13 m s21 century21 with a standard error of 6 m s21

century21. If only the years from 1950 onward are in-

cluded, the upward trend increases to 21 m s21 century21

with a standard error of 20 m s21 century21. The trends

assume the data are uniformly reliable over the period

of record. This assumption may not hold up under closer

TABLE 4. Estimated maximum possible wind speeds. Estimates are

for the strongest winds (m s21) within 100 km of the city center.

City

s

(m s21) j

Threshold

(m s21)

Max wind

speed (m s21)

Port St. Lucie 26.5 20.581 25 70.6

Miami 24.7 20.699 35 70.3

Key West 23.7 20.698 35 69.0

Cape Coral 27.0 20.652 25 66.4

Sarasota 18.3 20.459 25 64.9

Daytona Beach 15.9 20.422 25 62.7

Panama City 14.2 20.547 35 61.0

Pensacola 23.2 20.648 25 60.8

Tampa 16.5 20.480 25 59.4

Orlando 13.5 20.569 35 58.7

Jacksonville 16.2 20.662 30 54.5

Tallahassee 16.3 20.541 20 50.1

TABLE 5. Return periods (yr) from HURISK and HRC are

shown for selected FL cities. Hurricanes are denoted by H and

major hurricanes are denoted by MH. St. Lucie County is included

to show a comparison between the return periods for Fort Pierce

(HURISK) and Port St. Lucie (HRC). Lee County is included to

show a comparison between Fort Myers (HURISK) and Cape

Coral (HRC). Differ is the return period from HURISK minus the

return period from HRC.

Return period (yr)

HURISK HRC Differ

H MH H MH H MH

Pensacola 7 17 6 24 1 27

Panama City 6 17 6 34 0 217

Tampa 6 23 7 56 21 233

Sarasota 6 19 6 32 0 213

Key West 5 12 5 13 0 21

Miami 4 9 5 12 21 23

Daytona Beach 8 31 7 52 1 221

Jacksonville 9 28 9 92 0 264

St. Lucie County 7 17 5 16 2 1

Lee County 6 15 5 16 1 21
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scrutiny of the influence that changes in measuring tech-

niques and sampling rates have on the wind estimates.

These results suggest that our return levels might be too

low for estimates of future hurricane wind risk.

To better understand the upward trends in hurricane

wind speeds, we estimate hourly intensification rates

along the hurricane tracks within the Florida threat area.

The intensification is the time change of the maximum

hurricane wind speed. We divide the dataset into values

that are above zero, indicating hurricane strengthening,

and values below zero, which indicate hurricane weak-

ening. We then take the maximum value of the strength-

ening (intensification) along the track of each hurricane

within the threat area to obtain one intensification value

per hurricane. We multiply these values by 24 to express

the maximum hourly intensification in terms of a daily

rate and plot them as a function of year in Fig. 10. The

10th, 50th, and 90th percentiles are analyzed for trends

using quantile regression. Significant upward trends in

intensification rates are observed. The greater intensif-

ication rates of late do not necessarily imply more in-

tense hurricanes at the point of landfall. These upward

trends are consistent with the increasing ocean heat

content noted over the Gulf of Mexico and the western

Caribbean (Carton and Santorelli 2008).

6. Summary and conclusions

Hurricanes top the list of most destructive and costly

natural disasters in the United States. The state of

Florida, especially, has experienced over $450 billion

in damages from these events since the early twentieth

century (Malmstadt et al. 2009). Estimates of return

levels for the strongest hurricane winds provide emer-

gency planners and the insurance industry information

by which to make decisions. Here, we used standard

hurricane data to model wind speed return levels for the

strongest hurricanes passing within a 100-km radius of

12 cities in Florida. The model is based on the GPD with

parameters estimated locally by borrowing information

on the frequency and intensity of hurricanes over larger

regions.

Not unexpectedly, it was found that the extreme wind

risk from hurricanes varies across the state. Areas in the

northeast, such as Jacksonville, and in the Big Bend,

between Tampa and Tallahassee, have longer return

periods for a given strong wind speed compared with

areas such as Miami in the southeast and Pensacola in

the panhandle. Thus, the annual threat of a catastrophic

hurricane event is highest in the southeast and the west-

ern panhandle of the state.

The sensitivity of the return-level estimates was ex-

amined by limiting the input data to the more recent

years (1899 and after). The return levels are quite similar,

indicating that, despite the greater level of uncertainty in

the records prior to 1899, the frequency and intensity of

the strongest hurricanes are consistent over the longer

period of record.

An implicit assumption underlying the results is that

of stationarity, which was examined by trend analysis on

hurricane frequency and intensity in the vicinity of Florida.

We found that the frequency of hurricanes and major

FIG. 7. The posterior exceedance probabilities as a function of

wind speed over given time intervals for a 100-km radius around

the city of Miami. Horizontal lines are drawn at probabilities of

0.05 and 0.95. For a given n-yr time interval, the range of wind

speeds at these two probabilities is the 90% prediction interval.

FIG. 8. The threat area around FL is shown with a black circle.

This area is described by Hamid et al. (2009) as a 1000-km radius of

a location (268N and 828W) off the southwest FL coast.
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hurricanes is rather constant through time. However,

there is evidence of upward trends in the intensity of the

strongest hurricanes. In fact, at the 90th percentile the

upward trend is estimated at 13 6 6 m s21 century21.

This is occurring in conjunction with statistically sig-

nificant upward trends in the intensification rates and is

consistent with rising ocean heat content over the Gulf

of Mexico.

The study can be extended by applying the approach

across space and mapping the HRC parameters as a

function of location. In this way, the results from the HRC

can be used without the need to access the internal pro-

cedure. Spatial variations in the model parameters might

provide new insights into hurricane behavior.

The study can be improved by determining a method

to adjust the return-level estimates to reflect the upward

trends in hurricane intensity. One possibility is to model

hurricane frequency as a function of time or sea tem-

perature and integrate the modeled frequencies over,

say, 100 yr. The ratio of the modeled frequency to the

historical frequency could provide a scaling factor for

the rate parameter of the Poisson distribution in the HRC.

A similar adjustment could be made for the parameters

of the generalized Pareto distribution.
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