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ABSTRACT

This study explains the method of cross validation for assessing forecast skill of empirical prediction models.
Cross validation provides a relatively accurate measure of an empirical procedure’s ability to produce a useful
prediction rule from a historical dataset. The method works by omitting observations and then measuring
“hindcast” errors from attempts to predict.these missing observations from the remaining data. The idea is to
remove the information about the omitted observations that would be unavailable in real forecast situations
and determine how well the chosen procedure selects prediction rules when such information is deleted. The
authors examine the methodology of cross validation and its potential pitfalls in practical applications through
a set of examples. The concepts behind cross validation are quite general and need to be considered whenever
empirical forecast methods, regardless of their sophistication. are employed.

1. Introduction

The past decade has seen renewed interest in statis-
tical weather and climate predictions. From forecasting
thunderstorm probabilitics using expert systems to
outlooks of El Nifio using canonical correlations, there
is a resurgent interest in using historical data to predict
the future. This movement away from complete reli-
ance on dynamical prediction models can be explained
in part by the availability of better data, the relative
ease at which empirical models can be implemented,
and the emergence of new techniques such as expert
systems, neural networks, and genetic algorithms. Per-
haps more importantly, however, in many situations
forecast skill from relatively simple statistical models
can compete with forecast skill from dynamical models
of significantly greater complexity. For example, fore-
casts of El Nifio from multivariate linear correlation
analyses (Barnston and Ropelewski 1992) can compete
with forecasts from coupled atmosphere-ocean dy-
namical models (Cane et al. 1986).

When developing statistical models, an accurate es-
timate of skill can be achieved through a procedure
called “cross validation.” The method of cross vali-
dation, including important issues related to its suc-
cessful implementation for regression models, is out-
lined in Michaelsen (1987). The effectiveness and va-
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lidity of cross validation for estimating forecast skill
(Barnston and van den Dool 1993) and the potential
for misapplication have motivated the present article.
The authors emphasize some of the potential pitfalls
when estimating forecast skill and, in doing so, hope
to clarify the procedure of cross validation. Section 2
describes the purpose and nature of cross validation
and some of the problems with implementation. Sec-
tion 3 follows with several specific examples, and sec-
tion 4 contains a summary and closing remarks.

2. The procedure of cross validation

In any dataset of observations there is both useful
information (signal) about the underlying physics of
the process being studied and extraneous information
(noise) related to coincidences in the sampling process,
measurement errors, and possible inclusion of irrele-
vant variables. The primary challenge to the researcher
following a statistical approach to prediction is to devise
an empirical method that strengthens signals in the
available data and dampens noise. A desirable method
for selecting a prediction rule from a historical dataset
is one that accurately captures the fundamental rela-
tionships between variables, without relying too heavily
on past coincidences that are unlikely to be repeated
in the future.

Given the widespread availability of fast-computing
machines, it is now relatively easy to build complex
rules that “predict” the past accurately. The central
question, however, is whether such rules reflect the un-
derlying physics or are simply exploiting past coinci-
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dences. Rules that overemphasize coincidences are
likely to perform poorly in actual forecast situations.

Cross validation attempts, with a limited data sam-
ple, to simulate actual forecast situations and thus pro-
vide an honest measure of an empirical procedure’s
ability to produce a skillful prediction rule. Predictive
skill is the skill expected when the prediction rule, cho-
sen by the procedure, is used in practice to forecast the
future. Cross validation works by developing a separate
prediction rule for each observation in the dataset based
only on the remaining observations. The other obser-
vations represent a fictitious reordering of “history”
from which to predict the omitted observation, and the
resulting “predictions” are termed “‘hindcasts.” A suc-
cessful cross validation will remove the noise specific
to each observation and assess how well the chosen
procedure selects prediction rules when this coinciden-
tal information is deleted.

Some formal notation will facilitate discussion. Let
x (independent variables) denote a vector of predictors
and let y (dependent variable) denote an outcome. A
prediction rule fis a deterministic mapping that pro-
duces a predicted outcome y = f(x) for any vector of
predictors x. In this general formulation, a prediction
rule f might be a linear regression model with specific
coeflicients (e.g., ¥ = 3 — 4x; + Xx,) but it might also
be something more exotic, such as a neural network
with a specific set of weights or an expert system with
a specific set of decision rules. ,

Let F denote the set of all prediction rules under
consideration by the researcher. For example, F could
be the set of all linear combinations of x or the set of
all neural nets with a given architecture. The problem
facing the researcher is to use the available data on x
and y to choose a single prediction rule f € F. Let A
denote a deterministic algorithm that makes this
choice; that is, an algorithm A is the predefined pro-
cedure that takes as input a dataset containing multiple
observations on x and y values and produces as output
a single “best” prediction rule fout of the set F. Stan-
dard ordinary least-squares (OLS) regression is such an
algorithm; it selects f(x) = x"[(X"X)"'X7y] from a set
F of all prediction rules having the form f(x) = x7[8],
where the superscripts 7 and —1 denote the matrix
operations .of transpose and inverse, respectively, and
where  is a vector of coeflicients. However, the algo-
rithm A could be considerably more complicated. For
example, the algorithm might first consist of choosing
the number of independent variables used in the pre-
diction rule followed by an OLS estimation of the coef-
ficients. The essential point of this article is that cross
validation is performed on an algorithm (A4) rather than
on a particular prediction rule (/).

There are three important considerations in per-
forming cross validation for the purpose of accurately
estimating forecast skill of a chosen prediction rule.
The first concerns the condition that hindcasts must
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be performed using out-of-sample data. In-sample
hindcasts reflect only the degree to which the prediction
rule chosen by A fits the data. Second, prediction rules
used in hindcasts should not be chosen based on de-
cisions that require information from the entire data
sample. If this condition is violated, then the algorithm
has not been truly cross validated. Third, the subsample
from which a hindcast is generated must be indepen-
dent of the omitted observations. If neighboring events
in time are nonnegligibly correlated, then successively
réemoving a single observation is not appropriate since
“future” information will be used in the algorithm’s
choice of a prediction rule.

The three considerations are all variations of the
general requirement that the forecast target be inde-
pendent of the development sample, where the devel-
opment sample is defined as the portion of the data
from which the rule is derived, and the forecast target
is the portion of the data used for predictions. More
specifically, the forecast target must not be allowed, in
any way, to influence the development of the prediction
rule /. The separate effects of these three considerations
are demonstrated with the following examples.

3. Examples

We will illustrate the important considerations in-
volved in estimating forecast skill with a crogss-valida-
tion procedure on the problem of predicting 48-h hur-
ricane intensity changes. The problem is particularly
relevant since it is one for which statistical rules can
sometimes outperform dynamical models. A dataset
consisting of variables known to have an effect on hur-
ricane intensity was obtained from M. DeMaria of the
Hurricane Research Division of the National Hurri-
cane Center in Coral Gables, Florida. Independent
variables are listed in Table 1. Values of the dependent

TABLE 1. A description of the 11 independent variables (predictors)
used in developing prediction rules for forecasting 48-h hurricane
intensity changes. i

Variable no. Variable
1 day of year
2 longitude of storm
3 previous 12-h intensity change (kt)
4 maximum possible intensity determined from

SST-current intensity
5 magnitude of 200-850-mb vertical shear of
horizontal wind

6 storm-size parameter
7 200-mb eddy relative angular momentum
flux convergence
8 200-mb planetary angular momentum flux
convergence
9 distance to nearest land
10 time tendency of vertical shear

11 square of variable 4
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variable (48-h intensity change) are extracted from 43
separate hurricanes and given in Table 2. Standardized
values of the corresponding predictor variables are
available via anonymous ftp on metlabl.met.fsu.edu
in file/pub/elsner/hurint.dat3. It is assumed that data
from each storm represent independent information.

a. In sample versus out of sample

The problem is to make an accurate forecast of 48-
h hurricane intensity change from the values of these
11 predictors. Assuming that an OLS linear regression
will work well in this situation, the question is how
well. Let Fbe the set of all 11 variable linear prediction
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rules (x”B) and let 4 be OLS regression. There are two
ways to estimate forecast skill through hindcasts, in
sample and out of sample. An in-sample hindcast re-
sults from using all 43 storms to estimate a single set
of coefficients (a particular f € F) and then using that
particular rule to hindcast each storm’s intensity
change. The alternative is to use cross validation to
obtain an out-of-sample estimate. Cross validation is
performed on A by successively excluding single ob-
servations and repeating the OLS procedure on the
remaining 42 observations 43 times. Each time the al-
gorithm is run a different f will be chosen to hindcast
the excluded observation. As expected, the cross-vali-
dated procedure yields a larger error estimate (Table

TABLE 2. A list of the storms, dates, times, and magnitudes of 48-h hurricane intensity changes_used as the dependent var.iable
(predictand). The intensity change is determined by the change in maximum sustained winds in knots over the 48-h period.

Month

Storm Year Day Hour 48-h intensity A
Debby 82 9 15 0 30.0
Josephine 84 10 10 0 30.0
Gloria 85 9 25 0 -30.0
Arlene 87 8 10 12 25.0
Bret 87 8 18 0 15.0
Cindy 87 9 6 0 15.0
Dennis 87 9 10 0 15.0
Emily 87 9 20 0 35.0
Floyd 87 10 10 0 30.0
Gilbert 88 9 11 12 30.0
Joan 88 10 11 12 0.0
Barry 89 7 10 12 15.0
Dean 89 7 31 12 40.0
Erin 89 8 18 0 10.0
Felix 89 8 27 0 10.0
Gabrielle 89 8 31 0 40.0
Hugo 89 9 11 12 30.0
Iris 89 9 17 0 20.0
Jerry 89 10 12 12 30.0
Karen 89 11 28 12 25.0
Arthur 90 7 23 0 15.0
Bertha 90 7 28 0 25.0
Cesar 90 8 2 0 10.0
Edouard 90 8 7 0 10.0
Fran 90 8 12 0 5.0
Gustav 90 8 24 12 35.0
Hortense 90 8 25 12 15.0
Isidore 90 9 4 12 30.0
Josephine 90 9 21 12 0.0
Klaus 90 10 3 12 40.0
Lili 90 10 11 0 0.0
Nana 90 10 16 12 45.0
Ana 91 7 3 0 20.0
Bob 91 8 16 0 45.0
Claudette 91 9 4 12 50.0
Danny 91 9 7 0 15.0
Erika 91 9 9 0 25.0
Andrew 92 8 17 0 15.0
Bonnie 92 9 18 0 60.0
Charley 92 9 22 0 55.0
Danielle 92 9 22 12 10.0
Earl 92 9 27 0 5.0
Frances 92 10 23 12 5.0




622 WEATHER AND

3, case 1). The cross-validation exercise yields a mean
absolute error (MAE) that is 37% larger than the MAE
when the algorithm is not cross validated. More sig-
nificantly, when individual hindcasts are compared,
hindcasts made in sample are always better than their
cross-validated counterparts. However, since cross val-
idation mimics actual forecast situations, resulting error
estimates are more accurate in terms of what can be
expected when the procedure is used to choose a rule
for forecasting the future.

b. Fualse versus true cross validation

Cross validation operates on algorithms (A4) rather
than on prediction rules (/). This is a subtle but very
important point. For example, suppose ;(x) is a matrix
whose columns are the eigenvectors corresponding to
the k most significant eigenvalues of X”X. Suppose fur-
ther that the choice of k is part of the algorithm A.
Imagine an A that works as follows: 1) select a trial
value of k, and thus a trial I,(x); 2) estimate out-of-
sample errors for an OLS regression of y on I;(x) by
cross validation; 3) select the value of k (k,,,;,) that per-
forms the best in step (2); and 4) select as the prediction
rule f/ the OLS regression of y on the k,,;, surrogate
variables. ' ' '

Is the estimated error for k,,,;, from step 2 an honest
assessment of the forecast skill of the rule produced
when A is applied to the full dataset? No. Step 2 cross
validates for a specific k but does riot cross validate the
procedure for choosing k. The usual cross-validation
method still needs to be applied, even though A itself
contains an “inner” cross validation in step 2. To truly
cross validate 4, we must successively omit single ob-
servations, apply 4 (including the choice of k) to the
remaining data to generate prediction rules, and use
the prediction rules to hindcast the omitted data.

An example' using the hurricane intensity-change
data illustrates how artificial skill will be introduced if
k is chosen with the help of the entire data sample,
even if the error for OLS regression of y on the selected
indices is estimated using cross validation. In this ‘ex-
ample, data reduction is based on an empirical or-
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thogonal function (EOF) analysis of the 11 independent
variables. The method requires a decision about the
number of significant eigenvalues to retain. As stated
above, if this decision is made by selecting the number
of eigenvalues that minimizes the cross-validated
hindcast error, then it is part of the algorithm for
choosing a prediction rule and must also be cross val-
idated.

Examining the errors for each successively added
EOF yields a best decision at nine EOFs, with an inner
cross-validated MAE of 12.95 (Table 3, case 2). This
is not, however, an accurate estimate of forecast skill
of the resulting prediction rule. A true cross validation
of the algorithm is performed by deleting each storm
in turn and selecting a prediction rule by applying the
algorithm that includes selecting k to minimize the
cross-validated MAE over the remaining N — 1 obser-
vations. A hindcast is then made with the selected rule
on the original deleted storm. Performing true cross
validation on this dataset produces an MAE of 15.28,
which is 18% greater than the MAE of the false cross-
validation exercise. In this dataset k,,;, takes on the
values 2, 4, 5, and 9 depending on which data point is
removed. True cross validation produces a more con-
servative and more accurate estimate of forecast skill
since true cross validation does not use own-storm in-
formation at any step in the algorithm that produces
the hindcasts. :

The message of the above example is particularly
relevant for more sophisticated algorithms. associated
with neural networks or genetic algorithms, for ex-
ample. Suppose a decision as to how many hidden lay-
ers to include in the network architecture 1s made by
considering out-of<sample performance of the network.
Then, as the previous example demonstrated, this de-
cision is part of the algorithm and must also be cross
validated. Failure to perform such an “outer” cross
validation will Iéad to unrealistically high estimates of
forecast skill for the neural network.

In comparing the properly cross-validated hindcast
skill of the more complex EOF-based algorithm used
in this subsection with cross-validated hindcast skill of
the simpler multivariate linear regression algorithm

TABLE 3. Comparison of hindcast skills for the three cases examined in this study. Case 1 is a comparison between no cross \{alidgliop
and cross validation. Case 2 is an example where cross validation is used improperly, and case 3 is an example where cross validation is

performed without regard to serial correlation.

Percent of hindcasts where

Cumulative distribution of errors

MAE error, < error, 25%ile 50%ile 75%ile

Case 1 a. In sample 9.76 100% —9.28 -0.90 5.97
b. Out of sample 13.39 — —~13.49 —0.59 10.40

Case 2 a. False X validation 12.95 95% - —10.91 —1.71 9.58
b. True X validation 15.28 — —12.66 -3.75 11.58

Case 3 a. Serial correlation 12.65 93% —-13.47 —7.13 5.90
b. No serial correlation 13.47 — —14.13 —-7.79 6.77
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used in the previous subsection, we note that the sim-
pler algorithm performs better. Just as simple statistical
models can equal or outperform complex dynamical
models, so too can they sometimes outperform more
complex statistical models. This is particularly true
when sample sizes are modest, as they often are in cli-
mate forecasting problems. A proper cross validation
helps you see this point very clearly.

¢. Serial correlation versus no serial correlation

Another consideration when employing cross vali-
dation is the presence of serial correlation. In cases
where serial correlations exist, the simple cross-vali-
dation procedure of successively omitting single ob-
servations from the data will introduce bias into the
estimation of forecast skill. Bias enters in part because
nearby observations (both past and future) contain
noise related to noise in the omitted observation. It
also enters because the predictor values of nearby future
observations are likely to be close to those of the omit-
ted observation. These nearby future points are thus
likely to be especially informative about the omitted
predictant, but they would be unavailable in a real
forecast situation. In this case, if only single observa-
tions are omitted in the cross-validation exercise, hind-
cast prediction rules may incorporate information that
would not be available in an actual forecast situation.

As an illustration, consider an extended set of the
same hurricane intensity data. Instead of one obser-
vation per storm (as was used in the above two ex-
amples) the number of observations now ranges from
I (Hurricanes Gloria and Floyd) to 27 for Hurricane
Josephine in 1990. In this case the total number of
observations is 376. However, since 48-h intensity
changes for individual storms often represent overlap-
ping periods (generally observations are only 12 h
apart), the data are highly correlated. As a result it is
inappropriate to cross validate an algorithm by re-
moving only 1 observation at a time. A more accurate
estimate of forecast skill is obtained when all data from
an entire storm are withheld when performing hind-
casts. Table 3 (case 3) contains a comparison of the
two procedures using a standard OLS regression al-
gorithm; in one case, cross validation is performed by
removing 1 observation at a time, and in the other
case, cross validation is performed by removing storms
one at a time. Serial correlation decreases the errors
made with drop-one hindcasts, but these hindcasts in-
corporate information that would not be available to
a forecaster.

One could argue that the comparison in this case is
not fair, since if only | observation is removed, then
375 remain for use in the algorithm, whereas if an entire
storm is removed, then (in general) the number of ob-
servations available for choosing a prediction rule is
smaller. Differences in cross-validation errors in Table
3 (case 3) could therefore merely represent differences
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in sample size. To test this possibility the cross vali-
dation by observation exercise is repeated, but in ad-
dition to removing the observation used in the hindcast
error calculation, N — 1 randomly selected observations
are ignored, where N is the number of observations of
the storm from which the original removed observation
is taken. In this way the number of observations used
in the algorithm is the same as in the case of storm-
by-storm cross validation. This procedure results in
the same MAE (to the second decimal place) as the
original procedure when the process is averaged over
50 trials. Clearly the difference in hindcast skill seen
in Table 3 (case 3) is due to serial correlation and not
sample size.

4. Summary and remarks

When choosing a statistical prediction rule from a
historical dataset, it is important to have an accurate
estimate of how well the rule will perform in actual
forecasts. This can be done by employing cross vali-
dation on the algorithm that is used to choose a pre-
diction rule. The result is an estimate of out-of-sample
error that will be more representative of forecast errors
than will in-sample error estimates. Straightforward
cross validation involves the successive removal of sin-
gle observations from the dependent sample, with the
choice of prediction rules made from the remaining
data. These prediction rules are subsequently used to
hindcast, in turn, the data points removed. Some al-
gorithm tests may require multiple nested cross vali-
dations as illustrated in section 3b and in Livezey et
al. (1990), for exampile.

There are several important considerations when
employing this type of error estimation that we hope
to have clarified in this article. Cross validation is per-
formed on a rule-choosing algorithm, not on a specific
prediction rule. If information from the omitted de-
pendent data is used at any point in the procedure that
selects the prediction rule used in hindcasting, then the
algorithm is not truly cross validated and forecast skill
will be overestimated.

If serial correlation is present in the dependent da-
taset, then the successive removal of single observations
must be replaced by the removal of blocks of obser-
vations—the sizes of which are estimated by physical
reasoning or by a decorrelation time. In this case a
hindcast is made using only data from outside of the
removed block to generate the prediction rule. Failure
to account for autocorrelation in a cross-validation ex-
ercise will bias the estimate of forecast skill upward
because in real-time forecasting only the effect of serial
correlation from the preceding observation is available,
as opposed to simple cross validation in which both
past and future observations offer their skill-enhancing
serial correlation effects.

When cross validation is applied with care and cau-
tion it will, in general, produce error estimates that
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accurately represent the level of skill expected on future
data. The general principles apply regardless of the
complexity of the algorithm that chooses a prediction
rule. For more sophisticated algorithms the potential
for misapplication increases. Indeed, with the suite of
techniques such as nonparametric regressions, neural
networks, genetic algorithms, etc., that are now avail-
able for forecasting from data, it is more important
than ever that researchers clearly understand how to
estimate the forecast skill of empirical models accu-
rately.
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