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ABSTRACT

Recent studies have shown how concepts from information theory can be applied to climate models to better
understand the problem of climate prediction. This paper describes how information theory, specifically the
concept of entropy, can be used in the analysis of short-term precipitation records. The ideas are illustrated
through analysis and comparisons of two long, hourly precipitation records. From the results it is concluded
that the records are not periodic and are definitely more complex than records of random origin. This complexity,
however, arises from underlying deterministic rules indicating the potential for predictability.

1. Introduction

In climate and weather studies, much effort is spent
on distinguishing signal (deterministic) from “noise™
(stochastic). The premise is that these two components
are related in a trivial (read: linear) way and thus can
be separated using linear methods. The role of nonlin-
earities in generating irregularity and variability is,
however, now widely recognized (Shukla 1985). Re-
cently it has been accepted that in order to describe
complex dynamical behavior such as weather and cli-
mate—where the system intermittently becomes more
sophisticated instead of more random—it is important
to have a measure of the degree or level of complexity
(see, e.g., Crutchfield and Packard 1983; Wolfram
1984; Grassberger 1986; Loyd and Pagels 1988; Li
1991).

Deterministic chaos provides a useful model for
variability of weather and climate (Lorenz 1984) since
it not only gives rise to aperiodicity in space and time
but also displays sensitivity to initial conditions (Nicolis
1990). Motivation, therefore, comes from the instinct
(derived from chaos theory) that linear methods, or
methods that have their root in linear statistics, may
be insufficient in many situations for explaining
weather and climate variability. We thus seek more
general methods for describing such variability.

The objective of the present paper is to examine the
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possibility of using the concept of entropy for the prob-
lem of assessing complexity and predictability of pre-
cipitation records. Goals are similar to those of Leung
and North (1990), who introduced information theory
for the study of climate prediction. The major contri-
bution of the present work is the application of these
important concepts to actual data records. The paper
presents a new data analysis never performed before
on precipitation records.

In particular, we are interested in a multiple appli-
cation of a definition of entropy that will be useful for
defining complexity. Simple deterministic dynamical
systems can exhibit very complex behavior often re-
sembling that of random processes. In an effort to dis-
tinguish one from the other, new approaches that es-
timate the complexity associated with periodic, ran-
dom, and chaotic sequences have lately been
developed. After providing a data description in section
2, a hierarchical approach for the estimation of com-
plexity is presented and employed on long and contin-
uous short-term precipitation records in section 3. It
is concluded that the records are not periodic and def-
initely more complex than records of random origin.
In section 4 interpretation of the results is presented
centering on the idea of underlying deterministic rules
and predictability. A summary is provided in sec-
tion $S.

2. Data

Since the definitions described in the next section
are based on a limit as the length of record goes to
infinity, we searched for long, continuous data records.
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For this pilot study we chose two stations, Milwaukee,
Wisconsin (MKE; ~43°N, 88°W)—influenced pri-
marily by midlatitude weather systems—and West
Palm Beach, Florida (PBI;, ~27°N, 80°W)—influ-
enced by both midlatitude and tropical weather sys-
tems. Both stations have 40 years of nearly continuous
hourly observations of accumulated precipitation. The
number of missing hours for both stations was less than
0.1% of the total. Missing reports were treated as no
precipitation except in situations where it was obvious
that a missing report occurred during a wet period, in
which case a representative amount was assumed based
on earlier and later reports. The period of data coverage
for the MKE record is August 1948-November 1987
(344 786 hours) and for the PBI record is January
1949-June 1988 (346 224 hours). Precipitation is ac-
cumulated for each hour, after which a depth in hun-
dredths of inches is measured. Precipitation falling as
sleet, snow, or hail is melted before a depth is recorded.
A small portion of both hourly records used in this
study is shown in Fig. 1.

3. A measure of complexity

What is meant by simplicity? What is meant by
complexity? Is it possible to objectively measure com-
plexity? Recent efforts to understand deterministic
chaos have certainly muddled the issue. Simple systems
with only a few degrees of freedom can show very com-
plex behavior. When faced with behavior that is labeled
as “‘complex,” it would be instructive to have some
objective measure of just how complex it is. Classical
ideas of complexity are based on the concept of entropy
or information (Kolmogorov 1965; Chaitin 1966).
With such definitions, pure randomness will maximize
complexity. As Grassberger (1986) points out, how-
ever, since the generation of randomness is character-
ized by a lack of rules, a useful definition of complexity
must allow one to recognize randomness as a rather
simple pattern. Indeed, Grassberger argues, with the
help of three two-dimensional patterns, that the pattern
one would call the most complex is neither the one
with the highest entropy nor the one with the lowest;
however, this notion must be somehow coupled to the
intuition inherent in the definition of entropy that ran-
domness is more complex than periodicity.

In an attempt to reconcile these intuitive notions,
more complicated measures of complexity have re-
cently emerged. In particular, D’Allessandro and Politi
(1990, hereafter referred to as DP) have developed a
unique approach in which complexity is measured by
using a hierarchy of numbers as opposed to a single
measure. They demonstrate the usefulness of such a
definition for describing iterative maps, while caution-
ing that the problem of characterizing complexity is
by no means solved. Nevertheless, it is noted that their
method may provide a different way of viewing physical
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FIG. 1. (a) A portion of the hourly precipitation record from Mil-
waukee, Wisconsin (MKE). The time axis is given as successive hours
beginning ! August 1948 and the vertical axis is. the hourly accu-
mulated precipitation totals in hundredths of inches. (b) Same as
(a) except for West Palm Beach, Florida (PBI), beginning 1 January
1949.

systems. In this section we describe the procedure of
DP and apply it to estimating the complexity of short-
term precipitation at two stations—one in the midlat-
itudes and the other in the subtropics.

a. Method

The problem of defining complexity can be reduced
to characterizing the data as a binary sequence of zeros
and ones. Consider the following two binary sequences,
for example:

0101010101010101
1001101001011001.
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The first sequence can be described simply as repeti-
tions of the “word” 01, whereas for the second string
no simple description can be made. To overcome the
difhiculty of defining complexity as previously outlined,
the complexity of a sequence can be measured by a
hierarchy of numbers, the first of which is equivalent
to the entropy, where entropy can be defined as the
logarithm of the number of words of length » that are
found in the sequence (admissible words) as # becomes
large (Maddox 1990). At the second level there is an
analogous definition but this time for forbidden words
of increasing word length. .

Specifically, we let N,(n) be the number of possible
words of length n. For n = 1, the number of possible
words is 2, namely, 0 and 1, and for n = 2, N,(n) = 4
(i.e., 00, 01, 10, and 11). One can think of N,(n) as
the size of the dictionary for a given word length, which
for binary sequences equals 2”. Then, following closely
the notation of DP and given a long sequence, we let
N,(n) be the number of admissible words of length n
contained in the sequence. Words of length » are
formed by successively shifting a window of size »
through the sequence. For example, the sequence
0010101 contains three different words of length two,
namely, 00, 01, and 10, out of the set of size four of
possible words. The word 11 is missing (or forbidden),
since it is not contained in the sequence. In general,
we assume that we have an infinite sequence and if a
word is not included then it is termed forbidden. With
these definitions it is possible to define first-order com-
plexity as

C! = lim log[No(m)]/n, (1)
n—»co

which is equivalent to the topological entropy. It is a
useful notion of complexity, for it allows one to easily
distinguish between periodic sequences (C' small) and
random sequences (C' large), but it has limitation
since, as DP note, it fails to recognize random se-
quences as fairly simple objects. ‘

This problem is handled at the next level, where the
possibility of rules governing the sequence is examined.
One way of defining a rule for a given sequence is that
it should not contain irreducible forbidden words,
where irreducible means that the word does not contain
any shorter forbidden word. In the prior example, the
word 11 is a forbidden word of length two. Since 11
consists of a single admissible word twice (i.e., two
1’s), besides being a forbidden word it is also an irre-
ducible forbidden word of length two. At word length
three we discover more forbidden words, some of which
include the shorter forbidden words and thus are re-
ducible (e.g., 011 is reducible while 000 is irreducible ).

Similar to what was done for admissible words, the
second-order complexity is defined as

C? = lim log[Ny(n)]/n, (2)
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where Ny(n) is the number of irreducible forbidden
words of length 7. For an infinite and completely ran-
dom sequence there should be no forbidden words and
thus C? will be zero, whereas for a chaotic dynamical
system C? should in general be nonzero.

A general description of the procedure is as follows.
First, at level one it is possible to establish whether the
sequence is more complex than a periodic sequence
by comparing the number of admissible words as the
length of the word increases. Similarly then, at the sec-
ond level it is possible to establish whether the sequence
is more complex than a random sequence by compar-
ing the number of irreducible forbidden words as a
function of word length. In this two-step procedure it
is possible to determine an objective measure of com-
plexity on a scale in which periodicity is more simple
than randomness and randomness is more simple than
deterministic chaos. In fact, the second-order com-
plexity C? is related to the chaotic properties of the
underlying attractor via the relation

C? = \,D/(1 + D), (3)

where D is the dimension of the attractor and A, is the
positive Lyapunov exponent ( DP).

Along these lines, we mention the recent interest in
the study of Markov chains for understanding the be-
havior of chaotic dynamical systems (¢.g., Nicolis 1990;
Destexhe 1990). Assuming an adequate partition of
the data, the order of the corresponding Markov process
will give useful information about the time correlations
of the underlying dynamical system. We have not ex-
plored this idea and only note that in the way in which
complexity was defined here, only the structure of the
sequence is considered without taking into account the
probabilities associated with the different words (orbits)
as is the case with Markov chains.

b. Results

We apply the preceding definitions to two long
hourly precipitation records (MKE and PBI). First we
reduce the data to binary sequences and make some
general comments concerning the records as viewed in
this manner. The raw data are reduced to a binary
sequence by assigning zeros and ones to hours with no
measurable precipitation and to hours with measurable
precipitation, respectively.

We first note that for the MKE record approximately
93.3% of the hours are without precipitation, leaving
a total of 23 136 wet hours, or better than 2.5 years of
precipitation, and for the PBI record approximately
95.0% of the hours are without precipitation, leaving
a total of 17 150 wet hours, or approximately 2 years
of rainfall.

Having coarse grained the precipitation records into
binary sequences, we first count the number of ad-
missible words in the sequence as the word size in-
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creases. For the MKE record the first nonadmissible
(forbidden ) words occur at word length nine and there
are eight of them, namely 010101001, 010101011,
010110001, 011010101, 101010101, 101011011,
110010101, and 110101010. For the PBI record the
first forbidden words occur at word length eight and
there are three of them, namely 10100101, 10101010,
and 11010101. None of these forbidden words contains
greater than three consecutive hours of either precip-
itation or no precipitation, indicating that the nature
of precipitation on this time scale over both Milwaukee
and West Palm Beach tends to be continuous rather
than temporally sporadic.

Since the number of admissible words increases with
increasing word length we can immediately recognize
the hourly precipitation records as more complex than
a periodic sequence. For comparison, we created a pe-
riodic sequence in which the ratio of the number of
wet hours to the number of dry hours is roughly equiv-
alent to that of the precipitation records. The periodic
sequence consists of 14 consecutive hours of no pre-
cipitation, followed by one hour of precipitation, fol-
lowed by 14 more hours of no precipitation, and so
on. A comparison is made in Fig. 2 where the solid
line and dashed line represent the scaling rates of the
number of admissible words for the precipitation rec-
ords and the dashed-dotted line represents the scaling
rate for the synthetic periodic sequence. For both ran-

Hourly Precipitation
Admissible Words

1-4 T T T T T
e——o MKE
a---aPBl
1.2 ¢ ——-+ Periodic .
1.0 & -
£
?0.8 g
Z
%0.6 L |
A ?\e\e\
0.4 | o, .
~6—9— g,
0.2 } - g
0'0 1 1 I i 1

Word Length n (hr)

FIG. 2. Growth rate of the number of admissible words as a function
of word length for the precipitation records (MKE: solid line; PBI:
dashed line) and for a periodic sequence (dash-dotted line). Note
the stable growth rate for the precipitation records contrasts with a
decay for the synthetic periodic record.
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FIG. 3. Growth rate of the number of irreducible forbidden words
as a function of word length for the precipitation records (MKE:
solid line; PBI: dashed line) and for a random sequence (dash-dotted
line). The random sequence curve is generated by pseudorandomly
permuting the MKE precipitation record five times and averaging
the number of irreducible forbidden words at each word length. A
confidence line (dotted) is estimated by + one standard deviation
from the mean of the five random permutations. If we replace the
limit with the supremum then from the graphs we can conclude that
the precipitation records have larger second-order complexity mea-
sures than a random sequence.

dom or deterministic chaotic sequences the number of
admissible words will continue to increase, whereas for
any periodic or quasi-periodic sequence the number
of admissible words is limited.

The next step is to monitor the growth rate of the
number of irreducible forbidden words. For the MKE
record, since at word length nine we find the first for-
bidden words, all of them must be irreducible. For
comparison we pseudorandomly permute the MKE
hourly observations, creating a sample (N = 5) of ran-
dom records having the same length and distributions
as the precipitation record (results are nearly identical
if we randomly permute the PBI record). The number
of irreducible forbidden words for the MKE precipi-
tation record is represented by a solid line in Fig. 3,
the number of irreducible forbidden words for the PBI
record is represented by a dashed line, and the average
number of irreducible forbidden words for the random
sequences is indicated by a dash-dotted line. The dotted
lines indicate the error bars (one standard deviation).
The precipitation and random records show a large
increase in the number of irreducible forbidden words
for relatively short word lengths reaching a maximum
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near word length 12. Since we are working with finite
length sequences, we can replace the limit in Eq. (2)
with the supremum. By this definition it is clear that
the precipitation records are more complex than similar
random sequences. It thus appears that, at least for
these particular examples, the definitions of DP are
adequate for describing the outcome of a complicated
deterministic process as more complex than one that
is inherently random.

We have also tested DP’s notion of complexity
against random strings with serial correlations identical
to the actual records. To do this we divided the pre-
cipitation records into subsequences of length two and
randomly shuffled the subsequences, while preserving
the order within each subsequence. This procedure de-
stroys the long-range correlations while maintaining
the shortest-range correlations. We have also divided
the precipitation records into subsequences of length
five and randomly shuffled. We then repeated the anal-
ysis of irreducible forbidden words as described above
for these two random autocorrelated sequences. Results
show that the suprema of the autocorrelated noises are
below the suprema of the precipitation records by at
least a factor of 2. Further, a sensitivity analysis, where
we increased the number of “missing” reports by a
factor of 2 and then 4 and repeated the analysis, in-
dicated only a few percent difference in the value of
the suprema in Fig. 3.

4. Discussion

The interpretation of these results centers on the
possibility of underlying hidden rules operating on in-
creasing time scales. If there is a rule for words of length
four—for instance, the word 0101 is not allowed—
then there will be words of length five such as 10101
that will not be found in the record. This word is re-
ducible; that is, it contains a forbidden word of length
four. In addition to rules for words of length four there
may be rules for words of length five (longer time scale)
but these will generate irreducible forbidden words.
Because the random sequence has finite length, there
will be some forbidden words, but no rules; therefore,
the number of irreducible forbidden words will be less
than a sequence that is dictated to some extent by rules,
as must be the case for the precipitation record. This
explanation points to a limiting factor of this meth-
odology: the length of the available record. If the record
is short, then the number of irreducible forbidden
words as a result of rules will be swamped by those as
a result of the relatively small sequence length.

The existence of deterministic rules relates to pre-
dictability. The fact that the analysis indicates or not
the existence of rules allows a distinction to be made
between “simple” sequences (random) and “complex”
sequences (precipitation). The finding that MKE’s
precipitation, however, appears to be more complex
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(higher second-order complexity) than the precipita-
tion of PBI indicates more rules governing the fall of
precipitation over MKE at this short time scale. More
rules suggest a greater deterministic component and
perhaps better predictability.

5. Summary

Time series that are characterized by broadband
spectra are notoriously difficult to analyze. Traditional
methods such as Fourier analysis or other linear trans-
forms and filters usually fail to offer many new insights
into the underlying structure of such time series (Savit
and Green 1991). Motivated by chaos theory, in this
paper we have explored a method from information
theory to measure the degree to which short-term pre-
cipitation records are predictable—in other words, the
extent to which the records are driven by reproducible
deterministic dynamics given previous values of the
record.

In particular, we have applied the hierarchical pro-
cedure of D’Alessandro and Politi (1990) to estimate
the complexity of precipitation at two stations. Data
were hourly precipitation amounts at Milwaukee,
Wisconsin (MKE), and West Palm Beach, Florida
(PBI), over the past 40 years. We conclude that, as a
result of underlying rules inherent in precipitation for-
mation mechanisms, the observed records, in terms of
definitions employed here, are more complex than a
record of random origin with the MKE precipitation
displaying a bit more complexity than the PBI precip-
itation. The consequence of this result is that at the
next step it may be possible to extract the rules inherent
in the dynamical system and thus ultimately improve
prediction. For instance, in the aforementioned ex-
ample, if one observes the sequence 1010, then the
probability that the next value'is 1 is quite small. Here
lies the potential of such techniques for improving pre-
dictability.

Finally, we mention that by applying the preceding
method to a number of different stations over, say, the
United States, we will be able to construct a contour
map of precipitation complexity. This will allow one
to determine regions of relatively high predictability
from those of relatively low predictability. Our current
research is in this area.
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