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ABSTRACT

The authors illustrate a statistical model for predicting tornado activity in the central Great Plains by 1

March. The model predicts the number of tornado reports during April–June using February sea surface

temperature (SST) data from the Gulf of Alaska (GAK) and the western Caribbean Sea (WCA). The model

uses a Bayesian formulation where the likelihood on the counts is a negative binomial distribution and where

the nonstationarity in tornado reporting is included as a trend term plus first-order autocorrelation. Posterior

densities for the model parameters are generated using the method of integrated nested Laplacian approx-

imation (INLA). The model yields a 51% increase in the number of tornado reports per degree Celsius

increase in SST over the WCA and a 15% decrease in the number of reports per degree Celsius increase in

SST over the GAK. These significant relationships are broadly consistent with a physical understanding of

large-scale atmospheric patterns conducive to severe convective storms across the Great Plains. The SST

covariates explain 11% of the out-of-sample variability in observed F1–F5 tornado reports. The paper

demonstrates the utility of INLA for fitting Bayesian models to tornado climate data.

1. Introduction

The United States experiences more tornadoes than

any country on Earth with an annual average during the

3 years (2009–11) exceeding 1350. According to the

National Oceanic and Atmospheric Administration

(NOAA) Storm Prediction Center, the annual average

number of killer tornadoes since 2009 is 30 with total

deaths exceeding 600. Annual statistics are only part of

the story. The number of tornado reports varies widely

from one year to the next yet we do not know what

causes this variation.

We know some of the necessary ingredients on the

mesoscale including high values of storm-relative hel-

icity and convective available potential energy (CAPE),

surface boundaries, and directional shear of winds with

height (Rotunno 1981; Davies-Jones 1984; Rotunno and

Klemp 1985; Brooks and Wilhelmson 1993). It is well

known that the mesoscale ingredients come together

when the synoptic scale includes warm, moist air at low

levels, cold, dry air aloft, and a strong jet stream.Missing

is a link to the climate scale.

It is also known that a key component to climate

predictability is the slowly varying ocean heat content.

Here we show that ocean surface temperatures over the

western Caribbean Sea and Gulf of Alaska during

February provide a small, but statistically significant level

of skill in portending springtime tornado activity across

the central Great Plains. The model is constructed using

a Bayesian formulation. The likelihood on the annual

tornado report counts is a negative binomial distribution.

The nonstationarity in reporting trends is included as a

trend term. Posterior densities for the model parameters

are generated using the integrated nested Laplace ap-

proximation (INLA) method. The paper is novel in

demonstrating a preseason SST link to springtime tor-

nado activity across the central Great Plains and in

demonstrating the INLA method for Bayesian compu-

tation on tornado data. (The code used in this study is

available online at rpubs.com/jelsner/4745.)

The paper is outlined as follows: in section 2 we present

the tornado data and our partition of it that focuses

on the months of April through June (spring) over the

central Great Plains. In section 3 we examine the an-

nual variation in tornado reports using time series plots

and histograms. We show that the annual counts are not

adequately described by a Poisson distribution. In sec-

tion 4 we examine the annual variation in SSTs in the

Gulf of Alaska (GAK) and in the western Caribbean
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Sea (WCA). While a weak in-phase relationship be-

tween the two series is noted overall, the relationship

has gone out of phase starting in the early twenty-first

century. In section 5 we present the modeling frame-

work mentioned above and in section 6 we present

results from the model including posterior densities on

the SST covariates and diagnostics related to model fit,

calibration, and predictive skill. In section 7 we give

a summary and some concluding remarks.

2. Tornado data and study region

The Storm Prediction Center (SPC) maintains a data-

set of all reported tornadoes in the United States from

1 January 1950 to the present. Earlier records exist, but

there has not been a consistent effort to investigate,

document, or maintain a record of these earlier occur-

rences (Galway 1977). The SPC dataset is the most reli-

able archive available for tornado studies. (We download

the dataset from http://www.spc.noaa.gov/gis/svrgis/.)

In this study we consider tornadoes only within a re-

gion centered on Russell, Kansas, as defined in Elsner

et al. (2013). The region stretches across the central

Great Plains from northern Texas to central Nebraska

and is bounded by 36.108 and 41.578N latitudes and

102.378 and 95.348W longitudes. This is an area with

a high concentration of tornadoes and where there are

no large spatial gradients in occurrence rates. It corre-

sponds to an area favored by storm chasers. We further

restrict our attention to the months from April through

June when supercells are common.

Figure 1 shows the distribution of all tornado reports

bymonth. There is amarked peak in activity duringMay

with the main season running from April through June.

Here we focus on this three-month period. Of the 6328

tornado reports in this region over the period 1950–

2011, 73.8% of them occurred in April, May, or June.

Figure 2 shows a terrain map of the study domain and

the touchdown points of the 5932 tornadoes (April–June)

during 1950–2011 with a Fujita-scale (F scale) rating.

We do not consider further the 6.3% of reports without

an F-scale rating.

The F scale, introduced in the 1970s, is the standard

measure of tornado intensity. It is based on the maxi-

mum damage caused along the tornado path and ranges

from F0 (for minimum damage) to F5 (for total de-

struction). It was replaced by the enhanced Fujita scale

(EF scale) in early 2007, using slightly different and

more specific criteria for assessment (Potter 2007). The

F scale and the EF scale are considered equivalent for

climatological applications. The reliability and number

of tornado reports have increased over time as a result

of better radar coverage, larger population, and greater

public awareness (Doswell et al. 1999; Verbout et al.

2006). Thus, the annual tornado reports are not stationary

over time.

3. Annual variation in tornado reports

Figure 3 shows the time series of April–June tornado

reports over the study region by F-scale grouping. There

is an increase in the reports of all tornadoes (F0–F5) and

a slight decrease in the reports of F2 and higher torna-

does. There are some years without F3 or stronger tor-

nadoes. The trend line is shown in gray. It is computed

using a local regression fit. For year to, the fit is made using

reports from all years where the number of tornadoes at

each year t is weighted by t’s distance from to (dto ,t) using

a tricubic weighting proportional to (12dto ,t/d
3
to ,tm

)3,

where dto ,tm is the distance between year to and the year tm
farthest away. The gray band is the 95% confidence in-

terval on the fits. The interval is based on the standard

error of the regression coefficient assuming an appro-

ximate t distribution. Histograms showing the annual

number of tornado reports by F-scale grouping are dis-

played in Fig. 4.

We propose a parametric statistical model for the

annual number of tornado reports. This requires us to

specify a distribution for the response variable (annual

count). While local tornado counts have been modeled

with the Poisson distribution (Anderson et al. 2007;

Tippett et al. 2012), the annual springtime counts over the

central Plains are not well described by this distribution.

FIG. 1. Tornado reports by month over the study region centered

onRussell, KS, for the period 1950–2011. Tornado reports aremost

numerous during April–June.
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This is apparent by examining the ratio of the annual

variance to the annual mean, which is tabulated by

F-scale group in Table 1. For a set of counts described

by a Poisson distribution, the ratio is close to 1. Here we

see the variance in the counts exceeds the mean for all

F-scale groups (the ratio exceeds 1) and by a factor of

more than 27 for the group that includes the weakest

tornadoes.

A goodness-of-fit test for a Poisson distribution gives

a p value less than 0.001 for all groups with the exception

of the F4–F5. The p value is evidence in support of the

null hypothesis that the counts are indistinguishable

from Poisson. Even with the group of violent tornadoes

we reject the null hypothesis of a Poisson distribution at

a significance level of 0.016. The overdispersion (vari-

ance larger than the mean) in annual counts results from

tornadoes occurring in clusters—defined as an outbreak—

on days when synoptic weather conditions are particu-

larly favorable for severe convective storms. Statistically,

the occurrence of a tornado on a given day increases the

chance of another one on the same day, often in the same

general area. The largest outbreak of five F4–F5 torna-

does over this region occurred on 26 April 1991. The

negative binomial distribution is an alternative to the

Poisson distribution when counts are overdispersed.

4. Sea surface temperatures

As mentioned, an important component to climate

predictability is the slowly varying ocean heat content.

Here we demonstrate that ocean surface temperatures

over the western Caribbean Sea and Gulf of Alaska

during February provide some skill in predicting the

amount of springtime tornado activity across the central

Great Plains. The tornado region and the two SST re-

gions are shaded in Fig. 5.

The two regions are selected because of the rela-

tively close proximity (on the global scale) to the

Great Plains and because the considerable thermal

inertia of the ocean can guide the long-term (several

months) evolution of the climate patterns. In partic-

ular, we might expect lower-than-average tempera-

tures in the Gulf of Alaska to combine favorably with

higher-than-average temperatures in the western Ca-

ribbean Sea to produce jet stream divergence above the

central United States.

We are interested in a model that can be used to

predict springtime tornado activity so we obtain SST

values for the month of February from both regions

(http://www.esrl.noaa.gov/psd/data/timeseries/). The se-

ries are plotted in Fig. 6. As with the tornado reports, we

apply a local polynomial (cubic) fit to the series (gray

line) and the gray band is the 95% confidence level.

There is year-to-year variation in SST in both regions

but no long-term trends.

The correlation between the two SST time series

(GAKandWCA) is10.24 (20.01,10.46) [95% confidence

interval] over the 62-yr period indicating a weak, in-phase

relationship. When the WCA is warmer than average,

there is a tendency for the GAK to be warmer as well. In-

terestingly, this in-phase relationship has gone out of phase

since about 2004. Hence, the correlation between the two

series is 10.35 (10.09, 10.56) [95% confidence interval]

before 2004 and20.37 (20.85,10.46) [95% confidence

interval]. If the out-of-phase relationship continues we

might expect to see more years of high tornado activity.

FIG. 2. Tornado reports (F0–F5) over the study region centered

on Russell, KS, during April–June for the period 1950–2011. Point

grayscale corresponds to the F scale. The points are provided on

a Lambert conformal conic (LCC) projection with reference par-

allels of 338 and 458N latitudes and the spatial unit is meters.

FIG. 3. Time series of spring tornado reports by F-scale groups

over the study region centered on Russell, KS. A local cubic poly-

nomial fit to the report counts shows the trends.
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5. Seasonal prediction model

We seek a prediction model for annual tornado re-

ports. While hurricane counts are successfully modeled

using Poisson regression (Elsner and Schmertmann

1993; Elsner and Bossak 2001), the Poisson distribu-

tion is not appropriate for tornado counts as explained

above. To account for improvements in tornado re-

porting over time,we include a trend term.A linear trend

might not be optimal because changes to reporting prac-

tices are not necessarily uniform over time (see Elsner

et al. 2013).

Modeling is done using a Bayesian approach (see

Elsner and Jagger 2006). Here the reported number of

tornadoes each year Tt is assumed to belong to a nega-

tive binomial distribution where the mean mt is linked

to a structured additive predictor nt through the link-

function log(mt)5 nt. The likelihoodmodel is controlled

by the dispersion parameter n (size). The predictor nt
accounts for the SST effects on tornado counts (bWCA,

bGAK) and trend (bYEAR) in an additive way.

The model equation is

Tt j nt ;NegBin(mt, n) (1)

nt 5b01bWCA 3WCAt 1bGAK 3GAKt

1bYEAR3YEARt 1 f (ut) , (2)

where NegBin(mt, n) indicated that the conditional tor-

nado counts (Tt j nt) are described by a negative binomial

distribution with mean mt and dispersion parameter n.

The covariatesWCAt andGAKt are the western Carib-

bean and Gulf of Alaska SST values for year t, respec-

tively, and where YEARt is year t to account for trend in

the tornado reports. Note that YEAR1 is 1950. We assign

vague Gaussian priors with known precision to the bs.

The first-order autoregressive term f(mt) is given by

u1;Nf0, [t(12f2)]21g (3)

ut 5fut211 «t; «;N (0, t21) . (4)

To complete themodel the hyper-parameter (parameter

of a parameter) n is written as u1 5 log(n) and assigned

FIG. 4. Histograms of annual tornado reports by F-scale groups. The number of years is on the vertical axis and the

number of tornado reports in nonoverlapping intervals is on the horizontal axis. The bin width varies by F-scale

group.

TABLE 1. Annual tornado report statistics by F-scale grouping.

The ratio is defined as the variance divided by the mean. The

p value is from a likelihood ratio test under the null hypothesis that

the counts are adequately described by a Poisson distribution.

Group Mean Variance Ratio p value

F0–F5 95.7 2660 27.8 ,0.001

F1–F5 42.9 372.9 8.70 ,0.001

F2–F5 16.7 95.76 5.74 ,0.001

F3–F5 4.87 19.33 3.97 ,0.001

F4–F5 1.00 1.672 1.67 0.016
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a vague log-gamma prior. A prior is a probability dis-

tribution for a parameter that comes before examining

the data. Here it is the natural logarithm of a gamma

distribution with a large variance (small precision—

vague). For convenience, the hyper-parameters t and f

are written u25 t(12 f2) and u35 log[(11 f)/(12 f)]

and assigned vague log-Gaussian and Gaussian prior

distributions, respectively.

The priors and the likelihood are combined in accord

with Bayes rule to obtain the posterior distributions for

the model parameters. Since the integrals cannot be

solved analytically, a common solution is to use aMarkov

chainMonteCarlo (MCMC) algorithm to obtain samples

from the posterior distributions. Here we use the INLA

method, which provides a faster alternative for models

that have a latent Gaussian structure (Rue et al. 2009a).

This is done with functions from the INLA package (Rue

et al. 2009b) from the open-source R computing envi-

ronment (see rpubs.com/jelsner/4745 for the complete set

of code).

6. Results

Models are fit separately for each of the five F-scale

groups (F0–F5, F1–F5, F2–F5, F3–F5, and F4–F5). The

model for the F4–F5 tornado reports is notwell calibrated

(the predictive distribution does not match the observed

distribution) so we present results only for the first four

groups. Model output statistics are given in Table 2.

a. SST effects

The question of whether the SST variables are sig-

nificant in explaining at least some of the annual vari-

ability in tornado report numbers is answered in the

rows of Table 2, labeled bWCA and bGAK. The posterior

mean for the WCA SST influence on F0–F5 tornado

reports is 10.41, which translates to an increase of

51% [(e0.412 1)3 100%] 8C21 increase inWCASST. In

contrast, the posterior mean for the GAK SST influence

is 20.163, which translates to a decrease of 15% 8C21

increase in GAK SST. The uncertainty on these esti-

mates is available as a posterior standard deviation and

credible interval (CI). The CI is the smallest width in-

terval where the probability that the estimate is below

the interval is the same as the probability above the in-

terval. The CI indicates a 95% chance that the true

WCA SST effect on the tornado reports lies between

10.041 and 10.781 (4%, 118%). The CI on the GAK

SST effect for the set of F0–F5 tornadoes includes zero

percent indicating it is not significant. However, for

stronger tornado categories (those where the F0 counts

are removed), the CI does not include zero indicating

the GAK SST effect is statistically significant.

Posterior densities for the two SST parameters are

plotted in Fig. 7. The black line is the posterior density for

the GAK SST parameter and the gray line is the posterior

density for the WCA SST parameter. The WCA SST ef-

fect is larger than the GAKSST for all F-scale groups with

the effect peaking between 50% and 120% increase per

degree Celsius depending on the group. The statistical

significance of the effect is judged by the area under the

density curve to the left of the zero change line, which is

a minimum for F2–F5 reports. In contrast, the GAK SST

effect is negative for all tornado report groups and peaks

FIG. 5. Tornado activity and SST regions. The tornado activity

region is a small square in the central United States. The Gulf of

Alaska (GAK) region is bounded by 50.368 and 59.958N latitudes

and 153.668 and 136.088W longitudes and the western Caribbean

(WCA) region is bounded by 158 and 258N latitudes and 908 and
708W longitudes.

FIG. 6. Time series of February SST across the western Caribbean

(WCA) and the Gulf of Alaska (GAK) regions.
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near 50% decrease per degree Celsius for the F3–F5

group. The GAK SST is most significant for the group of

strongest tornadoes.

The SST effects on springtime tornado activity make

physical sense. Warmer-than-normal SST in the waters

of the western Caribbean during February portends

a deeper, richer source of low-level moisture into the

southern and central Great Plains during spring. The

cold GAK and warm WCA couplet implies stronger

vertical wind shear by thermal wind considerations. The

warm WCA would be supportive of larger values of

CAPE to support strong thunderstorms and the shear

associated with strong temperature gradients would

make tornadic supercells more likely. One interpre-

tation of the differential in magnitude of the SST effects

is that CAPE is more important to tornado activity. The

difference in significance going from F0–F5 to F3–F5

tornado counts suggests that shear might be more im-

portant than CAPE in modulating violent tornado ac-

tivity (Brooks 2013; Grams et al. 2012).

b. Trend and dispersion

Significance and magnitude of the trend term is in-

dicated by the posterior statistics of bYEAR. For the set

TABLE 2. Model statistics. Models are run separately for tornado reports in the F-scale groups of F0–F5, F1–F5, F2–F5, and F3–F5. The

mean is the posterior mean and the CI is a 95% credible interval from the posterior density; bWCA and bGAK are the SST fixed effects and

bYEAR is the trend term, n is the size of the dispersion, f is the first order autoregression parameter, DIC is the deviance information

criterion, AD p value is from theAnderson–Darling goodness-of-fit test, and r(o, p) is the correlation between the observed and predicted

tornado reports. The out-of-sample estimates are from a hold-one-out cross validation.

Statistic F0–F5 mean (CI) F1–F5 mean (CI) F2–F5 mean (CI) F3–F5 mean (CI)

bWCA 0.410 (0.041, 0.781) 0.508 (0.118, 0.899) 0.776 (0.290, 1.27) 0.517 (20.260, 1.30)

bGAK 20.163 (20.363, 0.037) 20.242 (20.451, 2.032) 20.336 (20.587, 20.085) 20.604 (20.999, 20.217)

bYEAR 0.018 (0.012, 0.025) 20.003 (20.010, 0.003) 20.015 (20.023, 20.007) 20.007 (20.019, 0.005)

n 7.83 (4.71, 12.0) 5.52 (3.66, 7.93) 4.38 (2.73, 6.57) 2.18 (1.27, 3.53)

f 0.81 (0.40, 0.97) 20.00 (20.99, 0.99) 0.00 (20.99, 0.99) 20.00 (20.99, 0.99)

DIC 617 532 432 324

AD p value 0.712 0.833 0.557 0.158

Log score 4.92 4.27 3.48 2.61

In sample r(o, p) 0.78 0.46 0.58 0.42

Out of sample r(o, p) 0.77 0.33 0.52 0.29

FIG. 7. Posterior densities for the fixed SST effects by F-scale group. The black line is the parameter for the Gulf of

Alaska (GAK) SST covariate and the gray line is the parameter for the western Caribbean (WCA) SST covariate.

Densities are plotted for the percent change in the number of reports per degree Celsius.
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of F0–F5 tornado reports, the trend is significantly up-

ward at an average rate of 1.8%yr21. For the sets of F1–

F5 and F3–F5 reports, there is no significant trend and

for the set of F2–F5 reports, there is a significant down-

ward trend of 1.5%yr21. The amount of overdispersion

n decreases from a posterior mean of 7.8 for F0–F5 re-

ports to 2.2 for the F3–F5 reports, which is consistent with

the variance to mean ratios shown in Table 1. The CI on

this parameter does not overlap the value of one for any

of the categories consistent with the goodness-of-fit tests

performed in section 3, where the counts were found to

be overdispersed relative to a Poisson distribution.

c. Model diagnostics

The INLA function in R computes the model’s de-

viance information criterion (DIC) as an indicator of the

trade-off between model fit and model complexity. DIC

is defined as the posterior mean of the model deviance

plus the effective number of model parameters with a

smaller value indicating a better trade-off. The DIC

values decrease with increasing F-scale threshold.

The predictive quality of the model is assessed by the

cross-validated log score. A smaller value of the score

indicates better prediction quality (Gneiting and Raftery

2007). The log score is minimized for the model of F3–F5

tornado reports as is the DIC.

Model calibration is checked by examining the dis-

tribution of the probability integral transform (PIT)

values. A well-calibrated model has PIT values that are

adequately described by a uniform distribution (Czado

et al. 2009). We check this distribution using histograms

(not shown) and theAnderson–Darling (AD) goodness-

of-fit test (Table 2). The p values from the test exceed

0.15 for all sets of reports indicating little (in the case of

F3–F5) to no evidence of problems with calibration.

d. Observed versus predicted reports

Figure 8 shows the observed versus predicted number

of tornado reports by F-scale group. The point shows the

posterior mean and the line indicates a 95% credible

interval. A regression line of the predicted counts onto

the observed counts is shown in gray with a 95% confi-

dence band about the line shown in light gray. All four

models indicate a significant relationship between the

observed and predicted counts. With all models, the

predicted counts are under dispersed relative to the ob-

served counts. The underdispersion is most pronounced

with the F3–F5 tornado reports. This is indicated by the

lowest p value from the AD good-of-fit test on the PIT

values across all F-scale groups.

The in-sample correlation between observed and

predicted (see Table 2) ranges from a high of 0.78 for the

F0–F5 model indicating the model accounts for 61% of

the observed annual report variability to a low of 0.42 for

the F3–F5 model (the model accounts for 18% of the

observed variability). As expected, the two models that

have a significant trend component (F0–F5 and F2–F5)

show a better correspondence between the observed and

predicted. The models are rerun 62 times using a hold-

one-out cross-validation procedure to obtain an esti-

mate of the out-of-sample skill. The correlations are

smaller with the F1–F5 and F3–F5 models, which ex-

plain 11% and 8% of the out-of-sample variability in

tornado reports, respectively. The out-of-sample skill

level of 59% and 27% for the F0–F5 and F2–F5 models,

respectively, are somewhat inflated because of the trend

term. A hold-two-out cross-validation procedure pro-

vides an out-of-sample skill level of 54% and 26% for

the F0–F5 and F2–F5 models, respectively, with practi-

cally no change in skill level for the F1–F5 and F3–F5

models. Although this level of predictive skill is modest,

it represents a quantitative benchmark against which

future seasonal predictions can be gauged.

7. Summary and conclusions

We demonstrate a strategy for seasonal prediction of

tornado activity using observations. The strategy is de-

tailed using tornado reports from the central Great

Plains during springtime and SST data from the Gulf of

Alaska and the western Caribbean Sea. The modeling is

done using a Bayesian formulation where the likelihood

on the tornado report counts is a negative binomial

distribution and where the trend is modeled as a cova-

riate. Posterior densities for the model parameters are

obtained using the INLA method.

The principal findings of the study include the fol-

lowing:

d SST from the Gulf of Alaska (GAK) and western

Caribbean Sea (WCA) regions during February have

a statistically significant relationship to springtime

tornado activity across the central Great Plains.
d On average, the WCA influence amounts to a 51%

increase in the number of F0–F5 tornado reports per

degree Celsius increase in SST. On average the GAK

influence amounts to a 15% decrease in the number of

reports per degree Celsius increase in SST.
d The statistical relationships between SST and tornado

activity are consistent with our physical understanding

of the large-scale atmospheric patterns conducive to

springtime convective storms across the Great Plains.
d SST in the WCA is more significant than SST in the

GAK for all tornadoes but less significant for the

strongest tornadoes.
d The SST covariates explain 11% of the out-of-sample

variability in observed F1–F5 tornado reports.
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d The INLA method is a valuable resource for modeling

statistical relationships between tornadoes and climate.

We find that the models are not improved by adding

a preseason covariate for the El Ni~no, the Pacific de-

cadal oscillation, the North Atlantic Oscillation, or soil

moisture conditions. Although some modifications to

the size and placement of the study area and regional

definitions of SSTs were examined, we made no system-

atic effort tomaximize the skill of themodels. Results are

not overly sensitive to small changes in the regional def-

inition of SSTs.

Although predictive skill is modest, it represents a

benchmark against which future improvements can be

gauged. The model might be improved by including

a term to explicitly account for the greater uncertainty in

the tornado reports from the earlier years and not as

a trend as was done here. The model might also be im-

proved by including covariates thatmore precisely portend

the synoptic weather patterns conducive to springtime

convective outbreaks like antecedent low-level moisture

conditions.

Finally, all the code used in this study along with the

links to the datasets are available online (rpubs.com/

jelsner/4745). It will be interesting to see if similar (or

better) skill can be obtained by examining tornado oc-

currences elsewhere across the country. In that regard, it

would be helpful to develop a spatial model for tornado

activity as an extension to the latent Gaussian models

used here.

FIG. 8. Observed vs predicted annual tornado report counts by F-scale group. The point shows the posterior mean

and the line indicates a 95%CI. The calibration line is the diagonal and a regression line of the predicted counts onto

the observed counts is shown in the center of the gray shaded area with a 95% confidence band shown in gray.
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