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ABSTRACT

Models that predict annual U.S. hurricane activity assume a Poisson distribution for the counts. Here the

authors show that this assumption applied to Florida hurricanes leads to a forecast that underpredicts both the

number of years without hurricanes and the number of years with three or more hurricanes. The underdispersion

in forecast counts arises from a tendency for hurricanes to arrive in groups along this part of the coastline. The

authors then develop an extension to their earlier statistical model that assumes that the rate of hurricane clusters

follows a Poisson distribution with cluster size capped at two hurricanes. Hindcasts from the cluster model better

fit the distribution of Florida hurricanes conditional on the climate covariates including the North Atlantic

Oscillation and Southern Oscillation index. Results are similar to models that parameterize the extra-Poisson

variation in the observed counts, including the negative binomial and the Poisson inverse Gaussian models. The

authors argue, however, that the cluster model is physically consistent with the way Florida hurricanes tend to

arrive in groups.

1. Introduction

Seasonal forecast models that predict U.S. hurricane

activity by coastal region were developed in Elsner and

Jagger (2006). The models capture the historical distri-

bution of hurricane counts and are widely used by the

insurance and finance industries. They are based on the

Poisson distribution, where the rate is conditioned on

climate variables including the Southern Oscillation in-

dex (SOI), North Atlantic Ocean sea surface tempera-

ture (SST), the North Atlantic Oscillation (NAO), and

sunspot number.

Here we show that the Poisson assumption may not be

adequate for describing hurricane frequency in the vi-

cinity of Florida. Indeed, over the period 2000–11 there

were only two years with hurricanes in Florida, but the

2004 and 2005 seasons featured a total of seven strikes

to the state. This suggests Florida hurricane activity is

clustered.

Here we investigate this further and show evidence

for clustering by comparing a prediction model for

hurricane counts with a prediction model for hurricane

occurrence, where both models assume the hurricane

numbers follow a conditional Poisson distribution. Oc-

currence is whether or not there is at least one hurricane,

and count is the total number of hurricanes. We find that

the predicted number of hurricanes from the occurrence

model is lower than the predicted number from the

count model.

To be specific, Florida hurricane counts have greater

variability (dispersion) than is expected from a Poisson

model. This extra dispersion results in a greater number

of years without hurricanes and a greater number of

years with three or more hurricanes. We find no strong

evidence of extra dispersion for hurricanes affecting the

Gulf of Mexico or East Coast regions, however.

We then derive a model that accounts for clustering

using a natural extension of the count and occurrence

models. That is, the parameters of the cluster model are

derived from the parameters of the count and occur-

rence models. We compare the fit of the cluster model

with the fit from a negative binomial model and a Pois-

son inverse Gaussian model.

The paper is organized as follows. In section 2 we

examine the hurricane counts by region. In section 3 we

examine the evidence for clustering and find it in the

vicinity of Florida only. In section 4 we explore the

possibility that clustering results from the influence of

climate factors on the underlying hurricane rate. In sec-

tion 5 we develop a cluster model for the Florida counts
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that considers the number of clusters separate from the

cluster size. In section 6 we show how the model para-

meters can be fit and demonstrate how the fit better

matches the distribution of hurricane count years in

Florida. In section 7 model results for Florida and for the

Gulf Coast region are compared. In section 8 results for

Florida using the cluster model are compared with re-

sults using two other models that parameterize the dis-

persion in observed counts without specifying clusters.

A summary and conclusion are provided in section 9.

2. Hurricane counts by region

Hurricanes form only over certain parts of the ocean.

Hurricanes originating from the same area often take

similar paths. This grouping, or clustering, increases the

potential for multiple landfalls in a given year above

what one might expect from random events.

A statistical model for landfall probability may cap-

ture this clustering through a covariate like the NAO,

which relates a steering mechanism (position and stre-

ngth of the subtropical high) to regional hurricane activity

(Elsner and Jagger 2006; Kossin et al. 2010). There could

still be additional serial correlation that is not related to

the covariates, however. A model that does not account

for this extra variation will underestimate the potential

for multiple hits in a season.

Following the method of Jagger and Elsner (2006) we

consider three coastal regions: the Gulf Coast, Florida,

and the East Coast (Fig. 1). The regions are large

enough to capture enough hurricanes but are not so

large as to include too many noncoastal strikes. A nat-

ural spline interpolation is used to obtain positions and

wind speeds at 1-h intervals from the 6-h values (Jagger

and Elsner 2006) for all tropical cyclones in the Atlantic

basin hurricane database (HURDAT; Jarvinen et al. 1984).

For tropical cyclones in the dataset, we note the maximum

wind in each region. If the maximum wind exceeds 33 m

s21 then we count it as a hurricane for the region. A tropical

cyclone that affects more than one region at hurricane in-

tensity is counted in each region. Because of this, the sum of

the regional counts is larger than the total count, although

we are only concerned here with regional counts.

Figure 2 shows the time series and histograms of the

regional counts. Counts by year range from 0 to 4 for the

Gulf Coast, 0 to 5 for Florida, and 0 to 3 for the East

Coast. There are no significant trends in the near-coastal

hurricane rates. The most common counts are 0 and 1.

3. Evidence for clustering

The shape of the histograms in Fig. 2 suggests a

Poisson distribution (Elsner and Schmertmann 1993;

McTaggart-Cowan et al. 2008) as is typically the case

with count data. The density function of the Poisson

distribution indicates that the probability of obtaining a

count x when the mean count (rate) is l is given by

p(x) 5
e2llx

x!
. (1)

Thus the probability of no hurricanes is p(0) 5 e2l.

We begin by comparing the observed with expected

number of years for two groups of hurricane counts. The

groups include years with no hurricanes and years with

three or more. The expected number is from a Poisson

distribution. The idea is that for regions that show a cluster

of hurricanes, the observed number of years with no hur-

ricanes and the observed number of years with three or

more hurricanes should be greater than the corresponding

expected number. Said another way, a Poisson distribu-

tion with a hurricane rate estimated from counts over all

years will underestimate the number of years with no

hurricanes and the number with many hurricanes in re-

gions with clustering.

Table 1 shows the results of the comparison for the

Gulf Coast, Florida, and East Coast regions. For the Gulf

and East Coast regions, the observed number of years is

relatively close to the expected number of years in each of

the three groups. For the Florida region, however, we find

that the observed number of years exceeds the expected

number of years in years with no hurricanes and in years

with three or more hurricanes.

FIG. 1. Coastal hurricane regions. Regions are large enough to

capture enough hurricanes but are small enough that the hurri-

canes correspond to actual threats to the coastal environments.

Regional boundaries align with whole-number parallels and me-

ridians. The region delineations are identical to those used in

Jagger and Elsner (2006).
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The difference between the observed and expected

numbers in each region is used to assess the statistical

significance of the clustering. This is done using Pearson

residuals and the x2 statistic. The Pearson residual is the

difference between the observed count and expected rate

divided by the square root of the variance. The p value is

evidence in support of the null hypothesis of no clustering

as indicated by no difference between the observed and

expected numbers in each group. The p values for the

Gulf and East Coast are greater than 0.05, indicating little

support for clustering. In contrast the p value for the

Florida region is 0.009 using the Pearson residuals and is

0.044 using the x2 statistic. These values provide moder-

ate to convincing evidence that hurricane occurrences in

the vicinity of Florida are not completely independent in

time.

4. Is clustering due to climate factors?

Having provided evidence of Florida hurricane clus-

ters, we ask what might be causing it. Some of the extra

variation in annual hurricane counts (more years with 0

FIG. 2. Annual hurricane occurrence by region: time series of annual hurricane counts in the (a) Gulf Coast, (b)

Florida, and (c) East Coast regions and (d)–(f) the distributions of hurricane counts in the corresponding regions.

TABLE 1. Observed O vs expected E number of hurricane years

by count groups. The observed values are based on hurricanes over

the period 1866–2010. The expected number of years is based on

a Poisson distribution. The Pearson and x2 test statistics along with

the corresponding p values are given.

Region O(#0) E(#0) O($3) E($3) Pearson

p

value x2
p

value

Gulf 63 66.1 7 6.6 135 0.6858 0.264 0.894

Florida 70 61.7 13 8.1 187 0.0092 6.475 0.039

East 74 72.3 7 4.9 150 0.3440 1.172 0.557
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counts and more years with 3 or more counts) might

be due to variation in hurricane rates. We examine this

possibility by assuming a conditional Poisson model in

which the logarithm of the hurricane rate is estimated

with a linear combination of known climate covariates

and then grouping the model residuals into low and high

sets as we did above.

Elsner and Jagger (2006) show that Florida hurricane

activity depends on the NAO averaged during May and

June and on the SOI averaged over the peak of the

hurricane season (August–October) as an indicator of

El Niño–Southern Oscillation (ENSO) but does not

depend on Atlantic Ocean sea surface temperature or

on sunspot number. The NAO is characterized by fluc-

tuations in sea level pressure (SLP) differences. Index

values for the NAO are calculated as the difference in

SLP between Gibraltar and a station over southwest

Iceland (Jones et al. 1997) and are obtained from the

Climatic Research Unit (CRU). Monthly values can be

considered to be an indicator of the strength and/or

position of the subtropical Bermuda high (Elsner et al.

2001). We speculate that the relationship might result

from a teleconnection between the midlatitudes and

tropics whereby a below-normal NAO during the spring

leads to dry conditions over the continents and to a

tendency for greater summer/autumn midtropospheric

ridging (enhancing the dry conditions). Ridging over the

eastern and western sides of the North Atlantic basin

tends to keep the midtropospheric trough, responsible

for hurricane recurvature, farther to the north during the

peak of the season (Elsner and Jagger 2006).

ENSO is characterized by basin-scale fluctuations in

sea level pressure across the equatorial Pacific Ocean.

The SOI is defined as the normalized sea level pressure

difference between Tahiti and Darwin, Australia, and

values are available back through the mid-nineteenth

century. The SOI is strongly anticorrelated with equa-

torial Pacific SSTs so that an El Niño warming event is

associated with negative SOI values. Units are standard

deviations. ENSO is an indicator of vertical wind shear and

subsidence in the environment where tropical cyclones

develop, and negative SOI values imply greater shear and

subsidence. The monthly SOI values (Ropelewski and

Jones 1987) are obtained from the CRU.

We follow the approach of Elsner and Jagger (2006) in

using a generalized linear model (GLM) with the Pois-

son family. Thus the annual hurricane count model is

Hi ; dpois(li) with

log(li) 5 b0 1 bsoiSOIi 1 bnaoNAOi,

where Hi is the hurricane count in year i simulated (;)

from a random Poisson distribution (dpois) with a rate l

that depends on the year i. The logarithm of the rate

depends in a linear way on the SOI and NAO covariates.

The count model gives an expected number of hurri-

canes each year. This expectation is compared with the

observed number as before. Results indicate that clus-

tering is somewhat ameliorated by conditioning the rates

on the covarates. In particular, the Pearson residual re-

duces to 172.4 with an increase in the corresponding p

value to 0.042. The p value remains below 0.15, how-

ever, indicating that the conditional model, while an im-

provement, fails to capture the extra variation in Florida

hurricane counts (Table 2).

To further examine this result we fit a double GLM

that models the mean and the dispersion separately us-

ing the Poisson family with the logarithmic link function

for both the mean and dispersion. The dispersion is the

variance divided by the mean. The link function pro-

vides the relationship between the additive covariates

and the Poisson rate. We fit the mean to the SOI and

NAO and the dispersion only to a constant, since there

was no indication of a relationship between the disper-

sion and either the SOI or the NAO. The estimation

procedure provided in the R software package dglm

(Dunn and Smyth 2009) alternates between one itera-

tion for the mean and one iteration for the dispersion

until convergence. The dispersion coefficient from the

model has an estimated value of 1.28 with a 95% con-

fidence interval of (1.01, 1.61). The dispersion value is 1

under the null hypothesis of no clustering.

Thus we find overdispersion in predictive hurricane

counts in the vicinity of Florida even after accounting for

the important predictors of activity. Note that we as-

sume (reasonably) that both the NAO and the SOI,

being derived from measured pressures, are accurate

from 1866, as well as is the count of Florida hurricanes.

We also fit the model iteratively using different start

times for the data record and with a nonlinear response

of the mean to the SOI. Results of this sensitivity ex-

ercise show a consistent estimate of the dispersion co-

efficient of about 1.3, giving us confidence that our

evidence for clustering is not likely to be due to model

misspecification or data bias.

TABLE 2. Observed vs expected number of hurricane years by

count groups. The observed values are based on hurricanes over

the period 1866–2010. The expected number of years are based on

a GLM approach using the Poisson family with a logarithmic link

function. The Pearson and x2 test statistics along with the corre-

sponding p values are given.

Region O(#0) E(#0) O($3) E($3) Pearson

p

value x2
p

value

Florida 70 63.6 13 9.0 172.4 0.042 3.85 0.134
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5. Cluster model

Having presented evidence that Florida hurricanes

arrive in clusters, we turn our attention to a model that

can account for this. In the simplest case we assume that

each hurricane cluster has one or two storms and the

number of clusters (rather than the number of hurri-

canes) in each year follows a Poisson distribution with

some underlying rate r. We also assign a probability of p

that each cluster will have two hurricanes so that 1 2 p

represents the probability of a single-hurricane ‘‘cluster.’’

In other words, we assume that hurricane clusters

arrive randomly over Florida, with each cluster con-

tributing one or two hurricanes to the season count. A

zero-count year means no clusters, and we can assume,

without loss of generality, that each cluster contrib-

utes at least one hurricane. We further assume that the

number of hurricanes in each cluster given p is statisti-

cally independent and that p does not change from

cluster to cluster but may change from year to year.

Caution: this parameter p should not be confused with a

p value that we use as evidence in support of the null

hypothesis in our statistical tests.

In formal terms, let N be the number of clusters in

a given year and Xi, i 5 1, . . . , N be the number of

hurricanes in each cluster minus 1. Then the number of

hurricanes in a given year is given by H 5 N 1 �N
i51Xi.

Conditional on N, M 5 �N
i51Xi has a binomial distribu-

tion since the Xis are independent Bernoulli variables

and p is constant. That is, H 5 N 1 M, where the annual

number of clusters N has a Poisson distribution with cluster

rate r, and M has a binomial distribution with proportion

p and size N. Here the binomial distribution describes the

number of occurrences of at least one hurricane in a se-

quence of N independent years, with each year having

a probability p of observing at least one hurricane.

In summary our cluster model has the following prop-

erties:

1) The expected number of hurricanes E(H) 5 r(1 1 p).

2) The variance of H is given by

var(H) 5 E[var(H jN)] 1 var[E(H jN)]

5 EfN[p(1 2 p)]g 1 var[(1 1 p)N]

5 rp(1 2 p) 1 r(1 1 p)(1 1 p)

5 r(1 1 3p).

3) The dispersion of H is given by var(H)/E(H) 5 f 5

(1 1 3p)/(1 1 p), which is independent of cluster rate.

Solving for p gives p 5 (f 2 1)/(3 2 f).

4) The probability mass function for the number of

hurricanes H is

P(H 5 k jr, p) 5 �
[i/2]

i50

dpois(k 2 i, r) dbinom(i, k 2 i, p);

k 5 0, 1, . . . , and

P(H 5 0 jr, p) 5 e2r dpois(k 2 i, r)

5 e2r r k2i

(k 2 i)!
dbinom(i, k 2 i, p)

5
k 2 i

i
pi(1 2 p)k22i.

5) The model has two parameters r and p. A better

parameterization is to use l 5 r(1 1 p) with p to

separate the hurricane frequency from the cluster

probability. The parameters do not need to be fixed

and can be functions of the covariates.

6) When p 5 0, H is Poisson, and when p 5 1, H/2 is

Poisson, the dispersion is 2, and the probability that

H is even is 1.

Next we consider a method to estimate the model pa-

rameters r and p.

6. Parameter estimation

Our goal is a hurricane count distribution. For that we

need an estimate of the annual cluster rate r and the

probability p that the cluster size is two. Continuing with

the GLM approach we separately estimate the annual

hurricane frequency l and the annual cluster rate r. The

ratio of these two parameters minus 1 is an estimate of

the probability p.

This is reasonable if p does not vary much, since the

annual hurricane count variance is proportional to the

expected hurricane count [i.e., var(H) 5 r(1 1 3p) } r }

E(H)]. Above, we estimated the parameters of the an-

nual count model using Poisson regression, which im-

plies that the variance of the count is proportional to the

expected count. Thus, under the assumption that p is

constant, Poisson regression can be used for estimating l

in the cluster model.

As before we regress the cluster rate onto the pre-

dictors NAO and SOI. The model is given by

Ni ; dpois(ri) with (2)

log(ri) 5 a0 1 a1SOIi 1 a2NAOi 1 «i.

The parameters of this annual cluster count model cannot

be estimated directly, since the observed hurricane count

does not furnish information about the number of clus-

ters.

Consider the observed set of annual Florida hurricane

counts. Because the annual frequency is very small, the
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majority of years have either no hurricanes or a single

hurricane. We create a ‘‘reduced’’ dataset by using an in-

dicator of whether there was at least one hurricane. For-

mally let Ii 5 I(Hi . 0) 5 I(Ni . 0); then I is an indicator of

the occurrence of a hurricane cluster for each year. We

assume that I has a binomial distribution with size pa-

rameter of 1 and a proportion equal to p. This leads to

a logistic regression model for I.

Note that since exp(2r) is the probability of no clusters

[see Eq. (1)], p 5 1 2 exp(2r). Thus the cluster rate is r 5

2log(1 2 p). If we use a logarithmic link function on r,

then log (r) 5 log[2log(1 2 p)] 5 clog log(p), called

the complementary log–log function, which is a natural

choice for a model link since its domain matches the

range of the distribution function’s mean. Thus we model

I using the clog log function to obtain r.

In short, our cluster model is a combination of two

models, one for the counts and another for the clusters. In

formal terms, it is given by

Ii ; dbern(pi) with (3)

clog log(pi) 5 a0 1 a1SOIi 1 a1NAOi 1 «i,

where dbern is the Bernoulli distribution with mean p.

The covariates are the same as those used in the cluster

count model. Given these equations, one has the fol-

lowing relationships for r and p:

log[r̂(1 1 p̂)] 5 b̂0 1 b̂1SOI 1 b̂2NAO and (4)

log(r̂) 5 â0 1 â1SOI 1 â2NAO. (5)

By subtracting the coefficients in Eq. (5) for the annual

cluster count model from those in Eq. (4) for the annual

hurricane count model, one obtains a regression model

for the probabilities given by

log(1 1 p̂) 5 b̂0 2 â0 1 (b̂1 2 â1)SOI

1 (b̂2 2 â2)NAO. (6)

7. Model diagnostics

We diagnose the model in the following ways. First we

compare the fitted values from the hurricane count and

cluster occurrence models. Let Hi be the hurricane

count in year i and r̂i and l̂i be the fitted annual cluster

frequency and annual hurricane frequency, respectively.

Then let t0 be a test statistic given by

t0 5
1

n
�
n

i51

(Hi 2 r̂i) 5
1

n
�
n

i51

(l̂i 2 r̂i). (7)

The value of t0 will be greater than 1 if there is clus-

tering. We test the significance of t0 by generating ran-

dom samples of length n from a Poisson distribution with

rate li and computing tj for j 5 1, . . . , J, where J is the

number of samples. A one-sided p value or test of the

null hypothesis that t0 # 0 is the proportion of simulated

ts that are at least as large as t0.

Second, we can use the fitted values of r̂ and l̂ to esti-

mate p̂. A linear regression through the origin of the fitted

hurricane count frequency to the hurricane cluster fre-

quency under the assumption that p is constant yields an

estimate of 1 1 p. Third, we use Eq. (6) to get an estimate

for p̂ when we assume p is a function of the covariates.

We demonstrate the reasonableness of the model by

applying it to data from the Gulf Coast and to data from

Florida. As shown previously there is evidence for clus-

tering of hurricanes in Florida but not in the Gulf region.

In Florida t0 5 0.104 with a p value of 0.024, whereas along

the Gulf Coast t0 5 20.062 with a p value of 0.797, in clear

agreement with the evidence presented earlier indicating

hurricane clusters in the vicinity of Florida but not along

the Gulf Coast.

A linear regression through the origin of the fitted count

rate on the cluster rate under the assumption that p is

constant yields an estimate for 1 1 p. We plot the annual

count and cluster rates and draw the regression line for

Florida and Gulf Coast hurricanes in Fig. 3. The black

line is the y 5 x line, and we expect cluster and hurricane

rates to align along this axis if there is no clustering. The

red line is the regression of the fitted hurricane rate onto

the fitted cluster rate with the intercept set to zero. The

slope of the line is an estimate of 1 1 p.

The slope is 1.138 for the Florida region, giving 0.138

as an estimate for p. The regression slope is 0.942 for the

Gulf Coast region, which we interpret as a lack of evi-

dence for hurricane clusters in this region.

Our focus is now exclusively on Florida hurricanes. We

continue by looking at the coefficients from the count and

cluster models. The output coefficients are shown in

Table 3. Results show that the NAO and SOI covariates

are significant in the hurricane count model but that only

the NAO is significant in the hurricane cluster model.

The difference in coefficient values from the two mod-

els is an estimate of log(1 1 p). The difference in the

NAO coefficient is 0.043, and the difference in the SOI

coefficient is 0.035, indicating that the NAO contrib-

utes slightly more to clustering in the vicinity of Florida

than does ENSO. Lower values of the NAO lead to

a larger rate increase for the Poisson model relative to

the binomial model. Using a bootstrap procedure, we

find p significantly greater than zero, but neither the

NAO nor the SOI are significant (at the a 5 0.1 level)

in explaining p.
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The cluster model is used to hindcast the distribution

of hurricane counts each year over the period 1866–

2010. Two sets of hindcasts, one with p 5 0.138 esti-

mated from the slope method and the other with p 5

0.160 estimated using the double GLM, are compared

with a set of hindcasts from a Poisson model (a cluster

model with p 5 0) in Table 4. For the double-GLM

approach, p is based on a dispersion value of 1.28.

Results show that the cluster model, with p estimated

either way, fits the observed counts better than does the

Poisson model, but particularly for the low- and high-

count years. Using the Poisson count model, the dif-

ference between the observed and expected is greater

than six years for years without storms and is about four

years for years with three or more hurricanes. With the

cluster model, the differences are within one or two

years.

8. Comparison with other models

A final diagnostic is a comparison of our cluster model

with two standard overdispersed models, the negative

binomial (NB) and the Poisson inverse Gaussian (PIG).

The underlying NB and PIG distributions are formed

from a continuous mixture of Poisson distributions over

the Poisson rate parameter. The rate has a gamma dis-

tribution in the NB model and an inverse Gaussian

distribution in the PIG model. These distributions

and their maximum likelihood estimators are provided

in the gamlss and gamlss.dist R packages (Rigby and

Stasinopoulos 2005; Stasinopoulos et al. 2011).

The NB and PIG models have two parameters m and

s, the location and scale parameters, respectively. Each

of these parameters may be specified as functions of the

model covariates. For the NB distribution the mean is

equal to m and the variance is equal to m(1 1 s). For the

PIG model, the mean is also equal to m but the variance

is equal to m(1 1 ms). The PIG model has slightly fatter

tails than the NB model since the mixing distribution has

a larger kurtosis. For the NB distribution we use the

‘‘NBII’’ formulation of the gamlss package since it can

fit the mean separately from the dispersion.

The fitted model means and variances from the NB

and PIG models are not significantly different than those

from the cluster model. The model coefficients for the

log(m) are similar to those under the Poisson model. The

coefficients on the climate covariates for the log(s)

component were not significant in either model, and so s

was fit as a constant. For the NB model s 5 0.234 leads

to p 5 0.133 in the cluster model, close to the 0.138

TABLE 3. Covariate coefficients for the hurricane count model and

the cluster model.

Term Estimate Std error z value p value

Hurricane rate [r(1 1 p)]

Intercept 20.268 0.105 22.546 0.011

NAO 20.226 0.090 22.502 0.012

SOI 0.056 0.030 1.856 0.063

Cluster rate (r)

Intercept 20.419 0.135 23.113 0.002

NAO 20.269 0.121 22.227 0.026

SOI 0.021 0.041 0.523 0.601

FIG. 3. Scatterplot of count vs cluster rates using hurricanes in the (a) Florida and (b) Gulf Coast regions. The black

line is y 5 x. The red line is the regression of fitted hurricane rate onto fitted cluster rate with the intercept equal to

zero.
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estimated by the slope method, and for the PIG model

s 5 exp(21.334) leads to a mean estimate of p 5 0.130.

Table 5 shows the observed and expected counts from

the four models grouped by number of years with H

hurricanes. The results show all three alternatives would

be an improvement over the Poisson model as they each

adequately handle the dispersion in the tails of the ob-

served count distribution. Only the cluster model uses

a formulism that mimics clustering in the occurrence of

hurricanes, however.

Last, it is informative to compare hindcasts of Florida

hurricanes on a graph using the Poisson and cluster

models. Here we set p 5 0.138 for the cluster model.

We can use the same two-model formulation for the

Poisson model by setting p 5 0. Results are shown in

Fig. 4 and demonstrate that the cluster model fits the ob-

served counts better than does the Poisson model. Again,

this is most evident at the low- and high-count years.

9. Summary and conclusions

Over the period 2000–11 there have only been two years

with hurricanes in Florida, but the 2004 and 2005 seasons

featured a total of seven hurricane strikes to the state.

Seasonal forecast models that predict U.S. hurricane ac-

tivity assume a Poisson distribution (Elsner and Jagger

2006). Here we show that the Poisson assumption leads to

a forecast that underpredicts both the number of years

without hurricanes and the number of years with three or

more hurricanes in the vicinity of Florida. This lack of fit

arises because of clustering of hurricanes along this part of

the coast.

Here we developed an extension to our earlier model

(Elsner and Jagger 2006) that assumes that the rate of

hurricane clusters follows a Poisson distribution with the

size of the cluster limited to two hurricanes. The model

is shown to better fit the distribution of Florida hurri-

canes conditional on the climate covariates including the

NAO and SOI. Results are similar to mixture models

that parameterize the extra variation, including the

negative binomial and Poisson inverse Gaussian models.

We argue, however, that as a natural extension to the

Poisson distribution—which is a good fit in general—our

cluster model provides a better physical basis than the

overdispersed alternatives. Moreover, the model could

be used on lightning and tornado data, for which a mix-

ture distribution might fail.

The model could be extended to include cluster sizes

that are greater than two. The authors have derived both

likelihood estimators and Bayesian posterior estimates

for the model parameters in addition to the moment

estimators described in this paper. The point estimates

are similar. In particular, the Bayesian approach is use-

ful for estimating the regression coefficients and credible

intervals for the probability parameter p. In our case, the

posterior median for p is 0.124 with a 90% credible in-

terval of (0.032, 0.257).

TABLE 4. Observed vs expected number of hurricane years for Florida by count groups from the Poisson model and the cluster model with

two different estimates of p. The observed values are based on hurricanes over the period 1866–2010.

Model p O(#0) E(#0) O($3) E($3) Pearson p value x2 p value

Poisson 0 70 63.6 13 9.0 172.4 0.042 3.85 0.134

Cluster 0.138 70 70.0 13 11.5 139.7 0.586 0.23 0.902

Cluster 0.160 70 71.0 13 11.8 135.9 0.673 0.13 0.957

FIG. 4. Observed vs expected number of Florida hurricane years.

The expected numbers are based on a cluster model ( p 5 0.138)

and on a Poisson model (p 5 0). The values are based on hurricanes

over the period 1866–2010.

TABLE 5. Observed and expected hurricane years for Florida by

count year. The expected counts are from models whose location

parameters vary with the NAO and SOI. The cluster model uses

a value for p that is based on the slope method. The models are

based on data over the period 1866–2010.

No. hurricanes Obs no. yrs

Hurricane models

Poisson Cluster NB PIG

0 70 63.6 70.0 68.9 68.5

1 43 50.6 42.7 44.9 45.8

2 19 21.8 20.8 20.0 19.7

3 10 6.8 7.8 7.5 7.2

4 2 1.7 2.6 2.6 2.5

51 1 0.5 1.1 1.1 1.3
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