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ABSTRACT

Research on trends in western North Pacific tropical cyclone (TC) activity is limited by problems associated

with different wind speed conversions used by the various meteorological agencies. This paper uses a quantile

method to effectively overcome this conversion problem. Following the assumption that the intensity ranks of

TCs are the same among agencies, quantiles at the same probability level in different data sources are

regarded as having the samewind speed level. Tropical cyclone data from the Joint TyphoonWarning Center

(JTWC) and Japan Meteorological Agency (JMA) are chosen for research and comparison. Trends are di-

agnosed for the upper 45% of the strongest TCs annually. The 27-yr period beginning with 1984, when the

JMA began using the Dvorak (1982) technique, is determined to be the most reliable for achieving consensus

among the two agencies regarding these trends. The start year is a compromise between including as many

years in the data as possible, but not so many that the period includes observations that result in inconsistent

trend estimates. The consensus of TC trends between the two agencies over the period is interpreted as fewer

but stronger events since 1984, even with the lower power dissipation index (PDI) in the westernNorth Pacific

in recent years.

1. Introduction

The issue of global warming and climate change ex-

tends to how tropical cyclone (TC) climatology might be

affected. The western North Pacific is the world’s most

prolific TC basin, accounting for about one-third of total

global TC occurrences (Chan 2005). Nevertheless, pre-

vious research on TC trends in this region does not

suggest a clear consensus on what is happening. Such

inconclusive diagnostics retard further speculation on

the TC climate in this basin.

The problem largely stems from discrepancies among

the different sources of observations.Webster et al. (2005)

analyzed the Joint Typhoon Warning Center (JTWC)

best-track data and found increasing trends in the number

and proportion of the strongest typhoons. From the same

data source, Emanuel (2005) focused on the increase of

the power dissipation index (PDI) representing the var-

iability of TC energy and destructiveness and its signi-

ficant relationship with the rising trend in sea surface

temperature. On the other hand, research on TC trends

using data from sources such as the JapanMeteorological

Agency (JMA) and the Hong Kong Observatory

(HKO) show no such increases (Wu et al. 2006; Yeung

2006). Subsequent studies confirmed these inconsisten-

cies (Kamahori et al. 2006; Yu et al. 2007).

These inconsistent diagnostics are a consequence of at

least two factors. One factor is the use of different time

periods over which the maximum sustained wind (MSW)

speed is calculated. For instance, the JTWC uses a 1-min

averaging periodwhile the JMAuses a 10-min period.On

average, the 1-min wind speeds are about 12% higher

than the 10-min speeds (Atkinson 1974). The other factor

ismore complicated as it involves the entire procedure by

which MSW is estimated using various observational

platforms, algorithms, operational procedures, and so on,

all of which get modified over time. For historical reasons

the different agencies often used different observational

platforms, resulting in different wind speed estimates

even for the same TC event. Satellites are now the com-

mon platform and the Dvorak technique applied to sat-

ellite imagery is the routine basis for estimating MSW at

most agencies (Levinson et al. 2010).

However, even today there remain possible discrep-

ancies based on differing qualitative processes in how

the technique is applied. As an example, there is a de-

cision associated with whether the cloud pattern is a TC

or not. Atypical cloud patterns are likely to result in
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inconsistent decisions among the agencies. Indeed, the

entire operational practice can be understood as a quali-

tative best guess and this can lead to inconsistencies in

estimates of MSW. Nakazawa and Hoshino (2009) sup-

port this idea explaining that JTWC is likely to have faster

intensification rates for TCs before maturity and slower

weakening rates after maturity relative to the JMA.

In an attempt to compare, Song et al. (2010) and

Knapp and Kruk (2010) tried to find a reasonable con-

version relationship. They selected coincident TC cases

from the different data sources and then applied a sta-

tistical model to the data from these cases. Song et al.

suggested a nonlinear regression, while Knapp andKruk

retraced the JMA procedure and retrieved 1-minMSWs

using the JTWC procedure. These investigations pro-

vided clear understanding of interagency differences.

Nonetheless, to continue progress additional things

need to be considered. First, finding coincident cases is

not trivial, especially for the older datasets. A researcher

willing to examine the TC trends will spend time and

resources in finding such cases. Second, trends based

only on the coincident cases may not represent the true

trends owing to the nonrandom selection of cases. Third,

fixing one conversion relationship for all years is probably

not reasonable as there are nonuniform improvements

across agencies. For example, independently launched

meteorological satellites and subsequently improved

observation procedures would have made any preceding

conversion rate no longer suitable for the relationship.

Third, the question about reliable trends in western

North Pacific TC activity remains unanswered.

The present paper is motivated by these issues. In

particular, we suggest using quantiles as an effective so-

lution to overcome the wind speed conversion problem.

Since the individual TC intensity can be represented as

a lifetime-maximum wind (LMW) speed, quantiles are

applied to the set of annual LMWs. The assumption is

that intensity ranks of TC events are the same across

agencies even if the LMWs differ. This is reasonable

given that the different agencies are obtaining intensity

estimates from essentially the same set of TCs. The im-

portant insight is that from a quantile point of view, the

key factor is proportion, not the intensity itself. This

convenience makes it possible to compare different ob-

servational estimates with the same framework. Elsner

et al. (2008) show that a quantile analysis enables inter-

comparison of TC intensity trends even across different

basins. Different observations in the same basins are ex-

pected to return the same trends as long as the intensity

values adhere to this assumption. Conversion problems

will not have an impact when using a quantile approach.

The methodology is based on the empirical frame-

work developed in Kang and Elsner (2012), where TC

climatology is examined using four indices including fre-

quency, intensity, activity, and intensity efficiency. We

demonstrate the methodology using data from the JWTC

and JMA. The results show that a consensus of TC cli-

matology in the western North Pacific is possible when

using these two datasets. In particular, a consensus on the

TC trends is found.

The paper is outlined as follows. Data and the re-

search domain are described in section 2. The quantile

method for comparing LMW from the JTWC and the

JMA is presented in section 3. The method is applied to

TC climate indicators in section 4. Diagnostics from di-

rect and quantile comparisons of the TC climate indictors

using the two data sources are shown. Based on the com-

parisons a reliable consensus is demonstrated.Results and

conclusions are summarized in section 5. All computa-

tions and figures are done using R (http://www.r-project.

org). The code is available from the lead author.

2. Research data

a. Data and TC selection

We focus exclusively on TCs over the western North

Pacific basin. In particular, we compare TC climate in-

dices using data from the JTWC (available at www.usno.

navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks) and the

JMA(available atwww.jma.go.jp/jma/jma-eng/jma-center/

rsmc-hp-pub-eg). The JMA has been entitled the Re-

gional Specialized Meteorological Center (RSMC) by

theWorldMeteorologicalOrganization, while JTWChas

the longest history of observations in this basin. The

geographic domain is 38–358N, 1048–1758E. The eastern

and northern boundaries are set to minimize the influ-

ences of interbasinTCs and themidlatitude environment,

respectively, and the southern and western boundaries

represent statistical and geographical limits, respectively.

We select TCs whose genesis and LMW locations are

within this domain.Where the LMW location spansmore

than a single observation, its location is placed at the

average latitude and longitude. JMA provide MSW es-

timates beginning in 1977, so we extract LMW values

from both datasets over the 34-yr period 1977–2010. Prior

to 1977, only central pressure values are available for TC

intensity in the JMAdata. SeeKang andElsner (2012) for

more details and additional justification.

b. Histograms of LMW

Frequency distributions of LMW for the set of TCs

extracted from both data sources are presented in Fig. 1.

The LMW values are given in units of knots (1 kt 5
0.514 m s21) because that is how they are recorded in

the datasets. The distributions, given in 5-kt bins, both
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show similar positive skewness (longer right than left

tail) but there are obvious differences.

The JTWC data shows a minimum lifetime-maximum

wind (LMW) speed of 20 kt whereas the JMAdata show

a minimum of 35 kt. Thus JMA data do not include

tropical depressions. Differences at the maximum speeds

are also apparent. The JTWC data show a maximum

LMW speed of 165 kt, whereas the JMA data show

a maximum of only 140 kt. This difference of 25 kt at the

highest intensity wind speeds is not small and suggests

nontrivial discrepancies. Following conversion rules,

JMA wind speeds can be compared with JTWC values.

Among the rules, for example, if a 12% conversion factor

is applied (Atkinson 1974), 140 kt is converted to 157 kt

as a 1-min wind speed—still below the 165 kt of JTWC,

although much closer.

3. Quantile method

The basinwide number of TCs varies from year to

year. The count each year depends on a threshold level

of intensity. For instance, the number of typhoons in

a given year is obtained using a threshold of 33 m s21 for

the set of LMW speeds. However, if the LMW for a

given TC is recorded with different values depending on

the agency, then the time series of annual counts from

each agency using the same threshold will likely be

dissimilar. Conversely, if two time series of counts are

similar even with different threshold LMW speeds, then

the corresponding LMWs indicate the same intensity

level.

Therefore, correlating annual count time series at

various threshold LMWs will provide a way to match

two datasets. Figure 2 is a contour plot of the correlation

values over the domains spanned by threshold LMW

speeds from each agency using data over the period

1977–2010 (34 yr). The area of significant correlations at

the 5% level is white. Each significance test uses 1000

paired vectors where each agency’s TC counts are ran-

domly sampled with replacement (bootstrapped) from

original counts. The larger the correlation, the better the

match. If the procedures used by both agencies for es-

timating wind speed are aligned, then the maximum

correlation axis runs along the diagonal in this plot. If

they are aligned and each produces the same LMW for

each TC, then the maximum correlation along the di-

agonal is one.

Here the results indicate that the procedures are not

aligned. Following the assumption that the intensity ranks

of events should be the same among agencies although

FIG. 1. Histogram of lifetime-maximum wind (LMW) speeds.

Data are from (a) JTWC and (b) JMA. Both datasets have wind

speeds recorded in knots (kt) at 5-kt intervals. If a 12% conversion

factor is applied (Atkinson 1974), 140 kt is converted to 157 kt as

a 1-min wind speed.

FIG. 2. Contours of correlation between vectors of annual TC

numbers from the two agencies at various threshold LMW speeds.

Contours are shown at 0.1 intervals. The area of significant corre-

lations at the 5% level is white. Each significance test uses 1000

paired vectors where each agency’s TC counts are randomly sam-

pled with replacement (bootstrapped) from original counts. The

diagonal line representing an alignment between the LMW from

both agencies is shown in black. Quantile pairs, representing the

average values of annual quantiles, are plotted as blue dots in 0.05

quantile intervals and connected by a blue line. Line A represents

the case when the lower bound of LMW is set to 17 m s21 for both

datasets. LineB represents the case when the lower bound of LMW

in the JMA data is modified to 22 m s21 following the intensity

tables in Knapp and Kruk (2010). DIAG1 (black circle) indicates

43 m s21, the threshold LMW for a Category 2 storm using the

Saffir–Simpson scale (Simpson 1974). DIAG2 (blue circle) in-

dicates the average values of annual quantiles at 0.55 probability

level, where the value for JTWC among 16 probability levels is the

closest to the threshold in DIAG1.
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LMWs differ in magnitude, an event will likely have the

same probability level in both datasets. The quantile is

the average of LMW values calculated annually at a

given probability level. The 50th percentile (0.5 quan-

tile) LMW is 40 m s21 from the JTWC, but only

35 m s21 from the JMA. This bias of stronger TCs in

the JTWC dataset relative to the TCs in the JMA dataset

is most pronounced for the higher threshold LMW as

seen by the slope of the blue lines. The blue lines are

computed using 16 probability levels from zero to 0.8 at

intervals of 0.05.

Line A results from themethod where we set the lower

bounds of LMW in both the JTWC and JMA datasets to

17 m s21. Line B results from the method where we set

the lower bound of LMW in the JMAdataset to 22 m s21

following the intensity tables provided in Knapp and

Kruk (2010). This table is the mapping table from satel-

lite-derived analysis to TC intensity, which shows com-

parable 10-min and 1-min wind speeds at the same

current intensity (CI) number. Both lines overlaid on the

correlation background show similar slopes to that of the

correlation ridge line, while line A gives a better corre-

spondence with the ridge especially at lower quantiles.

This provides justification for using method A.

The points labeled DIAG1 and DIAG2 on the plot are

used for clarifying the quantile method. DIAG1 (black

circle) indicates the classic way of direct comparison us-

ing the same threshold LMW. This suggests 43 m s21 as

the threshold LMW for both JTWC and JMA. In other

words, analyses are done for LMWs exceeding 43 m s21,

which corresponds to the Saffir–Simpson (Simpson 1974)

category 2 and higher. In comparison, DIAG2 (blue cir-

cle) reflects the idea of quantile comparison. Here, the

JTWC data are taken as a reference. Among 16 proba-

bility levels, the quantile at 0.55 probability level is the

closest to the threshold LMW of DIAG1. The average

quantile at the 0.55 quantile level in JTWC is 43 m s21,

which corresponds to 37 m s21 using the JMA data.

4. Consensus on TC climate trends

a. TC climate indicators

Here we follow the definitions of TC climate indicators

described in Kang and Elsner (2012), which include fre-

quency (FRQ), intensity (INT), activity (ACT), and the

efficiency of intensity (EINT). FRQ is the annual number

of TC occurrences whose LMW speeds exceed a thresh-

old level. INT is the annual mean of individual LMW

speeds that exceed threshold level. FRQ and INT are

calculated for each year and both time series are repre-

sented as an ordered vector of values. INT and FRQ are

independent sincewe get INT by dividing the total sumof

LMW by FRQ.

ACT is TC activity obtained by combining FRQ and

INT at the same time. ACT is computed as

ACT5 [scale(INT)1 scale(FRQ)]/
ffiffiffi

2
p

, (1)

where the function ‘‘scale (���)’’ returns standardized

vector values. ACT is a linear combination of stan-

dardized values of INT and FRQ, indicating the degree

to which variations in FRQ and INT are in phase. By

definition ACT is an eigenvector from a principal com-

ponent analysis using FRQ and INT.

Similarly EINT is computed as

EINT5 [scale(INT)2 scale(FRQ)]/
ffiffiffi

2
p

. (2)

Opposite from ACT, EINT indicates the degree to

which variations in FRQ and INT are out of phase.

EINT explains the portion of INT in ACT. Large EINT

means that fewer but stronger TCs occur with the same

amount of TC energy and vice versa. By definition EINT

is the other eigenvector from a principal component

analysis using FRQ and INT. As ACT and EINT are the

two orthogonal modes of principal component analysis,

they are independent. When considering that INT and

FRQ can be computed as linear combinations of ACT

and EINT, the relationship among the four indicators

becomes clear.

b. Direct comparison

Direct comparison is the standard. It uses the same

threshold LMWs for JTWC and JMA. Here we use

43 m s21 for the threshold LMW. TCs whose LMWs ex-

ceed this threshold are of Saffir–Simpson category 2 and

higher. To aid comparison annual values of each of the

four indicators (FRQ, INT, ACT, and EINT) are sepa-

rately converted to rank probabilities. The annual ranked

probability value is the probability referencing the 30-yr

climatology (1981–2010). The conversion is made for

each indicator using the empirical cumulative density

function. Subsequently, trends are computed by ordi-

nary least squares regression on the rank probabilities.

Figure 3 shows the diagnostics using the DIAG1

threshold on all four TC climate indicators. Trends have

units of ranked probability per 10 years. The trends are

the average rate of change in the ranked probabilities

over the range of years considered. For example, 0.2

trend (probability/10 yr) in INT would be interpreted as

INT is increasing as much as 0.2 rank probability level

every 10 years. Trends are presented for different data

ranges. Trends using the JTWC and JMA datasets are

shown in blue and red lines, respectively. Transparent

shades represent 95% confidence bands on the trend

estimates. The band becomes wider as the number of
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years in the data sample decreases. The overlap shade

(purple) can be thought of as representing a consensus.

Figure 3 clearly demonstrates the issue of inconclusive

TC climate trends. The most significant trends appear in

INT using the longest (34 yr) data range. Yet it cannot

be considered conclusive as the trends have opposite

signs (note how they fall on either side of the zero line)

using the JTWC and JMA datasets. That is to say, al-

though researchers might find statistically significant

increasing trends in INT in the 34-yr (1977–2010) data

range using JTWC data, they cannot claim that TCs are

getting stronger. The same is true of claims of decreasing

trends using the JMA dataset. Note that opposite trends

also appear in ACT and EINT by their connection with

INT.

The more recent years show no significant trends using

either agency’s data when considering the 95% confi-

dence band. The JTWC trends show decreasing FRQand

ACT and increasing EINT. In contrast, the JMA trends

are essentially zero with all TC climate indicators. Fewer

TC cases exceeding a relatively high threshold intensity

might be the reason for the lack of trends in the JMA

data.

c. Quantile comparison

Researchers using a high value of threshold LMW for

trend analysis, as in DIAG1, assume that results repre-

sent the tendency of the stronger portion of TCs. That is,

the threshold LMW is regarded as an indication of the

upper intensity portion (quantile) of stronger TCs.

However, the quantile associated with the same LMW

threshold may be different between agencies. Or, from

the quantile point of view, specific threshold LMW may

represent different proportional intensities depending

on year. For these reasons the quantile method indi-

cating threshold LMW of specific proportion may be

considered a reasonable alternative to the traditional

analysis.

FIG. 3. Tropical cyclone climate trends, computed using the 43 m s21 threshold (see DIAG1 in Fig. 2) as a function

of start year. Trends have units of ranked probability per 10 yr and are shown for (a) FRQ, (b) INT, (c) ACT, and (d)

EINT. Blue lines are trends based on the collection of TCs in the JTWC dataset, while red lines are for the JMA

dataset. Shading in the corresponding color shows the 95% confidence band. The start year for the trend estimate is

shown along the horizontal axis on the bottom and the number of years in the dataset is shown along the horizontal

axis at the top.
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Here we consider DIAG2 (see Fig. 2) representing

TCs that exceed the 0.55 quantile intensity level. This

means that annually only the upper 45% of the strongest

TCs are analyzed. As in the previous section, annual

values of ranked probabilities referencing a 30-yr cli-

matology (1981–2010) are used to calculate trends. Re-

sults using 0.55 quantile as threshold LMW are shown in

Fig. 4. As explained, two different analyses named as

DIAG1 and DIAG2 are based on threshold LMW and

threshold quantile, respectively. DIAG1 uses a fixed

threshold LMWof 43 m s21, while DIAG2 uses the 0.55

quantile as the threshold so that the mean LMW at the

quantile is close to 43 m s21. Since annual LMW values

at the 0.55 quantile are variant around 43 m s21, ana-

lyzed JTWC trends in DIAG2 may not be the same as

that in DIAG1, although similar. The results demon-

strate a clear improvement in consensus between the

JTWC and JMA. As opposed to the earlier results, the

trends have the same sign across most data ranges. In

addition the trends appear clear.

Despite the general improvements large discrepancies

appear in the longest data ranges (1977–2010). It makes

sense that better consensus is available using the shorter

data ranges since the shorter data ranges include only

themost recent data. Improvements in the observational

techniques and communication between the agencies

might be a few of the reasons. Nevertheless, the dis-

crepancies in INT and ACT trends get larger again in

relatively shorter data ranges. This can arise from only

a few discrepancies in small samples.

Overall the most reliable consensus of TC trends oc-

curs over data ranges that are not too long or too short.

Consensus around a 25-yr range is the most noticeable

among the other ranges. Over these ranges, the trends of

the upper 45% of stronger TCs are characterized as

decreasing FRQ, increasing INT, decreasing ACT, and

increasing EINT. Decreasing FRQ and increasing EINT

appear to be the most significant among the trends. In-

creasing EINT implies that fewer but stronger TCs are

occurring, even with the decreasing TC energy repre-

sented by ACT.

d. Reliable consensus

The trends shown in Fig. 4 are computed along four

axes including the two observed axes of FRQ and INT

and the two principal component axes of ACT and

FIG. 4. As in Fig. 3, but the trends are computed using the 0.55 quantile threshold (see DIAG2 in Fig. 2).
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EINT. Since each pair of axes is orthogonal and the two

axis pairs are offset byp/4, we can examine trends using

a single framework. This is done by computing rank

probabilities for the upper 45% of the strongest TCs in

off-axes directions and then plotting them in a direction-

versus-time graph.

Figure 5 shows the results. Years are plotted along the

vertical axis and direction is plotted along the horizontal

axis where INT, ACT, FRQ, and EINT are denoted as I,

A, F, and E, respectively. The four TC climate indicators

are linked in a circular form: . . ./I/A/F/2E/2I/2A/2F/

E/I/. . . . Negative signs are used to complete the circular

framework. Here angles of 08, 458, 908, 1358, 1808, 2258,
2708, 3158, and 3608 indicate I, A, F,2E,2I,2A,2F, E,

and I, respectively. Figure 6 shows the relationship be-

tween angles and TC climate indicators. Note that u is

the angle starting from INT. ACT is the case when u is

458. Likewise, EINT is the case when u is 3158. ACT or

EINT is a variable where equal weights of INT and FRQ

are taken into account. Indicators have rank probability

values for each year, as shown in Fig. 5. The trends are

inferred by examining a vertical line through the plot.

For example, the upward trend in EINT, noted in the

lower-right panel of Fig. 4, is seen along the 3158 line
where the blue and yellow contours give way to red

contours as you move down the line from 1977 to 2010.

Separate plots are made using data from the two

agencies. A qualitative comparison is made by visually

examining the contour patterns between the two plots.

The patterns are quite distinct prior to 1984 (horizontal

line), but afterward there is good correspondence. The

history of observational techniques may help to ex-

plain the similarity of TC climatologies between the

two agencies. Algorithms using satellite imagery have

been largely influenced by Dvorak (1975, 1982, 1984)

techniques. JTWC began to use the Dvorak technique

operationally in the 1970s (Chu et al. 2002). JTWC

have used the original Dvorak (1975) table for the re-

lationship betweenCI andMSW.Although the pressure–

wind relationship from Dvorak (1975) was replaced by

FIG. 5. Annual variations of ranked probabilities in the TC climate indicators using data from the (a) JTWCand (b)

JMA: a 0.55 quantile is used as threshold LMW level (see DIAG2 in Fig. 2). Probabilities are computed in 18
increments around the phase of the plane spanned by the variable and principal component axes composed of FRQ,

INT, ACT, and EINT and their opposites. Contours indicate probability levels. Climate indicators are shown along

the horizontal axis on the bottom and the equivalent angles are shown along the horizontal axis at the top. The

horizontal line at 1984 represents the start year of a reasonable pattern match.
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Atkinson and Holliday (1977), the CI to maximum sus-

tained wind (MSW) relationship remained unchanged.

Using Dvorak (1982), JMA began operational Dvorak

analysis in 1984 (see www.wmo.int/pages/prog/www/tcp/

documents/JMAoperationalTCanalysis.pdf). In 1987,

JMA introduced the Dvorak (1984) Enhanced Infrared

(EIR) technique for intensity analysis.UntilAugust 1987,

however, aircraft observation played amajor role in TC

intensity estimation from both agencies. After 1987,

which marks the termination of U.S. Air Force aircraft

reconnaissance, satellite observation came to be the

major source of information determining TC intensity.

Since 1990, JMA operations have referred to the con-

version table that assigns Dvorak CI to MSW following

Koba et al. (1991).

All of the events mentioned above would have influ-

enced the skill at which the MSW was estimated. Com-

parison of the two patterns in Fig. 5 seems to indicate that

the JMA operational change in 1984 is the most critical.

Prior to 1984, the distribution of ranked probabilities in

JMA shows a very different pattern from JTWC. Pattern

correlations support the idea. The pattern correlation

over the period 1977–83 is 0.36, while it shifts to 0.73 over

the period 1984–2010. However, we cannot assert that the

discrepancy prior to 1984 derives only from JMA obser-

vations. For example, Chu et al. (2002) referred to the

lower quality of best-track data prior to 1985 in JTWC.

As discussed in the previous section, Fig. 5 confirms that

the trends in shorter ranges are likely influenced by fewer

events. For instance, INT in JTWC shows larger proba-

bility values in the late 1990s and the early 2000s. This

seems to contribute to the lack of trends noted using the

JTWC data when the trends are computed over a smaller

number of years.

Results point to the conclusion that the 27-yr period

starting with 1984 provides the most reliable consensus

on TC climate trends in the western North Pacific. This

period gives the longest data range, removing unreliable

observations prior to 1984 while achieving robustness

against a small sample size. Once we accept this con-

sensus of reliability, the TC climate trends in the western

North Pacific are summarized as decreasing FRQ, in-

creasing INT, decreasing ACT, and increasing EINT.

The trends can be interpreted as demonstrating that

fewer but stronger events are occurring, even with lower

PDI.

5. Conclusions

This study tries to find a consensus for a period of

record over which trends in TC climate in the western

North Pacific can be trusted. The study uses observations

from the JTWC and the JMA to demonstrate a method-

ology based on quantiles that is useful for finding such

a period. Merits of the quantile approach include the

following:

d There is no need to find individual coincident cases

among TCs from different agencies. Instead, annual

quantiles at various probability levels indicate com-

parable intensities on a year by year basis.
d All TCs within a chosen spatial domain are used.

Accordingly, better diagnostics are available rather

than diagnostics based on a limited sample of matched

cases.
d Temporal variation in the conversion relationship

between agencies is allowed since quantiles were

calculated separately for each year.

Using the empirical framework developed in Kang

and Elsner (2012), TC climate trends in JTWC and JMA

observations are investigated over 34 years (1977–2010).

Results provide evidence that a reliable consensus of TC

climate trends is available using data over the period

1984–2010. The findings are summarized as follows:

d The quantile method using the upper 45% of the

strongest TCs (0.55 quantile as threshold LMW) shows

improved consensus between JTWC and JMA com-

pared to the traditional direct method.
d TC climatology between JTWC and JMA shows that

the observations prior to 1984 lack reliability and

increase the diagnostic discrepancies.

FIG. 6. Schematic of TC climate indicators: u is the angle starting

from INT;ACT is the case when u is 458. ACT or EINT is a variable

where equal weights of INT and FRQ are taken into account.

Modified from Kang and Elsner (2012).
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d Trends in shorter data ranges are likely influenced by

fewer events.
d The 27-yr period (1984–2010) is considered as the

range that provides the most reliable consensus. That

is the longest available data range, removing unreli-

able observations prior to 1984 and also achieving

robustness to small sample sizes.
d Assuming the consensus implies reliable trends, the

TC climate in the western North Pacific is summarized

by decreasing FRQ, increasing INT, decreasing ACT,

and increasing EINT trends.
d Decreasing FRQ and increasing EINT are the most

significant.
d The consensus of TC climate trends between the two

agencies can be understood as demonstrating that

fewer but stronger events are occurring, even with

the lower PDI in the western North Pacific in recent

years.

Despite the consensus of TC climate trends, there

remain a couple of things to consider before accepting

them as true. First, improvements in satellite resolution

may have caused increased intensity estimates, espe-

cially for systems with small eyes. The objective Dvorak

technique (ODT) by Velden et al. (1998) represents

the improvement of observational technique with high-

resolution, real-time global digital satellite data and

improved computer processing resources. Since the tech-

nique works better on stronger TCs with a coherent eye

structure (Velden et al. 2006) and higher-resolution im-

agery enables detecting more TCs with small eyes, the

increasing intensity trends might be in part an artifact of

this improvement. Intensity trends could be influenced

by high-resolution effects even before ODT was em-

ployed. On the other hand, we cannot ignore the fact

that the termination of aircraft reconnaissance in 1987

could have degraded TC intensity observations. Aircraft

reconnaissance in the 1970s and 1980s made a large

contribution to finding the structures and characteris-

tics of TCs (Sheets 1990). Although this method con-

tains uncertainties, its direct wind observation greatly

helped lessen the uncertainty associated with pattern

recognition methods such as the Dvorak technique.

The termination of aircraft reconnaissance might have

exerted a different influence from the advanced satel-

lite techniques on our trend analysis.

While this study is not the final word on this subject,

it demonstrates the utility of the quantile method for

solving some problems associated with inhomogeneity in

data sources and it provides strong evidence that the data

are in reliably good agreement after 1984. Further in-

vestigations on the variability of TC climatology, includ-

ing the portion of the variability related to environmental

factors, are now possible. Here we make no attempt to

attribute the trends to long-term global climate change as

the period of record is simply too short.
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