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ABSTRACT

Using multivariate discriminant analysis techniques, statistically significant and skillful models are developed
for making extended-range forecasts of hurricane activity within specific locations of the North Atlantic basin.
These forecasts predict the presence or absence of hurricane activity and not the actual number of storms that
will occur within a region. Successful models are developed for predicting intense hurricane activity in both
the Gulf of Mexico and the Caribbean subbasins separately. Extended-range forecasts of all hurricane activity
are also possible within the Caribbean Sea. More significantly, lead-time forecasts of landfalling hurricanes on
the southeastern Atlantic coast of the United States are possible and show a substantial improvement over
climatology. Extended-range forecasts of hurricane activity for the northeastern United States and for the Gulf
of Mexico are not feasible due, respectively, to the relative lack and abundance of hurricane activity. Cross-
validated forecast accuracies range from 78% to 81% for the regions in which successful models can be developed.
An all-possible subsets selection algorithm is used to identify the predictor models, while bootstrap techniques
are used to assess model significance. Statistical tests using normal approximations are employed to compare
cross-validated (hindcast) forecast accuracy to climatology.

1. Introduction

Since 1984 (Gray 1984b), advanced seasonal fore-
casts of North Atlantic hurricane activity have been pos-
sible using rules and statistical techniques. While recent
improvements have occurred in the statistical method-
ology used (Elsner and Schmertmann 1993; Hess and
Elsner 1994), forecasts still involve seasonal activity for
the entire Atlantic basin as opposed to more specific
locations. Some researchers have noted relationships be-
tween the seasonal forecast predictors and certain Unit-
ed States landfall characteristics (Landsea et al. 1992),
but statistical predictive methodology has yet to be in-
corporated. Consequently, we note that little has been
done in localizing variables that may indicate the like-
lihood of hurricane development and the potential paths
that hurricanes will take since the preliminary work of
Ballenzweig (1959). Furthermore, as noted by Mont-
gomery and Farrell (1993), while much attention has
been given to the real-time public warning process and
storm track prediction, the prediction of the time and
location of hurricane development has proved far more
challenging. Recently, some improvements have oc-
curred in predicting tropical cyclogenesis with a lead
time of one or two days (Zehr 1992; Fiorino et al. 1993),
but this does not extend to the seasonal timescale.
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Continuing, we note that seasonal hurricane predic-
tion has established a firm foundation and has provided
some beneficial tools in determining the probable ac-
tivity within a given season but the very nature of the
forecasts renders them somewhat intangible. That is,
seasonal forecasts fail to provide enough detail for the
public at large. For example, several months in advance
of the official start to the hurricane season, a seasonal
prediction of six named storms for which two become
hurricanes (one of those expected to be intense) is is-
sued; this activity level is substantially below the sea-
sonal average. Although this forecast may verify, coastal
dwellers may be lured into a false sense of security due
to the prediction of below-average activity. In such a
situation, it only requires one major hurricane to cause
catastrophic losses and impinge on an otherwise un-
suspecting public; Hurricane Alicia of 1983 provided a
perfect example of such an occurrence, as this was an
intense landfalling hurricane in an otherwise inactive
year.

Consequently, the failure to specify location seriously
reduces the usefulness of seasonal forecast models, since
the accurate prediction of an active season may not
prove beneficial to coastal residents if the location of
the activity cannot be identified. We note that many
active hurricane seasons have occurred this century with
few if any landfalling storms (e.g., 1981). Conversely,
an inactive season (such as 1983) could prove to be
quite damaging if the path of just one of the storms
crossed a vulnerable area.

Here we develop seasonal prediction models for fore-



AUGUST 1997 1781L E H M I L L E R E T A L .

FIG. 1. Locations used in the study to develop seasonal prediction
models. Climatologies and datasets were developed for each region.
Note that the Caribbean Sea and Gulf of Mexico are subbasins, while
the two United States coastal zones are landfall regions.

casting hurricane activity in specific subbasins of the
North Atlantic. The statistical methodology we employ
is multivariate discriminant analysis, and we find that
this methodology produces statistically significant fore-
casts for hurricane activity in the Caribbean Sea, for
intense hurricane activity in the Gulf of Mexico and the
Caribbean Sea, and for landfalling hurricanes along the
southeast coast of the United States.

We start by arguing for a sensible division of the
Atlantic basin in section 2. Data description and ex-
perimental design are given in section 3, followed in
section 4 by a hurricane climatology for each subbasin
or landfill region. The specifics of multivariate discrim-
inant analysis, the model-building algorithm, and the
statistical significance tests used are provided in section
5. We conclude by presenting the results in section 6
and a summary and discussion in section 7.

2. Specific subbasins

Having argued that location should play a larger role
in seasonal prediction schemes, the determination of
specific locations requires careful selection. For pur-
poses here, we chose subbasins and landfall regions a
priori based on precedent and geography rather than on
hurricane climatology or model optimization. The sub-
basins are identified in Fig. 1 and consist of the Carib-
bean Sea and the Gulf of Mexico; the landfall regions
are the southeast coast and the northeast coast. The Ca-
ribbean Sea and the Gulf of Mexico are natural sub-
basins, while the two East Coast landfall regions consist
only of coastal strike zones. Necessity requires that the
East Coast landfall regions only consist of these coastal
strike zones since no natural geographic markers exist
to designate any natural subbasins. Furthermore, any
such attempt to create an East Coast subbasin(s) would

by nature be arbitrary; model accuracy could be im-
proved by simply expanding the subbasin domains. A
further justification for allowing both subbasin and land-
falling regions in this study was that tropical cyclones
of hurricane intensity in either the Gulf of Mexico or
the Caribbean Sea rarely fail to hit a populated area
(e.g., only four hurricanes in the Gulf of Mexico failed
to make landfall during 1950–95), while many storms
recurve quite close to the East Coast, never making
landfall.

Within each region, we develop a climatology and
conduct a search for useful discriminant models to pro-
vide long-range forecasts. The available predictors for
the models consist of the usual seasonal activity pre-
dictors (Gray et al. 1992, 1993) for the Gulf of Mexico
and the Caribbean Sea, while additional predictors are
required for the East Coast regions. Using an algorithm
that chooses a subset of predictors, we find that signif-
icant and skillful models can be developed for almost
all of the regions. This represents a new result in the
field of seasonal hurricane forecasting and suggests new
avenues for future exploration.

3. Data

To develop our prediction models, we used data made
available from the National Hurricane Center’s best
track dataset, the National Center for Atmospheric Re-
search, and Gray et al. (1992, 1993). The datasets cre-
ated required spatial and temporal stratification. Inde-
pendent datasets were created for the four locations of
interest: the Gulf of Mexico and the Caribbean Sea (the
two subbasins), and the lower and upper Atlantic coastal
regions (the two landfall regions). We also stratified the
prediction locations by prediction date: some locations
had successful models initialized by 1 December of the
preceding year, while other locations and climatological
considerations necessitated an initialization date of 1
August. We chose the earliest prediction date for which
our models obtained statistical significance; except for
predicting regular hurricane activity in the Caribbean
Sea, all statistically significant models required the use
of the 1 August data. The model predicting Caribbean
hurricane activity achieved a statistically significant re-
sult using 1 December data; this result did not improve
with the 1 August data. Finally, we created separate
datasets for the two ocean basins according to tropical
cyclone intensity: one set for all storms of at least hur-
ricane intensity ($ 33 m s21) and one set for storms of
only major hurricane intensity ($ 50 m s21). We did
not attempt to stratify the East Coast landfall regions
by storm intensity due to insufficient numbers of land-
falling intense storms.

We faced an additional concern in stratifying the da-
tasets by storm intensity since the best track dataset
contains a probable high bias in wind speeds for storms
in the 1944–69 time period (Landsea 1993). To account
for this, we implemented the bias correction suggested
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by Landsea (1993) by deflating storm wind speed values
by 2.5 m s21 for those tropical cyclones in the 1950–
69 time period. Using this criterion, the omission of
Hurricane Francelia of 1958 as an intense Caribbean
hurricane caused the only modification of our dataset.
Hurricane Camille of 1969 was the only other candidate
that could have affected our dataset; however, since the
storm had a reported pressure of 964 mb and reported
sustained winds of 52 m s21 several hours before making
landfall in Cuba, and since it was in a rapidly deepening
phase at this time, we retained Camille as an intense
Caribbean hurricane. We note that the classification of
intense hurricanes chosen here may not necessarily
agree with other researchers’ classifications as other fac-
tors besides measured wind speeds (e.g., storm surge
height) were sometimes chosen to form the classification
basis; we utilized the wind speeds in order to maintain
an objective classification criterion. Neumann et al.
(1993) provide a good reference for determining storm
intensities using other criteria.

The datasets for each region span the time frame from
1950 until 1995. While reliable hurricane track data
exists before 1950, incomplete upper-air data records
preclude the usage of data before this date. Incomplete
archive records also caused a few recent years to be
omitted for the East Coast landfall regions. The actual
construction of the datasets for each region proceeded
as follows.

1) Define the boundaries of the subbasin or the landfall
region;

2) determine the number of tropical cyclones of hur-
ricane intensity for each year within those bound-
aries;

3) omit any tropical cyclones that occurred in that year
prior to the initialization date;

4) classify the year as active if one or more hurricanes
occurred that year, otherwise classify it as inactive;

5) repeat steps 2–4 for intense hurricanes (excluding
the two East Coast regions); and

6) add the appropriate pool of potential predictor co-
variates for each year.

For step 2 above, we define an occurrence of a hur-
ricane within the predefined boundaries according to
whether the location of interest is a subbasin or a landfall
region. If the location is a subbasin, we require that at
least one-half of the circulation cross the line demar-
cating the subbasin boundaries (refer to Fig. 1 for these
boundary lines). Likewise, for landfall regions, a storm
is classified as an occurrence within that region if at
least one-half of the circulation crosses the coastline (or
barrier islands if appropriate). This definition produces
a couple of classification distinctions based on small
differences in storm tracks. For example, Hurricane Bet-
sy of 1965 is classified as a landfall on the southeast
coast while Hurricane Inez of 1966 is not; even though
Inez affected the Florida Keys (not within southeast
coast landfall region), it neither produced hurricane con-

ditions on the Florida peninsula nor did at least one-
half of its circulation cross the southeast coast landfall
zone. On the other hand, hurricane Betsy’s center of
circulation passed directly over the southern Florida
peninsula. Note finally that this definition allows for a
single storm to count as an occurrence in more than one
region or subbasin; Hurricane Betsy counts as both a
southeast coast landfall and as an intense hurricane in
the Gulf of Mexico subbasin.

In addition, two elements of this construction process
require particular attention. First, the boundary regions
were chosen by geographical considerations for the sub-
basins and by arbitrarily dividing the East Coast north
and south of 358N. These boundaries were constructed
prior to model selection and validation, so that no need
would exist to cross-validate the model statistics over
geographical regions. Furthermore, the use of 358N to
segregate the northeastern coastal area has historical
precedence (Kocin and Keller 1991). Kocin and Keller
(1991) also justify the use of this latitude by the change
in the orientation of the coast. The other issue to note
is that we classified a year as active or inactive for a
region without regard to the total number of storms that
occurred within that region. The presence of at least one
storm was sufficient to deem that year as active.

The pool of potential predictor covariates for the 1
December datasets consist of the familiar predictors
identified by Gray et al. (1992). These predictors are 1)
the autumnal rainfall within the Sahelian region of west-
ern Africa (RS); 2) the autumnal rainfall within the Gulf
of Guinea of western Africa (RG); 3) the forward ex-
trapolated 30-mb stratospheric quasi-biennial oscillation
(QBO) (Q30); 4) the forward extrapolated 50-mb QBO
(Q50); and 5) the forward extrapolated vertical shear
magnitude between the 30- and 50-mb QBO winds
(QDIFF). Similarly, the 1 August datasets include the
nine hurricane activity predictors of Gray et al. (1993).
Besides the five predictors described above (updated
with early summer data), the 1 August data include four
additional predictors: 1) the Southern Oscillation index
(SOI); 2) the eastern equatorial Pacific sea surface tem-
perature anomalies (SSTA); 3) the 200-mb zonal wind
anomaly in the Caribbean (ZWA); and 4) the sea level
pressure anomalies in the Caribbean (SLPA). The strat-
ospheric QBO values are not forward extrapolated for
the 1 August datasets.

The Gray et al. (1992, 1993) predictors were insuf-
ficient in assessing and modeling the risk of hurricane
activity affecting the eastern United States since these
predictors are entirely embedded in the large-scale trop-
ical climate, while much of the East Coast lies well
within the effects of midlatitude systems. Consequently,
a search for additional predictors was undertaken; iden-
tification of candidate predictors was developed by con-
sideration of known physical mechanisms affecting hur-
ricane development and tracking. Since vertical wind
shear, enhanced baroclinicity, and sea level pressure
anomalies are all well-known factors affecting hurricane
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TABLE 1. These are some of the available model predictors for the
southeastern United States landfalling forecast model initialized by
1 August. HURR YEAR indicates whether or not a tropical cyclone
of hurricane intensity made landfall in the southeastern United States
during that year. Note that VS-MIA/PBI, SLP-HAT, and JCSLP were
actually chosen for predicting landfalling storms in the southeastern
United States.

Year
H U R R
YEAR? VS-HAT

VS-MIA/
PBI SLP-HAT SLPG JCSLP

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974

Yes
No
Yes
Yes
Yes
Yes
No
No
Yes
Yes
Yes
No
No
No
Yes
Yes
No
No
Yes
No
No
Yes
No
No
No

2.09
2.72
1.53
4.70
6.63
8.95
2.52
9.34
5.09
6.30

12.44
3.20

12.31
8.70
8.89
3.89
9.91
6.41
3.75
2.55
5.70
4.14
1.20
7.82
7.70

8.48
7.67
3.47

11.05
10.62

7.02
7.19
8.93
4.02
9.87

10.16
3.57

12.07
8.85

10.49
7.06
6.87
5.39
3.81
6.61
4.35
9.69
3.83
7.73
5.68

1019.0
1017.0
1020.0
1017.0
1015.0
1018.0
1017.0
1016.0
1018.0
1019.0
1016.0
1017.0
1015.0
1016.0
1017.0
1017.0
1015.0
1017.0
1020.0
1016.0
1017.0
1017.4
1019.3
1017.0
1017.8

20.18
20.13
20.06
20.13
20.24
20.12
20.31
20.24
20.31

0.02
20.17
20.30
20.25
20.25
20.06
20.12
20.06
20.13
20.06
20.12
20.12
20.19
20.16
20.11
20.22

1018.3
1016.8
1018.8
1016.8
1015.0
1017.0
1017.0
1015.0
1017.5
1018.0
1015.0
1018.5
1015.8
1016.3
1016.8
1017.0
1014.8
1017.8
1019.3
1016.0
1017.0
1017.1
1018.5
1016.2
1017.0

1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

No
No
No
No
Yes
No
No
No
No
Yes
Yes
Yes
No
No
Yes
No
No
Yes

8.66
3.42
3.96
6.06

11.81
7.27
4.94
2.47
4.96
4.24
4.56
4.71
1.59
7.43
4.46
1.89
3.48
3.56

7.42
3.83
8.87

11.85
8.14
8.56
7.71
8.06
3.99
9.19
5.80

13.92
7.69
3.82
6.83
3.45

10.01
7.27

1017.4
1016.0
1018.4
1017.1
1017.5
1016.3
1016.8
1018.0
1017.2
1018.4
1017.5
1016.4
1017.3
1019.1
1018.0
1017.6
1016.5
1016.7

20.14
20.40
20.18
20.15
20.16
20.28
20.19
20.21
20.33
20.19
20.20
20.34
20.14
20.17
20.10
20.08
20.21
20.33

1017.0
1016.2
1018.2
1017.0
1017.4
1015.7
1016.5
1017.3
1016.4
1017.4
1017.0
1017.0
1017.2
1018.1
1017.9
1017.5
1016.7
1017.1

development and movement (Gray 1988; Kimberlain
1996), we considered several available predictors that
addressed these factors. Some of these additional po-
tential predictors were 1) July monthly mean sea level
pressures at several East Coast reporting stations (SLP);
2) the July monthly coastal sea level pressure (JCSLP)
averaged over these same East Coast stations; 3) the
magnitude of the vertical shear of the average July
monthly 700- and 200-mb winds (VS) for several East
Coast sounding locations; 4) the least squares estimated
meridional component of the gradient of the sea level
pressure along the East Coast (SLPG, units of millibars
per degree of latitude); and 5) the least squares estimated
meridional component of the gradient of the geopoten-
tial heights on several constant pressure surfaces (HGxx,
units of meters per degree of latitude, xx subscript refers
to height level). Consideration of quasigeostrophics
(i.e., baroclinic effects) leads somewhat to the choice
of the candidate predictors. That is, we examined these
pressures, height gradients, vertical shear, and similar
factors as these represent some of the key influences in
the midlatitudes as compared to the Tropics. Note that
this does not represent a complete list of the potential
predictors that we examined. For example, we also did
some preliminary investigation of 500-mb monthly
mean steering flows; since these showed no significant
predictive value in preliminary examination, we omitted
these from the later compilation. Furthermore, note that
in constructing these predictors we were unable to ob-
tain monthly upper-air records after 1992 for some re-
porting stations, which precluded the use of 1993–95
data for the United States east coast.

The VS was computed as follows. First, for a sound-
ing location, we took the observed 700- and 200-mb
winds for both the 0000 and 1200 UTC soundings of
each day and decomposed each observed wind into its
respective u and v components. Next, we calculated the
monthly average u and v components for both the 700-
and 200-mb winds. Finally, we computed the magnitude
of the vertical shear, using the usual Euclidean distance
function:

VS 5 [(ū700 2 ū200)2 1 (v̄700 2 v̄200)2]1/2. (1)

During the time period that these upper-air obser-
vations were available, the rawinsonde release points
were relocated for some locations; the move of the re-
lease point from Miami (MIA) to West Palm Beach
(PBI) in 1977 was by far the largest and most serious
of these moves. Since the VS calculated from the MIA/
PBI later proved to be one of the most important pre-
dictors, we ran some statistical tests to determine if any
significant quantifiable changes occurred due to the re-
location. To perform these tests, we investigated to see
if the mean 500-mb geopotential heights, wind com-
ponents, and temperatures showed any significant dif-
ferences between the two sites. More levels were not
chosen for the statistical tests so that we could avoid a
statistical multiple comparison problem. A standard t

test could not be employed due to unequal variances
between the two sites, so we employed Mood’s median
test (Daniel 1990) to ascertain any significant differ-
ences; p values for all tests were greater than 0.1, hence
we concluded that the change in the release point had
no detectable difference on the observed soundings.

Table 1 lists some of the additional predictors avail-
able for the model building process in the southeastern
United States coastal region. The hurricane activity clas-
sification coefficient for southeastern United States
landfalling storms is listed as well. The listing of the
additional potential predictors in this table is incomplete
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FIG. 2. Frequency distribution of hurricane (solid) and intense
(dashed) hurricane days in the Gulf of Mexico by time of year for
the period of 1950–95. The distribution has been smoothed using
locally weighted scatterplot smoothing (LOWESS, Cleveland 1979),
which is a technique that smooths the data using an iterated weighted
least squares fit of locally fitted polynomials. One hurricane day is
defined as four 6-h periods in which a tropical cyclone is observed
to have hurricane intensity (Gray et al. 1992). Tick marks indicate
the middle of the month. Note almost all intense hurricane activity
occurs after 1 August (vertical line).

and is provided so that our results may be reproduced.
Many other candidate predictors were evaluated that are
not provided in this table; these included vertical shears,
height gradients, and other factors.

4. Climatology

We present a climatology of hurricane activity within
the Gulf of Mexico, the Caribbean Sea, and the two
landfalling regions. Our focus is to lay the foundational
understanding necessary to evaluate the utility of our
forecast models developed within each prediction re-
gion. In consideration of this goal, we describe the ex-
pected incidence of (intense) hurricane activity on a
regional basis, note differences in this from location to
location, and discuss some of the known climatological
factors involved.

We begin by noting that climatic conditions that gov-
ern the favorability of hurricane formation (e.g., pres-
sure anomalies) and development within specific geo-
graphic regions of the North Atlantic basin are not very
well understood. Large-scale circulation patterns that
exert a control on the eventual paths of tropical cyclones
have also received little attention in the literature. Such
steering winds are a function of the major (dominant)
pressure systems that may often have some persistence
throughout a season (Ballenzweig 1959).

Ballenzweig (1959) observed that atmospheric con-
ditions that dictate the favorability of hurricane for-
mation and growth are unique to individual basins. For
instance, anomalous easterly flow in the middle and
upper troposphere supports increased tropical cycloge-
nesis and conditions capable of spawning hurricane ac-
tivity in the eastern North Atlantic and the Gulf of Mex-
ico. On the other hand, an extension of the polar trough
in the western Caribbean Sea during the early and late
season has a substantial impact on the frequency of
tropical cyclogenesis in the Caribbean Sea (Ballenzweig
1959).

Recently, factors related to hurricane development for
the entire North Atlantic basin have been discovered
(Gray 1984a; Shapiro 1989), but individual regions still
lack explanation. Landsea et al. (1992) were able to link
western Sahelian monsoon rainfall to the number of
intense landfalling hurricanes for the United States.
They also noted that the numbers of intense hurricanes
have declined substantially since the late 1960s. Land-
sea and Gray (1992) also showed a substantial link be-
tween Caribbean hurricane and intense hurricane activ-
ity and African rainfall; increased western African rain-
fall was associated with far more Caribbean hurricanes.

For the Gulf of Mexico, hurricane activity is largely
confined to the period from mid-August to mid-October
and is coincident with the peak for the entire Atlantic
hurricane season. Hurricane incidence outside of this
window is limited and episodic. In fact, it is rather rare
for a hurricane to be present in the Gulf of Mexico
during June or July or after the middle part of October,

but it is not without precedent. Hurricane Audrey (1957)
is the only recorded intense hurricane during the early
season (before 1 August) in the Gulf of Mexico during
the 1950–95 period; it was responsible for a tremendous
disaster along the Louisiana coast.

For the period of 1950–95, 68 hurricanes were noted
in the Gulf of Mexico for an average of 1.47 per season.
Of the 68, 40 made landfall along the United States
coast. The Gulf Coast states averaged nearly one hur-
ricane landfall per year during this time. Nevertheless,
salient absences of hurricane activity have occurred in
this basin. No hurricanes were observed during the fol-
lowing seasons: 1952, 1958, 1962, 1976, 1978, 1981,
1984, 1991, and 1994. Furthermore, a substantial de-
cline in intense hurricane numbers is noted since the
early 1970s. Despite this, overall hurricane activity has
remained relatively constant. Alternative sources of hur-
ricane formation (e.g., baroclinic developments) may be
offsetting the decline (Elsner et al. 1996; Kimberlain
1996).

Figure 2 shows the intraseasonal variability of Gulf
of Mexico hurricanes; the depiction includes the intra-
seasonal frequency distribution for both intense hurri-
cane activity and all hurricane activity. As the empirical
distribution indicates, the use of input variables to in-
itialize a model on 1 August is reasonable as the ma-
jority of all intense hurricane activity in this basin comes
after this date.

A total of 50 hurricanes occurred within our basin
boundaries of the Caribbean Sea between 1950 and 1995
for an average of approximately one hurricane per sea-
son. The 1950 season had four hurricanes occur in the
Caribbean basin, and a number of other years have had
three in a single season (1951, 1955, 1961, 1966, 1995).
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FIG. 3. Frequency distribution of hurricane (solid) and intense
(dashed) hurricane days in the Caribbean Sea by time of year for the
period of 1950–95. The distribution is LOWESS smoothed. One hur-
ricane day is defined as four 6-h periods in which a tropical cyclone
is observed to have hurricane intensity. Tick marks on the abscissa
indicate the middle of the month. Note that almost all hurricanes and
intense hurricanes occur after 1 August (vertical line).

Hurricanes in the Caribbean basin were much more
prevalent during the 1950s and 1960s, with only a few
years experiencing no hurricane activity. Since the mid-
1970s, there has been a substantial reduction in the hur-
ricane incidence in this basin. Given that moderate to
strong El Niño events may inhibit hurricane activity
within this region (Gray 1984a), the recent extended
episodes of El Niño activity may have caused some of
this observed reduction in hurricane incidence. Recent
African rainfall deficits may also have played a role in
this reduction. In fact, no hurricane activity was ob-
served whatsoever during the recent periods of 1982–
86 and 1990–94. Additional years devoid of hurricane
activity include 1957, 1959, 1962, 1965, 1972, 1973,
1976, and 1977. It is noted that many of these years are
coincident with moderate to strong El Niño events.
Landsea et al. (1994) provide a good reference for Ca-
ribbean hurricane variability on a multiyear timescale.
It is possible that the 1995 and 1996 hurricane seasons
may represent a sharp return of Caribbean hurricane
activity.

Unlike Gulf of Mexico hurricanes, there has been a
large reduction in hurricane numbers since 1970 in the
Caribbean Sea. Likewise, a decrease in intense hurricane
activity is evident after 1970. These events are nearly
coincident with the reduction in tropical-only hurricane
formations noted by Elsner et al. (1996) and the asso-
ciated African rainfall deficits. Reading (1990) sug-
gested that the 1930s and 1950s were characterized by
high levels of tropical cyclone activity within this basin.
Furthermore, Reading (1990) revealed that even though
frequencies of Caribbean hurricanes had declined during
the 1960s through the 1980s, they remained much higher
than the deficits experienced during the 1870s, 1910s,
and 1920s.

Figure 3 shows the intraseasonal variability of hur-
ricane activity in the Caribbean Sea. For the most part,

activity is confined to the August–October period; in-
tense hurricane activity is also limited to the same time
period with the centroid near the absolute peak of the
hurricane season. Since most of the intense hurricane
activity occurs after 1 August, a predictive model based
on data available at that time retains its utility.

The zone from the east coast of Florida to the Car-
olinas is particularly vulnerable to hurricane strikes.
However, most hurricane landfalls and all intense hur-
ricane landfalls during the 1950–95 period occurred af-
ter 1 August but before 15 October, thus validating the
use of data to make a 1 August forecast. In fact, for the
period of 1950–92 (the period for which we have all
available predictor data), 21 of the 23 storms that made
landfall did so after 1 August.

For the northeast coast of the United States (the area
north of 358 latitude), a long-term analysis of hurricane
threats and landfalls reveals alternating periods of ac-
tivity (Kocin and Keller 1991). The most recent periods
of extensive hurricane activity were the 1890s and then
the 1950s and 1960s. Also of note is the relative in-
activity between 1900 and 1930 and the recent lull in
activity since the mid-1960s.

Between 1950 and 1995, a total of 11 hurricanes made
direct landfall on the northeastern landfall region. Of
the 11, only one was intense. The origins of the vast
majority of the hurricane landfalls in this region were
either over the tropical Atlantic (south of 208N and east
of 608W) or in the western Atlantic (Kocin and Keller
1991). For the purposes intended here, an insufficient
number of storms occurred during the period of usable
upper-air data (1950–95); consequently, we did not at-
tempt to model landfalling storms for the northeastern
United States since climatological accuracy was already
too high. We should caution that the relative inactivity
(compared to other regions) during our data period and
subsequent lack of ability to develop a prediction model
does not imply that the northeast coast is immune to
the threat of a hurricane nor will the activity level always
remain this low. Rather, we were unable to develop a
model only because an insufficient number of storms
occurred during the reliable upper-air data recording
period.

5. Multivariate discriminant analysis

Here we describe the methodology of multivariate
discriminant analysis as it pertains to the problem of
predicting hurricane activity in subbasins of the North
Atlantic. We also describe the predictor selection al-
gorithm and the statistical tests used to ascertain model
significance.

For our situation, we have a categorical response vari-
able consisting of two distinct groups (i.e., 1 for a non-
hurricane year and 2 for a hurricane year). For each
year, we also have the values of several continuously
valued candidate predictor variables (covariates). Linear
discriminant analysis is a statistical method that seeks
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FIG. 4. Example of discriminant analysis separation of predictor
space. The predictor set is the one used for predicting the occurrence
of Caribbean hurricanes by 1 December. It shows the separation of
the Caribbean hurricane years by the standard deviations of rainfall
in the Sahel (RS) and rainfall in the Gulf of Guinea (RG) as measured
by 1 December of the preceding year. Observations to the above and
right of the diagonal line would be classified as an active year (at
least one hurricane). The graphical accuracy represented above is
identical to the cross-validated accuracy for this case.

to classify categorical data as a linear function of its
covariates (Mardia et al. 1979). It is the precise analog
of linear regression analysis, except that the dependent
(response) variable is now categorical instead of being
a continuously valued random variable.

Linear discriminant analysis works by creating a lin-
ear function of the covariates for each group. Consider
the case where we have two groups (1 and 2) and four
covariates (X1, X2, X3, and X4). The methodology works
by using the data in a sample to estimate linear functions
for each group. Using the notation aij to denote the
estimated linear coefficient for the ith group and jth
covariate, the method would yield

group 1—Score 5 a 1 a X 1 a X 1 a X1 10 11 1 12 2 13 3

1 a X14 4

group 2—Score 5 a 1 a X 1 a X 1 a X2 20 21 1 22 2 23 3

1 a X . (2)24 4

An observation is then classified into either group 1 or
2 if the corresponding value of Scorei is the largest of
the two values. Given a new observation for which we
have values of the covariates but do not know the proper
classification, we can use the linear discriminant func-
tions to predict its classification.

A major issue for the procedure described above is
the choice of the optimal method to estimate the linear
coefficients since it may depend upon the distribution
of the variables (Mardia et al. 1979). Furthermore, dis-
criminant methodology is technically a Bayesian clas-
sifier, so that the choice of the optimal method should
seek to maximize the associated Bayesian classification
rule. For the case of only two categories, the classifi-
cation method developed by Fisher asymptotically max-
imizes the Bayes classification efficiency regardless of
covariate distributions, and the method in itself repre-
sents an effective classification method regardless of
statistical considerations provided that the two groups
have the same population covariance matrices (Hand
1981).

Some mathematical notation is helpful in explaining
how the score functions are obtained. Let X be a p 3
1 column vector (p predictor variables) that denotes the
vector of covariate values for an observation in the sam-
ple. Let M1 and M2 be p 3 1 vectors of the means of
the sample covariates (the centroid) for groups 1 or 2.
Furthermore, let S1 and S2 be the p 3 p sample co-
variance matrices for the two groups. Assuming that
each group has the same covariance structure, we also
define S as the p 3 p pooled sample covariance matrix
(S is a linear combination of S1 and S2).

The linear coefficients are hence developed by using
Fisher’s method; as used here, this is done by consid-
ering the distance between a sample observation and
the centroid of all sample observations for that group.
The distance metric used in this case is the so-called
Mahalanobis distance function, which adjusts the dis-

tance in each predictor dimension according to the vari-
ance of that predictor so that the measure is scale in-
variant (Mardia et al. 1979). This distance measure D
is

5 (X 2 Mi)TS21(X 2 Mi).2Di (3)

An observation would be classified to group i if this
function were minimized for group i. Now the function
above is not linear in X; however, we can make the
expansion

5 S21Mi 2 2 S21X 1 XTS21X.2 T TD M Mi i i (4)

In the above expansion, the first term is constant for
group i, the second term is linear in X for group i, and
the last term is constant across all groups and may thus
be discarded for classification purposes. We have thus
obtained the estimates for (2) and can use these for
predicting new observations.

As an example of discriminant analysis, refer to Fig.
4. For simplicity, the graph shows only a two-predictor
case; these are the two predictors used in the model for
predicting the occurrence of a Caribbean hurricane (of
any intensity) initialized from the preceding December.
Since we have only two predictor variables, the linear
discriminant methodology partitions the plane by a line
and assigns observations to the two groups according
to which side of the line the observation lies. Here ob-
servations above and to the right of the line are allocated
as years for which a Caribbean hurricane will occur,
while observations below the line are allocated as years
for which a Caribbean hurricane will not occur. For this
classification, the in-sample error rate, as can be deter-
mined by the graph, is 0.196 (9 out of 46 are wrong,
giving an accuracy of 80.4%). In general, results are
somewhat improved by incorporating additional predic-
tors, but these results are difficult to depict graphically.
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For this method to be valid, a crucial assumption
requires each group to have identical true covariance
matrices. In the case of multivariate normal data, this
method is also optimal (Mardia et al. 1979). Since mul-
tivariate normal data rarely if ever occur in practice, an
alternative distance function may prove more accurate
in certain cases; however, this method works quite well
even when the data are far from normal.

Of far more importance to the work here is evaluating
how well the discriminant models classify the hurricane
activity years and hence determine their predictive abili-
ties. The naı̈ve approach is merely to evaluate the in-sam-
ple classification accuracy; however, as is well docu-
mented, such estimates are biased substantially low. Fur-
thermore, the in-sample classification accuracy increases
monotonically as additional predictors are added. Conse-
quently, cross-validation techniques are required to obtain
nearly unbiased error rate estimates (Hand 1981).

Since we are interested in maximizing the predictive
ability of the models, the model-building algorithm in-
cludes a search procedure that considers all possible
variable subsets. The algorithm selects the smallest vari-
able subset (in terms of number of predictors) that max-
imizes the cross-validated classification accuracy. To as-
sess the statistical significance of the selected model,
bootstrap techniques are used to find an approximate p
value (the significance level) using the cross-validated
classification accuracies as the simulated output variable
(Efron and Tibshirani 1993). This approach was man-
dated to avoid selection biases that might occur using
other significance tests and to test specifically in ac-
cordance with our prediction objectives. The bootstrap
distribution is simulated here by randomly sampling
(with replacement) the predictor variable vectors for
each year while holding the observed classification vari-
able fixed.

We also evaluated the skill of the models versus naı̈ve
climatology by employing a normal approximation to
test the statistical significance of the model classification
accuracy versus the best that could be obtained by cli-
matology (Devore 1991). The test statistic z is given by

z 5 n1/2(pm 2 pc)(pc 2 )21/2,2pc (5)

where n is the number of years of data available, pm is
the cross-validated model classification accuracy, and
pc is the best accuracy that could be obtained from cli-
matology.

6. Results

We implemented the model selection algorithm for
all forecast locations for both hurricane activity and in-
tense hurricane activity. The algorithm was also imple-
mented for both available lead forecast times: December
of the preceding year and August of the current year.
The available predictors for selection in December con-
sisted of the usual Gray et al. (1992) forecast variables,
while the August available predictors included the usual

Gray et al. (1993) variables as well as our new predic-
tors.

As implied by previous discussion, useful models
could not be developed against climatology for hurri-
cane activity in the Gulf of Mexico or for landfalling
hurricanes along the northeastern coast of the United
States. The Gulf of Mexico has hurricane activity occur
nearly every year, while landfalling storms in the north-
eastern United States are a relatively rare event.

For the 1 December initialization, the algorithm iden-
tified a successful set of only two predictors for pre-
dicting hurricane activity in the Caribbean: the two Af-
rican rainfall estimates (RG and RS). The cross-vali-
dated model classification accuracy was 37/46 or 80.4%
correct. Statistical significance tests yielded a bootstrap
p value of less than or equal to 0.001 for the observed
cross-validation classification accuracy and a normal ap-
proximation p value of 0.002 when compared to the
climatological accuracy of 27/46 or 58.7%. Table 2
shows the cross-validated (hindcast summary) for each
year from 1950 to 1995. Note that no error bias exists,
that is, the model forecast errors do not show any con-
sistent pattern. For this model, the cross-validated hind-
cast error was identical to the in-sample error estimate;
refer to Fig. 4 for a graphical depiction of the classi-
fication regions.

No other successful forecast models could be initial-
ized by 1 December. However, we were able to identify
three useful models using data up to 1 August. In par-
ticular, skillful models were possible for the Caribbean
Sea and the Gulf of Mexico for predicting the occur-
rence of intense hurricanes. This still provides good
information for the remainder of the season given that
only four intense hurricanes have occurred in these ba-
sins since 1944 before 1 August of each year (Landsea
1993). The climatology of intense hurricanes for the
entire available record also shows that 98% of the ac-
tivity takes place after 1 August (Landsea 1993). Fur-
thermore, as discussed earlier, nearly all of the hurri-
canes striking the southeastern United States coastline
have done so after 1 August. Consequently, model pre-
dictions should retain the majority of their utility, al-
though earlier prediction dates would be desirable.

For predicting intense hurricanes in the Gulf of Mex-
ico, the algorithm identified a model that obtained a
cross-validated hindcast accuracy of 36/46 or 78.3%. In
achieving this accuracy, the algorithm selected three
predictors for the discriminant model: Q50, Q30, and
SOI. The best strategy using climatology would be to
predict no intense hurricane for each year, which would
give an estimated accuracy of 24/46 or 52.2%. We again
obtained bootstrap p values of less than or equal to
0.001, while the approximate z value versus climatology
was 3.54, also yielding a p value of less than or equal
to 0.001. Table 2 shows the hindcasts by year; again,
no notable prediction bias exists.

Slightly more significant results were obtained for
predicting intense hurricanes within the Caribbean ba-
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TABLE 2. Complete cross-validated hindcast summary for each
model. The RH and IH stand for regular hurricanes (hurricanes of
any intensity) and intense hurricanes, respectively. Errors are in bold-
face. Note the lack of forecast bias for each model. Observe also that
the 1971, 1975, and 1978 forecast years caused extensive model
difficulty.

Model:
Year

1 December
Caribbean RH

Actual
Hind-
cast

1 August
Gulf IH

Actual
Hind-
cast

1 August
Carr IH

Actual
Hind-
cast

1 August
southeast
U.S. RH

Actual
Hind-
cast

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974

Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
No
Yes
Yes
No
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
No
No
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
No
Yes
Yes
No
Yes
Yes
No
Yes
Yes
No
No
No
Yes

Yes
Yes
No
Yes
No
Yes
No
No
No
No
Yes
Yes
No
No
Yes
Yes
Yes
Yes
No
Yes
Yes
No
No
No
Yes

Yes
Yes
No
Yes
No
Yes
No
No
Yes
No
Yes
Yes
No
No
Yes
No
Yes
Yes
No
Yes
No
No
No
No
No

Yes
Yes
Yes
No
Yes
Yes
No
No
No
No
Yes
Yes
No
Yes
Yes
No
Yes
Yes
No
Yes
No
Yes
No
No
Yes

Yes
No
Yes
Yes
Yes
Yes
No
No
Yes
No
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
No
Yes
No
No
No
No
No

Yes
No
Yes
Yes
Yes
Yes
No
No
Yes
Yes
Yes
No
No
No
Yes
Yes
No
No
Yes
No
No
Yes
No
No
No

Yes
No
Yes
Yes
Yes
Yes
No
No
Yes
Yes
Yes
No
No
No
Yes
Yes
No
No
Yes
No
No
No
No
No
No

1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995

No
No
No
Yes
Yes
Yes
Yes
No
No
No
No
No
Yes
Yes
Yes
No
No
No
No
No
Yes

Yes
No
No
No
No
Yes
Yes
No
No
No
No
Yes
No
Yes
Yes
Yes
No
No
No
No
Yes

Yes
No
Yes
No
Yes
Yes
No
No
Yes
No
Yes
No
No
Yes
No
No
No
Yes
No
No
Yes

No
Yes
No
Yes
Yes
Yes
No
No
Yes
No
Yes
No
No
Yes
No
No
No
No
Yes
No
Yes

No
No
No
Yes
Yes
Yes
No
No
No
No
No
No
Yes
Yes
Yes
No
No
No
No
No
Yes

Yes
No
No
Yes
Yes
No
No
No
No
No
No
No
No
Yes
Yes
No
No
No
No
No
Yes

No
No
No
No
Yes
No
No
No
No
Yes
Yes
Yes
No
No
Yes
No
No
Yes
—
—
—

Yes
No
Yes
Yes
Yes
No
Yes
No
No
Yes
No
Yes
No
Yes
Yes
No
No
No
—
—
—

FIG. 5. Simulated bootstrap distribution (4000 simulations) of the
hindcast accuracy for the five-predictor model of landfalling hurri-
canes on the southeastern coast of the United States. Note the location
of our model accuracy relative to the distribution.

sin. Our algorithm selected a three-predictor model
achieving a cross-validated hindcast accuracy of 37/46
or 80.4% using the following predictors: Q30, RS, and
ZWA. Climatological prediction accuracy was identical
to the Gulf of Mexico, predicting no intense hurricane
activity for an accuracy of 25/46 or 54.3%. The boot-
strap p value obtained was less than or equal to 0.001,
while the normal approximation z value was 3.55, yield-

ing a p value also less than or equal to 0.001. Again,
indicated in Table 2, no prediction bias was noted in
the cross-validated hindcasts.

We were unable to obtain a skillful model for pre-
dicting intense landfalling hurricanes in the southeastern
United States; however, we did obtain a significant mod-
el for landfalling hurricanes of any intensity. The model
selected was a five-predictor model using RS, QDIFF,
the 700–200-mb vertical shear in the Miami–West Palm
Beach area (VS-MIA/PBI), the July monthly sea level
pressure in Cape Hatteras (SLP-HAT), and the July
monthly East Coast sea level pressure average (JCSLP).
Cross-validated hindcast model accuracies stood at
35/43 or 81.4%, which clearly exceeded climatological
prediction accuracies of 25/43 or 58.1%. Statistical sig-
nificance tests of the model yielded a bootstrap p value
of 0.0005 and a normal approximation z score versus
climatology of 3.09, which has a corresponding p value
of 0.001. To illustrate the significance of this model,
Fig. 5 shows the simulated bootstrap distribution (based
on 4000 simulations) of the hindcast accuracy; as can
be seen, the observed value is in the extreme tail of the
simulated distribution. As was the case for the other
three models, Table 2 shows that no prediction bias
exists with this model. To help summarize our results
for this section, we present Table 3 for easy reference.

7. Discussion and conclusions

As with any study or result using purely statistical
methodology, one must maintain awareness that statis-
tical association does not necessarily imply causality.
Nevertheless, we may cautiously interpret the results,
particularly where past studies have indicated or implied
a physical linking mechanism. Of particular interest
with the current results are the different subsets of pre-
dictors identified with the different prediction locations.
We note that good historical precedence exists to in-
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TABLE 3. This table summarizes the model results for the statistically significant models. Here, RH stands for hurricanes of all intensities,
while IH indicates intense hurricanes only.

Forecast region Prediction date Predictors used

Climatolo-
gical

accuracy
Model

accuracy
t test

p value

Caribbean RH
Caribbean IH
Gulf of Mexico IH
Southeast landfall RH

1 December
1 August
1 August
1 August

RG, RS
Q30, RS, ZWA
Q50, Q30, SOI
RS, QDIFF, VS-MIA/PBI, SLP-HAT, JCSLP

58.7%
54.3%
52.2%
58.1%

80.4%
80.4%
78.3%
81.4%

0.002
,0.001
,0.001

0.002

dicate that the results obtained are not at all surprising,
especially where the familiar Gray et al. (1992, 1993)
predictors are utilized. Somewhat more dubious inter-
pretation is required with our new predictors.

Before interpretation of results can commence, a brief
discussion of tropical-only (TO) versus baroclinically
influenced (BI) hurricanes is required. A TO hurricane
is defined as a tropical cyclone that first achieves hur-
ricane intensity ($33 m s21) devoid of any enhancing
midlatitude baroclinic influences; otherwise, it is a BI
hurricane (Hess et al. 1995, Kimberlain 1996). Baro-
clinic influences can include interactions with midlati-
tude systems, synoptic-scale forcing caused by upper-
level troughs, and initial tropical cyclone genesis caused
by baroclinic zone vorticity generation. Hess et al.
(1995) were able to show that the seasonal prediction
models developed by Gray et al. (1992, 1993, 1994)
were actually forecasting only the TO component of the
hurricane season. Furthermore, Elsner et al. (1996) not-
ed that 78% of all intense hurricanes were of the TO
classification, though later baroclinic influences may
have contributed to some of the TO hurricanes obtaining
intense hurricane status.

We note first that the 1 December prediction model
for Caribbean Sea hurricanes of any intensity was linked
entirely to the African rainfall parameters. As the Af-
rican rainfall values increase relative to the long-term
average, the likelihood of a Caribbean hurricane in-
creases. The result is entirely intuitive since the great
majority of hurricanes that form or track in the Carib-
bean Sea are of the TO type. Hence, the increase in
African rainfall drives an increase in TO hurricanes that
form from easterly waves; these in turn may eventually
track over portions of the Caribbean Sea.

In contrast to the prediction of regular Caribbean hur-
ricane activity, we find that the models predicting in-
tense hurricane activity depend much more strongly
upon variables measuring the vertical structure of the
wind. While the Caribbean intense hurricane activity
model still uses an African rainfall parameter, due most
likely to the TO nature of Caribbean hurricanes, the
other two predictors generally measure the wind envi-
ronment that would be available to any tropical cyclone
present within the Caribbean Sea. We hypothesize that
the predictors here consist of two parts: a part to indicate
whether or not a hurricane will be present (RS) and a
part to indicate the favorability of the storm relative

environment (Q30 and ZWA). The possible physical
mechanism relating the QBO phase to hurricane devel-
opment and maintenance has been discussed by Shapiro
(1989) and Gray et al. (1992). The most likely expla-
nation involves how well the troposphere physically
couples with the lower stratosphere, though debate re-
mains as to the exact nature of the coupling. Neverthe-
less, the effect upon intense hurricanes is clear. We note
again that the QBO does relate to the formation of TO
hurricanes that generate intense hurricanes. The ZWA
parameter very clearly relates to the vertical wind shear
environment that would be felt by a storm; clearly, the
better the environment, the more likely a storm could
obtain intense hurricane status.

We note an even larger dependence of Gulf of Mexico
intense hurricanes upon wind parameters. Here the en-
tire prediction set consists of measurements of the ver-
tical wind structure, though the relationship of the SOI
upon this deserves some comment. As is well known,
warm El Niño conditions in the equatorial Pacific en-
hance convection and result in strong upper-tropospher-
ic jets that traverse the Atlantic. Gray (1984a) docu-
mented the effect of warm events upon upper tropo-
spheric winds as vertical wind shear is greatly enhanced
during warm El Niño conditions.

The other two variables in the Gulf of Mexico intense
hurricane model, Q50 and ZWA, also pertain to vertical
wind shear and structure. Noting that hurricanes occur
nearly every year in the Gulf of Mexico and that the
Gulf of Mexico experiences extensive BI hurricanes in
addition to TO hurricanes (Elsner et al. 1996), we hy-
pothesize that the only predictable criterion to devel-
oping an intense hurricane within the Gulf of Mexico
is the storm relative environment since tropical cyclone
activity is otherwise so frequent. Since the lack of sig-
nificant vertical wind shear is an integral part of a fa-
vorable hurricane environment, the algorithm’s identi-
fication of these variables for predictive purposes has
legitimate physical justifications.

Interpretation of model results is somewhat more dif-
ficult for the southeastern United States coastline. The
presence of RS and the QBO shear suggest that the usual
tropical-only element in the total number of Atlantic
storms plays a role. However, the role of the East Coast
sea level pressures and the 700–200-mb vertical shear
over south Florida is somewhat more difficult to ascer-
tain. It is possible that the sea level pressures could be
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FIG. 6. Contour plot of southeast United States landfalls by VS-MIA/PBI and SLP-HAT. Here each point
represents a year from the data record; a label of 1 indicates that one or more landfalling hurricanes occurred
that year. The contours were obtained by fitting a two-parameter logistic model (Neter et al. 1989) to the
data.

a measurement of tropical cyclone steering mechanisms,
provided that climatological persistence occurs. We
speculate also that the July monthly vertical shear mea-
sured over south Florida could indicate the extent of the
intrusion of midlatitude synoptic-scale features into the
subtropics of the southeastern United States coast. An-
other possibility is that this shear is measuring the pres-
ence or absence of subtropical (or polar) jets within the
region. Nevertheless, these predictors do not lend them-
selves to easy interpretation. For example, Fig. 6 dis-
plays the probability contours of a southeast coast land-
fall using only the VS-MIA/PBI and SLP-HAT variables
(note that this will not have the accuracy of a full-
variable model). As is evident, the highest likelihood of
a landfall is associated with relatively high July monthly
Hatteras sea level pressures and high vertical shears over
south Florida. The associated mechanisms, if any, pose
a difficult research problem.

We summarize this section by noting that our results
hold in accord to those noted by other researchers but
applied to more specific problems. As discussed in the
climatology section, Ballenzweig (1959) noted that dif-
ferent features accounted for tropical cyclone genesis
and motion within different regions. Our models clearly
utilize different predictors within each region. Landsea
et al. (1992) showed that intense hurricanes making
landfall on the United States east coast are related to
African rainfall, while no such association holds for the
Gulf of Mexico. Our models failed to incorporate rain-
fall as a predictor for intense hurricanes in the Gulf of
Mexico while using these everywhere else, holding in

accord to these results. The division of hurricanes into
TO and BI storms and their relative predictability using
Gray et al.’s (1992, 1993) seasonal predictors is also
affirmed here. Hess et al. (1995) showed that only the
numbers of TO storms are related to these predictors,
and we find that our models rely more heavily on these
predictors where TO storms dominate.

Finally, we must stress that the prediction models
developed here use data that were not idealized for our
purposes. We believe it likely that better predictors yet
exist of hurricane activity within certain regions; re-
search is currently underway to modify existing pre-
dictors and search for additional predictors. Further-
more, we did not investigate the utility of predicting
from other dates. For example, we did not determine
whether or not successful predictions are possible using
1 June data (i.e., the data from Gray et al. 1994). Also,
other statistical techniques may be more optimal for
certain regions, such as using logistic models [Neter at
al. (1989); note that this approach does not yield better
results for the prediction locations used here].

What we have shown is that specific and relatively
accurate prediction by region is possible using currently
available data. Information from these models could be
used to heighten the alert status of local authorities with-
in certain regions and allow meteorologists and insur-
ance companies to prepare for (intense) hurricane ac-
tivity within responsibility areas. We have also shown
an entirely new method of making seasonal predictions
using existing statistical techniques. It is likely that this
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is only a start to predictive technology of this form since
much work is yet required in this area.
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