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Abstract. Climate influences on hurricane intensification are investigated by averaging hourly intensification
rates over the period 1975–2014 in 8◦×8◦ latitude–longitude grid cells. The statistical effects of hurricane inten-
sity and sea-surface temperature (SST), along with the climatic effects of El Niño–Southern Oscillation (ENSO),
the North Atlantic Oscillation (NAO) and the Madden–Julian Oscillation (MJO), are quantified using a Bayesian
hierarchical model fit to the averaged data. As expected, stronger hurricanes tend to have higher intensification
rates, especially over the warmest waters. Of the three climate variables considered, the NAO has the largest
effect on intensification rates after controlling for intensity and SST. The model shows an average increase in in-
tensification rates of 0.18 [0.06, 0.31] m s−1 h−1 (95 % credible interval) for every 1 standard deviation decrease
in the NAO index. Weak trade winds associated with the negative phase of the NAO might result in less vertical
wind shear and thus higher mean intensification rates.

1 Introduction

Hurricanes are powerful warm-core cyclones that are some
of the most destructive natural hazards on the planet (NHC,
2013; Peduzzi et al., 2012; Pielke Jr. et al., 2008). Hurricane
intensity is estimated by the highest sustained near-surface
wind speed within the storm. While the skill of predicting
hurricane tracks has improved over the past 20 to 30 years,
skill in predicting intensity has lagged considerably behind
(e.g., Elsberry et al., 2007, 2013). Specifically, predicting in-
tensity change is difficult with present-day numerical mod-
els owing to unresolved small-scale processes including non-
hydrostatic thermodynamics.

Hurricane intensification (increasing intensity change) is
a well-studied problem in meteorology with particular focus
on rapid intensification (RI). RI is defined as a large increase
in intensity (e.g., 15 m s−1 or 30 kt) over a limited period
of time (e.g., 24 h) (see Kaplan and DeMaria, 2003). Op-
erationally the probability of RI for a particular hurricane
is assessed using sea-surface temperature (SST) or ocean
heat content (OHC), along with other factors, in a regres-
sion model (e.g., DeMaria et al., 1993; Kaplan and DeMaria,
2003; Law and Hobgood, 2007).

Aggregate cases of RI have been studied from a climate
perspective. In particular, Klotzbach (2012) finds the num-
ber of RI cases in the North Atlantic is about 3 times as high
during La Niña than during El Niño with the difference be-
ing even larger when cases are restricted to hurricanes in the
main development region (MDR). According to Klotzbach
(2012) the large-scale mode of tropical variability known as
the Madden–Julian Oscillation (MJO, Madden and Julian,
1972) might also play a role. Klotzbach (2012) found two-
thirds of all RI cases occur in just three of the eight MJO
phases.

Much less work has been done to understand intensifi-
cation spatially. Fraza and Elsner (2015) find a significant
relationship between proximate SST and mean intensifica-
tion. They divide the North Atlantic basin into 4◦ latitude–
longitude cells and use mean intensification (increasing in-
tensity) as the response variable in a generalized linear re-
gression model with a term for the spatial autocorrelation.
The covariates in the model include intensity and SST. Val-
ues within the cells are averaged over the entire period of
record. By statistically controlling for intensity, the effect of
SST on intensification is clearly demonstrated.
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The finding contrasts with results from an earlier study
(Balling and Cerveny, 2006) that used current and preceding
month’s SST in a bivariate correlation analysis.

The present work builds on Fraza and Elsner (2015) by
adding climate factors, like El Niño–Southern Oscillation
(ENSO), to the model. The climate factors vary with time
so the spatial model is extended to include a time-varying
component. The purpose of this article is to demonstrate the
space–time model and to determine the effect of the climate
factors on hurricane intensification controlling for intensity
and SST.

The paper is outlined as follows. In Sect. 2 we describe
the data that will be used in the model, including the HUR-
DAT2 dataset, climate data, and spatial aggregation of the
data. In Sect. 3 we explore the spatial distribution of intensi-
fication, intensity, and SST. In Sect. 4 we present the space–
time statistical model and discuss its components. In Sect. 5
we present the results from fitting the model to the data. In
Sect. 6 we explore the relationship between intensification
and the North Atlantic Oscillation (NAO). In Sect. 7 we dis-
cuss our findings, and in Sect. 8 we provide a summary of
the paper.

2 Data

2.1 Sources and description

2.1.1 Hurricane tracks

The hurricane data used in this study are derived from the
HURDAT2 (Jarvinen et al., 1984). HURDAT2 is a dataset
compiled by the National Hurricane Center (NHC) of the
National Oceanic and Atmospheric Administration (NOAA).
The dataset includes information such as storm center fix (in
tenths of degrees), storm intensity, and if the storm center
is over land. Storm intensity is measured as the 1 min near-
surface wind speed (∼ 10 m). The wind speed is provided
in knots (1 kt= 0.5144 m s−1). Values of these variables are
given every 6 h (00:00, 06:00, 12:00, 18:00 UTC). We use
data from the 1975–2014 hurricane seasons. The dataset was
downloaded from www.nhc.noaa.gov/pastall.shtml#hurdat.

2.1.2 Sea-surface temperatures

The SST data used in this study are from the NOAA
Extended Reconstructed Sea Surface Temperature V3b.
The dataset is originally from the International Com-
prehensive Ocean-Atmosphere Data Set (ICOADS). Sta-
tistical methods were used to fill in missing data. The
dataset is on a 2◦× 2◦ global oceanic grid. The dataset
was downloaded from http://www.esrl.noaa.gov/psd/data/
gridded/data.noaa.ersst.html#detail.

2.1.3 Climate variables

The climate variables used in this study are ENSO, NAO,
and MJO. We use the Multivariate ENSO Index (MEI) to
represent ENSO in our model. The MEI is considered more
comprehensive than other common ENSO indices such as
Niño 3.4 because the MEI is based on more factors than just
an SST index (Klotzbach and Oliver, 2015). The MEI in-
cludes six observed variables: sea-level pressure, zonal and
meridional components of the surface wind, surface air and
sea-surface temperatures, and total cloudiness fraction of the
sky.

We use the NAO Index (NAOI) from the Climate Predic-
tion Center (CPC) of NOAA to represent NAO in our model.
The index is defined by projecting the 00:00 UTC 500 mb
height anomalies for the Northern Hemisphere onto the load-
ing pattern of the NAO (Wallace and Gutzler, 1981). This
creates a daily NAOI, which is then converted to a monthly
average.

We use the MJO index (MJOI) from Wheeler and Hendon
(2004) to represent MJO in our model. The index is defined
by extracting the first two empirical orthogonal functions of
the combination of the combined fields including 200 and
850 mb zonal wind fields, along with outgoing long-wave ra-
diation. The annual mean and ENSO-type variability were
then removed. Finally, the time series is normalized to have
a standard deviation of 1 over the time period 1979–2001.

2.2 Filtering, interpolation, and aggregation

2.2.1 Interpolation of hurricane track data

The 6 h intervals in HURDAT2 are too coarse for our spatial
interpolation. A storm with a forward speed of 10 m s−1 will
travel 216 km in 6 h. A storm could pass through a corner of
a cell and not get counted in that time. Therefore, we inter-
polate the hurricane track data to 1 h intervals using a spline
technique. This determines the storm center fix using spher-
ical geometry. Further, the spline interpolation preserves the
6 h data. This is done by using a piecewise polynomial to de-
termine the values between the preserved 6 h data. Additional
details concerning the interpolation process can be found in
Elsner and Jagger (2013).

The intensity change of the storm is computed as the first
derivative of the intensity using a Savitzky–Golay smoothing
filter and a weighted differencing scheme (Elsner and Jagger,
2013). This technique keeps the minimum and maximum in-
tensities of a storm. This limits the size of the computational
errors relative to a simple finite-difference scheme.

2.2.2 Spatial aggregation of tracks and SST data

As a compromise between having enough cells and enough
data within each cell, we choose an 8◦ latitude–longitude grid
for the area 10–50◦ N by 20–100◦W. This is done using the
raster package in the R programming language (Hijmans,
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Figure 1. Tracks and corresponding cells for three 2008 hurricanes:
Gustav, Ike, and Omar. Each colored cell indicates at least one storm
intensifies within its boundaries.
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Figure 2. Hurricane intensification count and ratio per cell.
(a) Number of intensifying hurricanes per cell, and (b) ratio of to-
tal number of hurricanes with at least 1 h of intensification to total
number of hurricanes per cell. The data are from the period 1975–
2014.

2014). An example of our raster grid is shown in Fig. 1. The
tracks of three storms from the 2008 Atlantic hurricane sea-
son are plotted (Gustav, Ike, and Omar). The tracks represent
the paths of each storm when they were at hurricane inten-
sity. Only cells that have at least one center fix of a hurricane
intensifying are colored. Annual mean intensity and intensifi-
cation values are computed for each cell using all center fixes
within the cell. The mean intensity and intensification val-
ues are calculated per cell per storm, then averaged for each
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Figure 3. Mean intensification histogram and spatial plot. (a) His-
togram of mean hourly intensification in 0.2 m s−1 h−1 intervals,
and (b) spatial distribution of mean intensification. The data are for
the months June–October over the period 1975–2014.

year. Annual refers to the hurricane season months from June
through October. The grid creates a total of S = 50 cells per
year. However, nine cells within the grid do not have a hurri-
cane intensify within its boundaries during our time of inter-
est. These nine cells are therefore removed, leaving S = 41
cells per year.

2.2.3 Time filtering of the climate indexes

We average the monthly MEI values from June through Oc-
tober to get a yearly value and average the monthly NAOI
values from January through March to get a yearly value. We
also sum the first two principal components of the monthly
MJOI from June through October and average the values to
get a yearly value.

3 Exploratory analysis

Hurricane intensification is most common over the west-
ern North Atlantic (Fig. 2). This is also where hurricanes
are most frequent. The Gulf of Mexico and northwestern
Caribbean Sea are also regions where intensification is rela-
tively more common. Fewer cases of intensification are noted
in the southern Caribbean and eastern portions of the basin.
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Figure 4. Yearly mean intensification rates for intensifying hur-
ricanes. Mean intensification is calculated over the period June–
October for each year 1975–2014.

The ratio of intensifying hurricanes to all hurricanes is
highest in the central and eastern MDR. The ratio is lower
in most of the Caribbean Sea, as well as the Gulf of Mexico.
The ratio is also lower moving north in the basin. The ratios
range from 0.2 in the far north of the basin to 1 in the far
south and east of the basin.

3.1 Intensification

A histogram of basin-wide mean intensification appears to
show a gamma distribution (Fig. 3). Intensification is binned
at 0.2 m s−1 h−1 intervals starting from no intensification.
The largest bins are found closest to zero and decrease
moving away from zero. Overall, a total 10 312 cells in-
tensify from 232 storms over the time frame. The mean
intensification rate is 0.43 m s−1 h−1. The median value is
0.375 m s−1 h−1 with first and third quartiles of 0.140 and
0.613 m s−1 h−1 respectively. This equates to 20.1 [6.5, 28.6]
knots day−1.

From year to year, the highest mean intensification rates
are found in the southern portion of the basin (Fig. 4). There
is a wide range in the number of cells that have an inten-
sifying hurricane each year. For instance, only two cells had
an intensifying hurricane in 1994. At the other extreme, 1998
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2010 2011 2012 2013 2014
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Figure 5. Yearly mean intensity for intensifying hurricanes. Mean
intensity is calculated over the period June–October for each year
1975–2014.

had 27 cells with an intensifying hurricane, followed by 1995
(25 cells) and 2010 (23 cells). The highest mean intensifi-
cation rate is 1.83 m s−1 h−1 in 1987. The next highest rate
is 1.37 m s−1 h−1 in 1978. Other years with mean intensifi-
cation rates over 1.25 m s−1 h−1 include 1991, 1992, 2000,
2001, and 2008.

3.2 Intensity

From year to year, the highest mean intensities are found in
the southern and central portions of the basin (Fig. 5). The
highest mean intensity is 77 m s−1 in 1980. Other years with
mean intensities over 70 m s−1 include 1979 and 2007.

3.3 Sea-surface temperature

From year to year, there are no great changes in sea-surface
temperature anomalies (Fig. 6). A majority of the negative
SST anomalies are found in the early half of the time pe-
riod, and a majority of the positive SST anomalies are found
in the latter half of the time period. All cells with a mean
SST< 20 ◦C are shown without an SST as these waters are
of less interest.
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Figure 6. Yearly mean SST anomalies. Mean SST values are calcu-
lated over the period June–October for each year 1975–2014. Yearly
mean SSTs< 20 ◦C are omitted from being plotted.

3.4 Temporal factors

The temporal evolution of the MEI shows the strongest El
Niño and La Niña events (Fig. 7). Standard deviation val-
ues above 0.75 indicate an El Niño event, and values below
−0.75 indicate a La Niña event. The extreme years of 1982–
1983 and 1997–1998 saw MEI values exceed 1.5 standard
deviations (SD).

The temporal evolution of the NAOI varies year to year,
but there is no long-term trend. The extreme years of 1989
and 1995 saw NAOI values exceed 1 SD. The temporal evo-
lution of the MJOI varies from year to year but also shows
no long-term trend. The extreme years of 1999 and 2010 saw
MJOI values below −0.4 SD. Due to incomplete outgoing
long-wave radiation observations, 1978 is missing from the
MJOI.

4 Space–time model

We are interested in the relationship between hurricane in-
tensification and factors that affect it on the climate scale.
Our approach is similar to the approach used in Hodges
et al. (2014), who examined factors influencing hurricane fre-
quency. We use a full probability model that can account for
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Figure 7. Time series of (a) monthly average of MEI from 1975
to 2014, (b) monthly average of NAOI from 1975 to 2014, and
(c) monthly average of MJOI from 1975 to 2014. Due to missing
outgoing long-wave radiation data, 1979 is missing from the MJOI.

the marginal contributions of each of the climate effects on
intensification as well as spatial autocorrelation in intensifi-
cation values.

The mean intensification in each space–time cell is de-
scribed by a gamma random variable:

Xs,t|αs,t,θs,t ∼ ind gamma(αs,t,θs,t);αs,t > 0, θs,t > 0, (1)

which represents hurricane intensification for each cell for
each year from 1975 through 2014. The mean of Xs,t is rep-
resented by µs,t = αs,t/θs,t, which are the shape and rate pa-
rameters. Normally in the literature, β is used to represent the
rate parameter in the gamma distribution. However, to avoid
confusion later with the covariates, θ is used to represent the
rate parameter in the gamma distribution.
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Figure 8. Posterior densities, with all other β terms held constant.
(a) Modeled density of mean intensification changes per 1 m s−1

increase in mean intensity. (b) Modeled density of mean intensifica-
tion changes per 1 ◦C increase in mean SST. The red line represents
the x = 0 line (i.e., no effect). The gray lines represent the 95 % CI.

The log of the mean is modeled as a linear combination of
the predictors

log(µs,t)=βInt(s) · Ints,t+βSST(s) ·SSTs,t (2)
+βENSO ·ENSOt+βNAO ·NAOt

+βMJO ·MJOt+ us,

where Ints,t and SSTs,t are the actual intensity and SST values
that vary by cell and time. us is a spatially dependent Gaus-
sian Markov random field model (Besag, 1975) such that

ui |uj , i 6= j,τ ∼ Gau

(
1
mi

∑
i∼j

uj ,
1
mi
τ

)
, (3)

where mi is the number of neighboring cells of location i,
and i ∼ j indicates that i and j are neighbors. The β param-
eters have a log-gamma prior distribution.

The spatially varying β parameters are assumed to be
the sum of structured and unstructured random effects. The
structured effects are described by a Markov random field
model (Besag, 1975) and the unstructured effects by a multi-
variate normal distribution. Additional information concern-
ing the model is available in Hodges et al. (2014), including
Eqs. (1)–(5). Specifics about these types of space–time mod-
els are available in Cressie and Wikle (2011), especially in
chap. 7.

The model is fit using the method of integrated nested
Laplace approximation (INLA). INLA is a deterministic
technique for Bayesian inference (Blangiardo and Cameletti,
2015) and is available in the inla package for R (Martins

(a)

βInt(s) [m s−1h−1 per m s−1]

0.000 0.006 0.012

(b)

βSST(s) [m s−1h−1 per °C ]

0.077 0.079 0.081 0.083 0.085

Figure 9. Mean of the posterior densities represented spatially.
(a) Mean intensification rate per 1 m s−1 increase in intensity.
(b) Mean intensification rate per 1 ◦C increase in SST.

et al., 2013). Unless otherwise stated, the default options
within the inla package are used.

Temporal dependence is very unlikely to be an issue in
our model. Given the yearly nature of the measurements, any
temporal dependence is very likely to be over a short amount
of time and averaged into the yearly climate data.

5 Results

Results are presented in the form of posterior densities for
the model coefficients. First the intensity and SST model co-
efficients are investigated (Fig. 8). The model results confirm
the significant positive relationship between intensity and in-
tensification shown in Fraza and Elsner (2014). Regions with
stronger hurricanes tend to have higher intensification rates.
On average across the basin and for this spatial scale for ev-
ery 1 m s−1 increase in intensity, intensification rates increase
by 0.0083 m s−1 h−1 [−0.0025, 0.019] (95 % credible inter-
val (CI)).

The model also confirms a significant positive relationship
between local SST and intensification as shown in Fraza and
Elsner (2015). Warmer ocean regions tend to be those that
support higher intensification rates. On average across the
basin and on this spatial scale for every 1 ◦C warming, in-
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Figure 10. Posterior densities of the climate coefficients from the
model. (a) βMEI, (b) βNAOI, and (c) βMJOI. Units are expressed as
a change in intensification (m s−1 h−1) for a 1 standard deviation
(SD) change in the covariate. The red line represents the x = 0 line
(i.e., no effect). The gray lines represent the 95 % CI.

tensification rates increase by 0.08 m s−1 h−1 [0.052, 0.11]
(95 % CI) (3.7 kt day−1). This means that intensification rates
will increase by 21.6 % for every 1 ◦C warming. This is com-
parable to Fraza and Elsner (2015), who found a 16 % in-
crease in intensification rates for every 1 ◦C warming. The
difference between the increases is likely due to the different
spatial scales used.

The magnitude of intensification response to intensity and
SST varies spatially (Fig. 9). Posterior density values of in-
tensity range from 0.0012 m s−1 h−1 per m s−1 in the north-
ern part of the basin to 0.014 m s−1 h−1 per m s−1 in the
MDR. In general, the relationship is stronger in the deep trop-
ics and along the east coast. On average in these areas for ev-
ery 1 m s−1 increase in mean intensity, mean intensification
rates increase by 0.0083 m s−1 h−1 (0.39 kt day−1).

The spatial relationship between local SST and intensifi-
cation is also in agreement with Fraza and Elsner (2015). On
average across the basin for every 1 ◦C increase in local mean
SST, mean intensification rates increase by 0.082 m s−1 h−1

(3.83 kt day−1). The values throughout the basin range from
0.078 m s−1 h−1 in the northeast to 0.084 m s−1 h−1 in the
Gulf of Mexico.

As noted above, the main focus of this work is the rela-
tionship between intensification and climate factors. Here we
consider the results from the model for three climate fac-
tors: ENSO, MJO, and NAO. The MEI is used as an in-
dex for ENSO. The peak of the posterior density for the

Table 1. DIC values for each iteration of the model runs. Intensity
and SST are included in all iterations.

Climate covariates DIC

NAOI only −70.42
MEI only −63.42
MJOI only −64.03
NAOI & MEI −68.89
NAOI & MJOI −70.16
MEI & MJOI −66.75

MEI coefficient (Fig. 10) is centered near zero with a mean
of 0.0099 m s−1 h−1 per 1 SD [−0.100, 0.120] (95 % CI)
(0.46 kt day−1) indicating ENSO does not have a significant
effect on mean intensification rates at these spatial and tem-
poral scales.

The MJOI is used as an index for the MJO. The posterior
density on the MJOI coefficient (Fig. 10) is shifted to the
right of zero indicating the MJO has a positive effect on mean
intensification rates of 0.204 m s−1 h−1 per 1 SD [−0.166,
0.574] (95 % CI) (9.52 kt day−1) at these spatial and temporal
scales.

The most significant factor on intensification rates is the
NAO. The NAOI is used as an index for the NAO. The pos-
terior density on the NAOI coefficient (Fig. 10) is shifted to
the left of zero indicating the NAO has a negative effect on
mean intensification rates with rates of 0.183 m s−1 h−1 per
1 SD [−0.308, −0.0578] (95 % CI) (8.54 kt day−1) at these
spatial and temporal scales.

The significance of the NAOI in the model was tested by
calculating the model output deviance information criterion
(DIC) for model runs with different climate factors left out.
A total of six model runs were done, and their DIC scores
are listed in Table 1. The smallest DIC (indicating the best
model fit) came when the NAOI was the only climate factor
included.

6 Intensification stratified by NAO years

Here we take a closer look at the relationship between the
NAO and hurricane intensification. We do this by comparing
intensification rates for the 10 years with the highest NAOI
in our study period to the intensification rates for the 10 years
with the lowest NAOI. We take the five largest mean inten-
sification rates from each of these 10 years; if fewer than
five values are available for a particular year we take them
all. The 10 most negative NAO years are 1975, 1977, 1978,
1979, 1980, 1985, 1987, 2001, 2010, and 2013. The 10 most
positive NAO years are 1989, 1990, 1993, 1994, 1995, 1997,
2000, 2002, 2012, and 2014. This gives us 48 mean intensifi-
cation values for the most negative years and 47 mean inten-
sification values for the most positive years.
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Figure 11. Density plot of five strongest mean intensification val-
ues (scaled to 24 h) for each of the 10 highest NAOI years (pink)
and for the 10 lowest NAOI years (blue) in units of m s−1 day−1

(1 m s−1 day−1
= 1.944 kt day−1). The white line is the RI thresh-

old of 30 kt day−1.

The distribution of intensification for negative NAO years
is different than the distribution of intensification for posi-
tive NAO years (Fig. 11). Here values of intensification are
re-scaled to reflect 24 h intensification rates. The peaks are
similarly situated near 15 m s−1 day−1, which is close to the
value of RI (white vertical line), but negative years feature
more of the distribution above this value compared to posi-
tive years. In fact, 58 % of the mean intensification rates for
the negative NAOI years are greater than the RI rate, whereas
only 34 % of the mean intensification rates for the positive
NAOI years are greater than the RI rate.

7 Discussion

Warmer seas and higher intensities are known to have a pos-
itive effect on intensification. Elsner et al. (2013) and Gray
(1968) are just two of many studies to note that higher SSTs
are beneficial to hurricanes. Elsberry et al. (2007) and Ka-
plan et al. (2010) noted that many of the strongest hurricanes
in the North Atlantic basin underwent RI at some point dur-
ing their lifetimes. Our results are in agreement with this re-
search. Previous research has also shown that El Niño (pos-
itive MEI) reduces hurricane frequency across the North At-
lantic basin (e.g., Arkin, 1982; Gray, 1984). However, our
model shows that El Niño has no statistically significant ef-
fect on intensification when using MEI as an index. Further,
the MJO has no statistically significant effect on intensifica-
tion when using MJOI as an index.

The biggest revelation is that our model shows the NAO
has a significant negative effect on intensification. There is
no research concerning the NAO and intensification. How-
ever, previous research (e.g., Elsner, 2003; Xie et al., 2005)
shows that a lower NAOI is associated with more hurricane

activity in the North Atlantic basin. The physical explana-
tion for this finding is unknown, but could be associated with
the position of the North Atlantic subtropical high. Elsner
et al. (2000) and Elsner et al. (2001) note that the North At-
lantic subtropical high is weaker and positioned farther south
and west than normal when the NAOI is negative. This fa-
vors storms tracking westward at a more southerly latitude
over the warmer oceans. But our model includes SST so that
is not the entire story. Weaker trade winds associated with a
weaker NAO (Marshall et al., 2001) lead to less vertical wind
shear and thus a better potential for intensification.

Finally, the finding that the distribution of hourly intensifi-
cation rates scaled to 24 h peaks near the level of RI suggests
that hourly intensification at the 24 h intensification rate is
not exceptional, and has been hypothesized in some recent
research (e.g., Kowch and Emanuel, 2015). Typical hourly
intensification rates sustained over a day lead to a rare event.
For instance, Kaplan and DeMaria (2003) define RI as ap-
proximately the top 5 % of all 24 h intensification. From this,
we can infer that rare RI events are the result of normal in-
tensification rates but sustained for an unusually long period.
This hints that understanding RI might improve by studying
environmental conditions that allow sustained intensification
rates.

8 Summary

Climatic effects on hurricane intensification rates are inves-
tigated for the North Atlantic basin. Hourly intensity and in-
tensification rates are averaged on an 8◦ latitude–longitude
grid. The same grid is used to average seasonal values of
SST. Indexes for the ENSO, MJO, and NAO are averaged
by season. The distribution of annual mean intensification,
mean intensity, and mean SST over the period 1975–2014
are mapped. Regions with the highest intensity and great-
est intensification rates are co-located with regions of highest
SSTs across the southern part of the basin and the southwest-
ern Caribbean Sea.

A space–time statistical model is employed to quantify
the relationships in a multivariate context. A full probability
model is fit using the method of INLA. Posterior densities
of model coefficients summarize the effect a variable has on
intensification. Results show that intensity and SST have a
positive effect on intensification consistent with previous re-
search. That is, as intensity and SST increase so do hurricane
intensification rates. Intensity had the strongest effect on in-
tensification in the southern part of the basin and along the
east coast. SST had the strongest effect in the southern part
of the basin as well as in the Gulf of Mexico.

When climate factors are included in the model, we find
that the NAO significantly affects intensification rates after
controlling for intensity and SST. The peak density shows
that for a 1 SD decrease in the NAO, mean intensification
increases by 0.183 m s−1 h−1 (0.36 kt). The reason for this
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effect is unknown, but it could be due to the position of the
North Atlantic subtropical high and the strength of the trade
winds. A combination of the high pressure center being fur-
ther south and west along with weakened trade winds could
allow for greater intensification rates. In contrast to the NAO,
the ENSO has little effect on intensification rates after con-
trolling for intensity and SST. This is likely because SST is
already accounted for. Further, the MJO also has little effect
on intensification rates as zero is within its 95 % CI range.

One limitation of this study is the factors not included in
the model. For example, the phase of the quasi-biennial oscil-
lation (QBO) and the depth of the Saharan dust layer (Gray,
1990) might contribute to intensification, both of which are
missing from the current model. Another limitation is the
spatial scale used for the analysis and modeling. Although
chosen with care to capture the salient features associated
with climate influences on intensification, alternative scales
are possible that could change the magnitude or significance
of the results. Further research is needed to understand the
physical role the NAO plays in modulating hurricane inten-
sification. For example how does the NAO effect vary across
the domain? Finally, do the same climate relationships hold
in other hurricane basins?

9 Data availability

Atlantic hurricane dataset (HURDAT2) was down-
loaded from www.nhc.noaa.gov/pastall.shtml#hurdat.
SST data used in this study are from the NOAA Ex-
tended Reconstructed Sea Surface Temperature V3b
(downloaded from http://www.esrl.noaa.gov/psd/data/
gridded/data.noaa.ersst.html#detail). The analysis and
modeling were performed using the open-source R pack-
age for statistical computing. The code and data used
to produce the figures in this paper are available from
https://github.com/erikf28/FrazaEtAlASCMO.
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