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ABSTRACT

Time series of annual hurricane counts are examined using a changepoint analysis. The approach simulates
posterior distributions of the Poisson-rate parameter using Gibbs sampling. A posterior distribution is a distri-
bution of a parameter conditional on the data. The analysis is first performed on the annual series of major
North Atlantic hurricane counts from the twentieth century. Results show significant shifts in hurricane rates
during the middle 1940s, the middle 1960s, and at 1995, consistent with earlier published results. The analysis
is then applied to U.S. hurricane activity. Results show no abrupt changes in overall coastal hurricane rates
during the twentieth century. In contrast, the record of Florida hurricanes indicates downward shifts during the
early 1950s and the late 1960s. The shifts result from fewer hurricanes passing through the Bahamas and the
western Caribbean Sea. No significant rate shifts are noted along either the Gulf or East Coasts. Climate influences
on coastal hurricane activity are then examined. Results show a significant reduction in U.S. hurricane activity
during strong El Niño events and during the positive phase of the North Atlantic Oscillation (NAO). ENSO
effects are prominent over Florida while NAO effects are concentrated along the Gulf Coast.

1. Introduction

Contemporary understanding of global climate pro-
cesses, including the El Niño–Southern Oscillation and
the North Atlantic Oscillation among others, suggest
that climate may operate in two or more quasi-stationary
states (Lockwood 2001; Tsonis et al. 1998; Tsonis and
Elsner 1990; Berger and Labeyrie 1987; Charney and
DeVore 1979; Namias 1964; Lorenz 1963). Transition
between different climate regimes may occur abruptly
rather than slowly varying as a consequence of the dis-
sipative, nonlinear, and nonequilibrium properties of the
climate system (Vannitsem and Nicolis 1991). Conse-
quently, successive shifts result in an observed variable
that appears to exhibit low-frequency oscillations. An-
other description is randomly occurring change points.
In this case data-analytic tools relying on singular value
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decomposition (SVD) are less appropriate as they as-
sume stationarity and regularly varying changes in the
underlying system.

Important in the context of climate variability and
change problems, changepoint analysis quantitatively
identifies temporal shifts in the mean value of the ob-
servations (Solow 1987). Moreover there is widespread
interest in grouping years into active and inactive pe-
riods based on values of some climate index. Change-
point analysis directly addresses the question of when
the change is likely to have occurred. Changepoint anal-
ysis can serve to pinpoint potential inhomogeneities in
records arising from improved observational technolo-
gies and changes in station location (Lund and Reeves
2002). A statistical changepoint analysis provides a tool
that is consistent with a physical model supporting
abrupt rather than slowly varying transitions. In partic-
ular, changepoint analysis can be used to study climate
variations. Indeed, geological records show large, wide-
spread, abrupt climate changes (Alley et al. 2003) in-
cluding sudden shifts in tropical cyclone frequency (Liu
et al. 2001).

Lack of widespread interest in changepoint analysis
might be due to the ad hoc decisions (choice of para-
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metric model, choice of data transformation) necessary
for its implementation. For instance, Elsner et al.
(2000a) use a log-linear regression to detect change
points in the time series of annual counts of North At-
lantic major hurricanes during the period 1900–99. A
similar approach is employed by Chu (2002) in ex-
amining hurricanes over the central North Pacific. The
assumption is that the annual counts of hurricanes after
a logarithm transformation is approximately normally
distributed.

Changepoint analysis using a Markov chain Monte
Carlo (MCMC) approach has received considerable at-
tention from statisticians and engineers. The term Monte
Carlo refers to drawing random numbers and the term
Markov chain refers to a series of values (a chain) the
next of which depends only on the current value. In
hydrology, the approach is applied to the analysis of
sudden change at an unknown time in a sequence of
energy inflows modeled by normally distributed random
variables (Perreault et al. 2000a,b). To our knowledge,
it has yet to be applied to climate data.

Our intent here is to shed light on the problem of
detecting hurricane climate changes while introducing
some of the essential ideas behind the MCMC approach
to changepoint analysis. Our interest is to better un-
derstand coastal hurricane variations by applying the
methodology to count data that are nonnormally dis-
tributed. The message is that changepoint analysis can
provide new insights into climate variability not acces-
sible with other methods. Using this approach, some of
the subjective decisions typically associated with chan-
gepoint models can be dispensed with in favor of easier
interpretation. In section 2 we outline the underlying
philosophy of our MCMC approach to changepoint
analysis. In section 3 we apply the approach to the an-
nual counts of major North Atlantic hurricanes and in
section 4 to annual counts of coastal hurricane activity.
In section 5 we show how the methodology can be used
to examine covariate relationships. In particular we ex-
amine the influence of the El Niño–Southern Oscillation
and the North Atlantic Oscillation on coastal hurricane
activity. Section 6 provides a summary and list of con-
clusions.

2. Detecting change points

a. Statistical inference

We begin with a short overview of the fundamentals
of statistical inference. Given a data sample (either from
the climate or a simulation of the climate), what con-
clusions can be made about the entire ‘‘population’’?
Inference about a statistical model can be formalized as
follows: Let u be a population parameter, then inference
amounts to a supposition about u on the basis of ob-
serving the data. We contend that values of u which
result in high probabilities of observing the data that
were collected, y, are more likely than those which as-

sign a low probability to these same observations (max-
imum likelihood principle). In essence, the inferences
are made by specifying a probability distribution of y
for a given value of u, f ( y | u).

In classical statistics, u is considered a constant, while
in Bayesian statistics it is treated as random quantity.
Inferences are based on p(u | y), a probability distribution
of u given the data y, rather than on f ( y | u). This seems
natural as we are interested in the probability distri-
bution of the parameter given the data, rather than the
data given the parameter. The costs of this approach are
the need to specify a prior probability distribution, p (u),
which represents our beliefs about the distribution of u
before we have information from the data, and the need
to postulate a particular family of parametric distribu-
tions (likelihood). The Bayesian approach combines the
likelihood distribution of the data given the parameter
with the prior distribution to obtain the probability of
u given the data y

f (y | u)p(u)
p(u | y) 5 , (1)

f (y | u)p(u) duE
which is called Bayes’s theorem. Having observed y,
Bayes’s theorem is used to determine the distribution
of u conditional on y. This is called the posterior dis-
tribution of u.

Any feature of the posterior distribution is legitimate
for inference, including moments, quantiles, p values,
etc. These quantities are expressed in terms of the pos-
terior expectations of functions of u. The posterior ex-
pectation of a function g(u) is

g(u)p(u) f (y | u) duE
E [g(u) | y] 5 . (2)

p(u) f (y | u) duE
Evaluation of the integrals are a source of practical dif-
ficulties. Moreover, in most applications, analytic eval-
uation of the expected value of the posterior density is
impossible. The main problem with using numerical
methods is that the calculation of the posterior expec-
tation involves a high-dimensional integral if the num-
ber of parameters (ui) is large. In this case, analytic
evaluation of the integral is usually impossible and nu-
merical integration is difficult to apply and time con-
suming. The MCMC method is employed in statistics
to solve this problem. Its use in a wide variety of ap-
plications (particularly in the health and social sciences)
is illustrated in Congdon (2003).

Monte Carlo integration evaluates E[g(y)] by draw-
ing samples from a probability density. An asymptotic
approximation is given by
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N

g(u )O i
i51E [g(u | y)] ø . (3)

N

Thus the population mean of g(ui) is estimated by a
sample mean. A stationary (invariant) posterior distri-
bution is guaranteed because the Monte Carlo sampling
produces a Markov chain that does not depend on the
starting value. The key here is that N is controlled by
the analyst; it is not the size of a fixed data sample
(Gilks et al. 1996).

b. Gibbs sampling

A common MCMC algorithm is Gibbs sampling.
Gibbs sampling originated with the study of interacting
particle systems in statistical physics, where it is known
as the heat bath algorithm. In the statistical literature
Gelfand and Smith (1990) showed its applicability to
Bayesian computations. As an example, let u 5 (u1, u2,
. . . , up)9 be a p-dimensional vector of parameters and
let p(u | y) be its posterior distribution given the data y.
Gibbs sampling involves the following:

1) Choosing an arbitrary starting point u (0) 5 ( ,(0)u1

, . . . , )9, and set i 5 0.(0) (0)u u2 p

2) Generating u (i11) 5 ( , , . . . , )9, as fol-(i11) (i11) (i11)u u u1 2 p

lows:

• generate ; p(u1 | , . . . , , y);(i11) ( i) ( i)u u u1 2 p

• generate ; p(u2 | , . . . , , , y);(i11) (i11) ( i) (i)u u u u2 1 3 p

• generate ; p(u3 | , , . . . , , y);(i11) (i11) (i11) ( i)u u u u3 1 2 p

· · · · · · · · ·
• generate ; p(up | , , . . . , , y).(i11) (i11) (i11) (i11)u u u up 1 2 p21

3) Setting i 5 i 1 1, and going back to Step 2.

In this way each component of u is visited in order.
A cycle through the scheme results in a sequence of
random vectors of length p (Chen et al. 2000). Note
that p(u1 | , . . . , , y) is the conditional probability( i) (i)u u2 p

distribution of u1 given the other parameters and the
data. The procedure is a type of stochastic relaxation
where the update from the previous samples are used
on the current conditional. Under general conditions the
sequence of u’s forms a Markov chain, and the station-
ary distribution of the chain is the posterior distribution.
Typically the chain is run for a number of iterations
until the output is stable. A large number of additional
iterations are run, the output of which is analyzed as if
it were a sample from the posterior distribution (Coles
2001; Carlin et al. 1992).

c. MCMC changepoint analysis

Given a series of counts, a change point occurs if at
some point t in the series the counts come from a dis-
tribution with a common rate up to that time and come
from the same distribution but with a different rate af-
terward. A change point is a location in time that divides

the rate process into independent epochs. Here we define
the changepoint time at the first count of the new epoch.
Thus in a series of n annual counts, if a change is de-
tected between time k and k 1 1, we say that k 1 1 is
the changepoint time.

A MCMC algorithm for detecting change points using
Gibbs sampling consists of two steps. Step 1 uses the
entire record to determine candidate change points
based on the expected value of the probability of a
change as a function of time. A larger mean probability
indicates a greater likelihood of a change point. A plot
of the mean probabilities as a function of time along
with a minimum probability line identifies the candidate
change points against the hypothesis of no change
points. The candidate change points have mean prob-
abilities at or exceeding the minimum probability line.
Step 2 determines the posterior distributions of the hur-
ricane rates before and after the candidate change point,
ignoring the other candidates. The fraction of the pos-
terior density of the difference in rates that are greater
(or less) than 0 provides evidence of the direction of
change given a change has occurred. From a traditional
perspective this amounts to a p value. As with all output
associated with the Markov chain, the fraction of hur-
ricane-rate differences greater (or less) than 0 is a ran-
dom variable so additional runs are used to obtain en-
semble averaged values. Thus our algorithm is a mod-
ification of the single changepoint analysis. A fully
Bayesian multiple changepoint analysis (Lavielle and
Labarbier 2001; Rotondi 2002) is not attempted here.

For the present problem we are interested in two pa-
rameters; the hurricane rates before and after some chan-
gepoint year. Let l 5 (lb, la) be a vector of two pa-
rameters, where la is the mean hurricane rate after the
change and lb is the mean hurricane rate before the
change and we wish to simulate from the posterior
f (l | y) as described previously. More specifically, the
data are counts (Yi) of the annual number of hurricanes
during the period 1900–2001 (n 5 102). Thus the anal-
ysis describes a Poisson distribution with a mean rate
lb during years i 5 1, . . . , k and a Poisson distribution
with a different mean rate la during years i 5 k 1 1,
. . . , n. Since hurricane landfalls occur at different times
with little interaction between successive events, and
the conditions that generate them do not change sig-
nificantly, it is reasonable to assume that the number of
hurricanes over a given region follows a Poisson process
(see e.g., Elsner and Kara 1999; Solow 1989).

Formally, the hierarchical specification for this Pois-
son/gamma model is given as:

Y ; Poisson(l ); i 5 1, . . . , k; (4)i b

Y ; Poisson(l ); i 5 k 1 1, . . . , n; (5)i a

where lb ; gamma(a1, b1), la ; gamma(a2, b2), k is
discrete uniform over (1, . . . , 101), each independent,
and b1 ; gamma(g1, «1) and b2 ; gamma(g 2, «2) (Car-
lin et al. 1992). Note that the two-parameter gamma
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distribution is continuous and bounded on the left by 0
with a positive skew. The Poisson–gamma relationship
is used because the annual counts follow a Poisson dis-
tribution with the rate parameter following a gamma
distribution (see Elsner and Bossak 2001).

The specification is hierarchical because in stage one
the annual counts are random values following a Poisson
distribution with an unknown Poisson rate; in stage two
the Poisson rate follows a gamma distribution with two
unknown parameters. In stage three the unknown scale
parameter follows a gamma distribution; and in the
fourth stage the parameters of the gamma distributions
follow noninformative priors. The specification leads to
the following conditional distributions used in the Gibbs
sampling (Carlin et al. 1992):

k

l | Y, l , b , b , k ; gamma a 1 Y , k 1 b (6)Ob a 1 2 1 i 11 2i51

n

l | Y, l , b , b , k ; gamma a 1 Y , n 2 k 1 bOa b 1 2 2 i 21 2i5k11

(7)

b | Y, l , l , b , k ; gamma(a 1 g , l 1 e ) (8)1 b a 2 1 1 b 1

b | Y, l , l , b , k ; gamma(a 1 g , l 1 e ) (9)2 b a 1 2 2 a 2

and

L(Y; k, l , l )b ap(k | Y, l , l , b , b ) 5 , (10)b a 1 2 n

L(Y; j, l , l )O b a
j51

where the likelihood function is
kS Yi51 iL(Y; k, l , l ) 5 exp{k(l 2 l )}(l /l ) . (11)b a a b b a

Derivation of the likelihood formula is given as an ap-
pendix. Starting with some initial (prior) values for a1,
a2, g1, g 2, «1, and «2 Gibbs sampling generates se-
quences of la and lb which form Markov chains. The
stationary distributions of the chains are the posterior
distributions for each of the parameters.

d. Practical considerations

There are several issues that need attention. First is
the definition of years relative to the suspected change
point. In the previous model specification, year k is the
last year of the old epoch with k 1 1 the first year of
the new epoch. To be consistent our earlier analysis
(Elsner et al. 2000a) we plot the change point as the
first year of the new epoch and refer to this year as the
changepoint year.

Second is the choice of starting (or initial) values. In
theory if the chain is irreducible, meaning that any set
of values results in a positive probability that the chain
can reach any other set of values, then the choice of
initial values will not influence the final stationary (in-
variant) posterior distribution. Since the Poisson-rate

parameter is gamma(a, b) with mean a/b and variance
a/b2, we choose a1 5 a2 5 0.3 and g1 5 g 2 5 0.1,
and «1 5 «2 5 1 as our starting values. Thus the mean
values for b1 and b2 are 0.1/1 5 0.1 and the mean values
for la and lb are 0.3/0.1 5 3, which is close to the
average annual number of major hurricanes per year. It
is useful to perform a number of simulations with dif-
ferent starting values to check if the posterior distri-
bution is sensitive to the choice of initial values. Results
from these simulations are given in the next section.

Third is the issue of chain length. In general, the chain
will converge to a stationary posterior distribution (Rob-
erts 1996). In practice, the chain is run for a large num-
ber of iterations until the output is stable with the first
100 or so iterations discarded as ‘‘burn-in’’ and the re-
maining values considered samples from the stationary
distribution. The length of burn-in depends on the initial
values and the rate of convergence, which is related to
how fast the chain mixes (reaches new values). Devel-
oping rigorous criteria for deciding chain length and
burn-in requires a detailed study of the convergence
properties of the chain (Jones and Hobert 2001) that is
beyond the scope of the present work. A discussion of
convergence is given in Gelfand et al. (1990). Trial and
error, using visual inspection of the chain’s output, is
commonly used for determining length of burn-in, and
it is the one adopted here. Throughout we choose a burn-
in of 50 iterations and estimate the posterior distribution
from the subsequent 1000 iterations.

Fourth is the issue of identifying the candidate change
points. We take a conservative approach that is unlikely
to detect a change point when none exists. If there are
no change points in the observed count data, the chan-
gepoint probabilities should not be different from those
based on counts arising from a Poisson process with a
constant rate. We generate 1000 random time series from
a Poisson process each of length 102 with a parameter
equal to the climatological hurricane rate. Ranking the
posterior probabilities, we select the 995th (out of 1000)
largest posterior probability as the minimum probability
necessary for identifying a candidate changepoint year.
Note that the method can detect more than one candidate
change point.

This establishes a baseline (empirical confidence line)
for identifying multiple candidate changepoint years.
With this approach we are comparing a model that de-
scribes the overall hurricane rate as constant, against a
model that describes at least one change point in the
data. If there are no change points in the observed hur-
ricane count data, the changepoint probabilities should
not be different from those based on a Poisson process
with a constant rate. The approach is conservative in
that it is unlikely to detect false positives (change points
when none exist). Note that we could sample the as-
sumed homogeneous Poisson rate and then use the rate
to generate random Poisson samples. However, the an-
nual probability of a change point is more sensitive to
record length than to variation in the rates. In fact, for
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FIG. 1. Annual counts of North Atlantic major hurricanes during the period 1900–2001. Fewer
storms are noted during the early half of the twentieth century.

FIG. 2. Values of (a) b1 and (b) b2 for the first 500 iterations from
the changepoint analysis applied to annual counts of North Atlantic
hurricanes over the period 1900–2001. Initial values are a1 5 a2 5
0.3 and g1 5 g 2 5 0.1, and «1 5 «2 5 1. The first 50 iterations (left
of the dashed vertical line) are discarded as burn-in.

this study we use a single empirical confidence line
irrespective of the rates. The line is reestimated when
we consider shorter records.

3. North Atlantic major hurricane activity

A hurricane is a tropical cyclone with maximum sus-
tained (1 min) 10-m winds of 33 m s21 (65 kt) or greater.
A major hurricane is one in which winds exceed
50 m s21 (category 3 or higher on the Saffir–Simpson
hurricane destruction potential scale). The long-term av-
erage number of major hurricanes over the North At-
lantic is close to 2 yr21. Landsea et al. (1996) note a
downward trend in the occurrence of these powerful
hurricanes. Using additional years of data, Wilson
(1999) suggests a possible increase in activity beginning
with 1995. The regression-based changepoint model
employed in Elsner et al. (2000a) shows that indeed
1995 is the start of the most recent epoch of greater
major hurricane activity.

We first apply the MCMC changepoint analysis on

the time series of annual North Atlantic major hurricanes
(Fig. 1). Change points were identified in this time series
in Elsner et al. (2000a) using a classical approach. It is
understood that the counts are likely biased prior to 1943
before the advent of aircraft reconnaissance, but the
intention here is to identify shifts in the time series of
annual counts regardless of their origin (natural or ar-
tificial). In fact one of the points made by Elsner et al.
(2000a) is that, if the model is worthwhile it should
detect a shift in activity during the middle 1940s. Land-
sea (1993) suggests that an overestimation of hurricane
intensity might have occurred even after 1943 during
the period spanning the 1940s through the 1960s based
on an inconsistency in central pressures and wind max-
ima estimates. Since there is still debate on this issue,
and since corrections have yet to be made in the best-
track dataset, we do not consider the effect of this po-
tential bias in the present study. In any event, this choice
does not influence the work presented here.

To examine convergence of the MCMC, we run the
analysis using the initial conditions prescribed in the
previous section. Values of b1 and b2 are plotted for
each iteration (Fig. 2). Convergence is quick as there
appears to be no trend in the values or their fluctuations
across iterations. Thus the distribution of values for both
b1 and b2 do not change as the chain is run for a greater
number of iterations. This is typical. However, it is still
good practice to remove the early iterates to allow the
chain to ‘‘forget’’ its starting position.

Figure 3 shows the results from the MCMC chan-
gepoint algorithm applied to the annual counts of major
North Atlantic hurricanes during the period 1900–2001.
The expected value of the transition kernel of the Mar-
kov chain [ p(k | Y, lb, la, b1, b2)], which is the prob-
ability that year k is a change point given the data and
the parameters, is plotted as a function of year. The
expected value represents the average posterior proba-
bility of the year being the first year of a new epoch.
Large probabilities indicate a likely change occurred
with year t. The dashed line shows the minimum prob-
ability necessary for detecting a change point based on
the null model of no change points. The line is smoothed
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FIG. 3. Average posterior probabilities of each year being the first
year of a new epoch in major North Atlantic hurricane activity. Large
probabilities on year t indicate a change likely occurred with t as the
first year of the new epoch. The dashed line (empirical confidence
line) represents the minimum probability necessary for considering
a year a candidate change point based on 1000 simulations of a
constant rate (homogeneous) Poisson process.

FIG. 4. Distributions of the average posterior probabilities that (a)
1906, (b) 1943, and (c) 1995 are changepoint years in the time series
of major North Atlantic hurricanes. Distributions based on 30 sim-
ulations are shown with a box and whisker plot where the quartiles
are represented by the top and bottom of the box, and the median is
shown with a dot and horizontal line inside the box. Whiskers extend
from the box to the largest and smallest values in the distribution.
The distributions are based on 30 independent simulations.

using a 5-yr normal kernel. Years with probabilities
above the empirical confidence line include 1906, 1943,
and 1995. Note that several years around 1943 are also
candidate changepoint years. This indicates that al-
though the algorithm chooses 1943 as the most likely
year of the new epoch there is uncertainty surrounding
this choice. This is not the case with 1995 or 1906 where
no other ‘‘nearby’’ years appear to be in contention. The
locally elevated probability at 1965 will be revisited
shortly. Also note that years near the beginning and end
of the record require substantially larger posterior prob-
abilities to surpass the confidence level. The U-shaped
confidence line indicates that there is larger variance on
the posterior changepoint probabilities near the ends of
the record. Caution is needed when interpreting large
probabilities on these years as the chance of a false
detection is greater. Ensemble runs of the algorithm can
help in this regard.

We examine the influence that the choice of initial
values has on the average posterior changepoint prob-
ability and thus the selection of candidate years. This
is done by running Gibbs sampling 30 times for each
value of the a priors equal to 0.1, 0.3, 0.5, and 0.7.
Sampling is done for 1050 iterations with the first 50
discarded as burn-in. Figure 4 shows the distribution of
probabilities for the candidate years using box and whis-
ker plots. Overall the results demonstrate that the choice
of prior values is not a critical factor in identifying
candidate years as the chain quickly finds a stationary
distribution regardless of where the chain is started. Var-
iability in the average posterior probabilities is largest
for candidate years 1906 and 1995. As noted earlier,
this results from the fact that these years are near the
beginning and end of the time series. Posterior proba-
bility distributions based on relatively few data points
will have a greater spread.

The procedure continues with a confirmatory analysis
of the candidate changepoint years. Once the candidate
change point is identified, additional confirmatory anal-
ysis is made by comparing the conditional posterior-
estimated Poisson rates before and after each change

point. Both statistically and from intuition, the confir-
matory analysis will demonstrate the direction of change
since it has been established that a change has occurred.
We look first at 1943 since the jump in annual major
hurricane counts at this time is most likely due to the
start of aircraft reconnaissance investigations into the
storms (Neumann et al. 1999; Jarvinen et al. 1984).
Posterior density estimates of the statistics (b1, b2, la,
lb, and la 2 lb) from the Gibbs sampling are shown
in Fig. 5. We focus on the probability densities of the
annual hurricane-rate parameters before and after (in-
cluding) 1943. Densities are smoothed versions of the
histograms and are based here on a normal kernel with
bandwidth equal to 4 times the standard deviation of
the values (Venables and Ripley 1999). The choice of
bandwidth is a compromise between smoothing enough
to remove insignificant bumps but not smoothing too
much to hide real peaks.

Gibbs sampling is again run 30 times to get an en-
semble average of the mean Poisson rate before ^lb&
and after ^la& the change point. The ensemble average
of the mean rate parameter is 1.51 before 1943 and 2.51
thereafter. The posterior densities of the rate parameters
indicate little overlap implying a rate increase beginning
with the 1943 season. This is examined directly with
the posterior density of the rate differences. Only a neg-
ligible fraction of the posterior distribution of la 2 lb

is less than 0 (p value). Thus, conditional on a change
occurring with 1943, it is clear that the change is in the
direction of more frequent major hurricanes beginning
with this year. The methodology does not use the pos-
terior-rate differences to test the hypothesis of a change
point. This is a confirmatory analysis, with the actual
decision based on the probability for each year assuming
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FIG. 5. Posterior density estimates from the changepoint analysis applied to the time series of
major hurricane counts. Density of (a) b1, (b) b2, (c) lb (1900–42) and la (1943–2001), and (d)
la 2 lb. The ensemble average Poisson rate before 1943 ^lb& 5 1.51 and the ensemble average
rate after (and including) 1943 ^la& 5 2.51. This provides an ensemble average p value on the
rate difference that is less than 0.001, where the p value is based on the fraction of values from
the posterior density of la 2 lb that are less than 0 and conditional on a change occurring.

FIG. 6. Same as in Fig. 3 except years prior to 1943 are excluded
from the analysis.

each epoch would last at least 10 yr. Ten years is based
on the time scale of interest (decades). As stated earlier,
the increase in major hurricane activity starting in the
middle 1940s is likely due in part to the start of aircraft
reconnaissance. Based on this fact we ignore the earlier
era and continue examining the record from 1943 on-
ward.

Figure 6 shows the results from the MCMC chan-
gepoint algorithm applied to the annual counts of major
North Atlantic hurricanes during the period 1943–2001.
Both 1965 and 1995 are years with high probabilities.
Additional high-probability years clustering around
1965 include 1962, 1966, and 1967. Estimates of the
posterior densities conditioned on a change at 1965 are
shown in Fig. 7. As before, Gibbs sampling produces
an ensemble average of the mean Poisson rate before

^lb& and after ^la& the change point. The ensemble av-
eraged mean rate is 3.41 before 1965 and 1.97 thereafter.
The posterior densities of the rates indicate little overlap
implying a decrease in activity beginning with the 1965
season. The ensemble p value is less than 0.001. Similar
results are obtained for 1962, 1966, and 1967 indicating
that the decline in abundance of major North Atlantic
hurricanes might have begun as early as 1962 or as late
as 1967 with the most likely year being 1965. Note that
although 1965 has a local maximum posterior proba-
bility when the longer series is considered, it rises above
the noise floor (dashed line) when the earlier, less re-
liable, portion of the record is removed.

Next we consider 1995. Estimates of the posterior
densities are shown in Fig. 8. The ensemble-averaged
mean hurricane rate before 1995 is 2.37 (ignoring the
earlier change point) and 3.57 thereafter. The density
for the hurricane rate since 1995 (la) is considerably
flatter owing to the relatively few years of data (7) in
the record following this year. The greater uncertainty
about the annual rate at the end of the hurricane record
creates more overlap on the rate distributions and thus
a larger p value on the rate difference. Even still, evi-
dence is convincing that 1995 represents an upward shift
in hurricane activity.

Thus a picture emerges of significant quantifiable
shifts in the occurrence rates of major North Atlantic
hurricanes during the twentieth century. The results for
the middle 1940s, 1965, and 1995 are consistent with
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FIG. 7. Posterior density estimates from the changepoint analysis applied to the time series of
major hurricane counts. Density of (a) b1, (b) b2, (c) lb (1943–64) and la (1965–2001), and (d)
la 2 lb. The ensemble average Poisson rate before 1965 ^lb& 5 3.41 and the ensemble average
rate after (and including) 1965 ^la& 5 1.97. This provides an ensemble average p value on the
rate decrease of less than 0.001 conditional on a change occurring.

FIG. 8. Estimates of the posterior densities from the changepoint analysis applied to the time
series of major hurricane counts. Density of (a) b1, (b) b2, (c) lb (1943–94) and la (1995–2001),
and (d) la 2 lb. The ensemble average Poisson rate before 1995 ^lb& 5 2.37 and the ensemble
average rate after (and including) 1995 ^la& 5 3.57. This provides an ensemble average p value
on the rate increase equal to 0.041 conditional on a change occurring.
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FIG. 9. Annual counts of U.S. hurricanes during the period 1900–2001. The time series appears
to be stationary.

FIG. 10. Same as in Fig. 3 except for U.S. hurricanes. Note in this
case there are no years with posterior probabilities that exceed the
empirical confidence line.

results obtained using a nonprobabilistic changepoint
model (Elsner et al. 2000a). Beginning with the era of
aircraft surveillance, we see that major hurricanes oc-
curred at an average annual rate of nearly 3.5 yr21. The
rate dropped significantly to about two major hurricanes
per year beginning sometime during the middle 1960s
with the new epoch most likely starting with the 1965
season. The modern era of fewer major hurricanes ends
abruptly with the 1995 season. For the next seven sea-
sons through 2001 the mean rate is more than 3.5 major
hurricanes per year. An advantage of the probabilistic
model is that it provides uncertainty estimates on the
rates before and after the change point. It also provides
density estimates of rate differences. Next we apply the
changepoint analysis to the twentieth century U.S. hur-
ricane record.

4. U.S. hurricane activity

In the previous section the record of major North
Atlantic hurricanes was examined using a changepoint
analysis. Here we apply the analysis to records of U.S.
hurricane activity. We are unaware of changepoint stud-
ies on these records. Hurricane landfall occurs when all
or part of the eyewall (the central ring of deep atmo-
spheric convection, heavy rainfall, and strong winds)
passes directly over the coast or adjacent barrier island.
A U.S. hurricane is a hurricane that makes at least one

landfall. A reliable list of the annual counts of U.S.
hurricanes back to 1900 is available from the U.S. Na-
tional Oceanic and Atmospheric Administration (Neu-
mann et al. 1999). These data represent a blend of his-
torical archives and modern direct measurements. An
updated climatology of annual coastal hurricane activity
is given in Elsner and Kara (1999) and Elsner and Bos-
sak (2001). Here we do not consider hurricanes affecting
Hawaii, Puerto Rico, or the Virgin Islands.

a. Overall activity

We consider overall U.S. hurricane activity first. Fig-
ure 9 shows that the annual time series of U.S. hurricane
counts. The record appears to be stationary over the
period (Elsner and Kara 1999). The lag-one autocor-
relation is a negligible 20.02. Figure 10 shows the prob-
ability of each year being a change point in the series.
In contrast to the posterior probabilities computed ear-
lier from the series of annual major hurricane counts,
the probabilities computed based on counts of U.S. hur-
ricanes are considerably lower and all below the em-
pirical confidence line estimated from a homogeneous
Poisson process. Notice that no hurricanes reached the
U.S. coast during 2000 and 2001, so the algorithm hints
at a possible change point following the 1999 season.
The evidence, however, is not strong, as historically
there are other 2-yr periods without hurricanes (1930–
31 and the more recent 1981–82).1

The temporal uniformity in hurricane landfalls noted
here is consistent with the results of Vega and Binkley
(1994), although their study was limited to the period
1960–89. Pielke and Landsea (1999) note a decreasing
trend in landfalls during the later decades of the twen-
tieth century, but no test of statistical significance is
made. Interestingly, the significant shifts in overall ma-
jor hurricane activity noted in the previous section are
not reflected in changes in landfall rates within the Unit-
ed States, suggesting the physical mechanisms respon-

1 Indeed, one (two) hurricane(s) hit the United States in 2002
(2003).
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FIG. 11. Annual counts of (a) Gulf Coast, (b) Florida, and (c) East Coast hurricanes during the
period 1900–2001. The Gulf Coast and Florida were hit more often than the East Coast.

FIG. 12. Same as in Fig. 3 except for annual counts of hurricanes
affecting the (a) Gulf Coast, (b) Florida, and (c) East Coast.

sible for hurricane formation are different than those
responsible for hurricane steering (Namias 1955; Bal-
lenzweig 1959; Landsea et al. 1992; Elsner et al. 2000b).

Recent studies show interannual to decadal changes
to the spatial patterns of U.S. hurricane activity related
to large-scale climate factors (Elsner et al. 2000b). For
instance, in La Niña years during which the North At-
lantic Oscillation is weak, the probability of a hurricane
strike to the central Gulf Coast increases significantly
(Jagger et al. 2001; Saunders et al. 2000). It is therefore

instructive to consider regional hurricane activity. We
divide the coast into three zones; Gulf Coast, Florida,
and East Coast and consider the possibility of rate
changes over each zone separately. Florida, with its
2171 km of coastline, leads the United States in fre-
quency of hurricanes. The Gulf Coast is defined as the
region from Texas to Alabama, while the East Coast is
defined as the region from Georgia to Maine. Clearly,
other divisions are possible.

b. Regional activity

The time series of regional activity are shown in Fig.
11. The records are reliable back to 1900. Figure 12
shows the average posterior probability of each year
being a change point for the Gulf Coast, Florida, and
East Coast hurricanes. The hurricane rates along the
Gulf and East Coasts appear to be constant over the
102-yr period. No changepoint probabilities extend
above the confidence line. Thus, as with overall coastal
hurricane activity, we find no significant shifts in the
rates of Gulf or East Coast hurricanes. The situation is
different in Florida where there is evidence of two rate
shifts; one in the early 1950s and another during the
late 1960s.

Gibbs sampling produces an ensemble average of the
mean Poisson rate of Florida hurricanes before and after
1952. The ensemble average of the mean rate parameter
is 0.83 before 1952 and 0.48 thereafter indicating a de-
crease in Florida hurricanes beginning in the early
1950s. The shift at 1969 is also downward with a mean
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FIG. 13. Estimates of the posterior densities from the changepoint analysis applied to the time
series of Florida hurricane counts. Density of (a) lb (1900–68) and la (1969–2001), and (b) la

2 lb. The ensemble average Poisson rate before 1969 ^lb& 5 0.79, and the ensemble average
rate after (and including) 1969 ^la& 5 0.40. This provides an ensemble average p value on the
rate difference that is equal to 0.008. Density of (c) lb (1900–51) and la (1952–2001), and (d)
la 2 lb. The ensemble average Poisson rate before 1952 ^lb& 5 0.83, and the ensemble average
rate after (and including) 1952 ^la& 5 0.48. This provides an ensemble average p value on the
rate difference equal to 0.015 conditional on a change occurring.

rate of 0.79 before and 0.40 thereafter. Here the differ-
ence is offset from 0 with an ensemble p value of 0.008.
Posterior density estimates of the rate parameters and
their differences are shown for both candidate change
points in Fig. 13. The densities indicate a downward
shift in Florida hurricane activity during the later half
of the twentieth century. The shift appears to occur in
two steps dividing the record into three epochs. The rate
during the first epoch (prior to 1952) is 0.83 Florida
hurricanes per year, but drops to 0.65 hurricanes per
year during the second epoch (1952–68) and to 0.39
hurricanes per year during the third epoch (after 1968).
The fact that we find no shifts in overall coastal hur-
ricane activity suggests that decreases in Florida hur-
ricanes are compensated by less abrupt increases in Gulf
and East Coast activity.

As mentioned earlier, Florida gets hit by more hur-
ricanes than elsewhere in the United States. Two of the
three category-5 hurricanes to hit the United States did
so in Florida. The warm waters along the Bahamas and
Greater Antilles provide an abundant energy source for
hurricanes en route to Florida (Maloney and Hartmann
2000). To verify our changepoint results and better un-
derstand the decline in Florida hurricanes we compute
local estimates of the annual probability of observing a
hurricane within 150 nautical miles (278 km) on a 0.58
latitude–longitude grid over the Gulf of Mexico and the

Caribbean Sea. Probabilities are estimated for the early
period (1900–51) and the late period (1952–2001) using
1-h interpolated (spline) best-track storm positions (Jar-
vinen et al. 1984). Local hurricane rates are converted
to annual probabilities using the Poisson distribution.
Figure 14 displays maps of the annual probabilities for
the early and late periods along with a map of the dif-
ference in probabilities (early minus late). We find an-
nual probabilities over the southern half of Florida are
in the range of 40%–60% during the early period but
drop to 15%–25% during the later period. This reduction
in Florida was anticipated based on our changepoint
results, but additional analysis shows that the reduction
is most pronounced over the southern half of the state.
The difference map shows a reduction in annual prob-
ability of 20%–25% after 1951 in a region extending
from central Florida southeastward to the central Ba-
hamas and southward to the western Caribbean Sea. We
speculate that this reduction in hurricane activity is re-
lated to a change toward a drier middle troposphere
(500–300 hPa) over the Caribbean caused by increased
subsidence and perhaps related to higher sea level pres-
sures (Knaff 1997) or warmer surface-air temperatures.

5. ENSO and the NAO
The influence of the El Niño–Southern Oscillation

(ENSO) and the North Atlantic Oscillation (NAO) on
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FIG. 14. Estimated annual probability of observing a tropical cy-
clone at hurricane intensity within a radius of 150 nautical miles (278
km). Probabilities are computed on a 0.58 lat–lon grid. The annual
rate (number of hurricanes divided by the number of years) is con-
verted into a probability using the Poisson probability density func-
tion. (a) Annual probability of at least one hurricane over the period
1900–51, (b) annual probability over the period 1952–2001, and (c)
difference in annual probability (early period minus the later period).
For clarity, only positive differences are shaded.

annual coastal hurricane numbers is examined after a
small modification to the analysis. Here it is assumed
that each year is independent, which is reasonable for
annual hurricane counts. The statistical relationship be-
tween ENSO and U.S. hurricanes is well known (Bove
et al. 1998; Elsner et al. 1999; Elsner and Kara 1999;
Jagger et al. 2001), but the relationship between NAO
and U.S. hurricanes is less well recognized (Elsner et
al. 2000b, 2001).

A reliable time record of the Pacific ENSO is obtained
using basin-scale equatorial fluctuations of sea surface
temperatures (SST). Average SST anomalies over the
region bounded by 68N–68S latitude and 908W–1808
longitude are called the ‘‘cold tongue index’’ (CTI; De-
ser and Wallace 1990). Values of CTI are obtained from
the Joint Institute for the Study of the Atmosphere and
the Oceans as monthly anomalies (base period: 1950–
79) in hundredths of a degree Celsius. Monthly values
of the CTI are strongly correlated with values from other

ENSO SST indices. Since the Atlantic hurricane season
runs principally from August through October, a 3-
month averaged (August–October) CTI from the dataset
is used. Values of an index for the NAO are calculated
from sea level pressures at Gibraltar and at a station
over southwest Iceland (Jones et al. 1997), and are ob-
tained from the Climatic Research Unit. The values are
first averaged over the pre- and early-hurricane season
months of May and June. This is a compromise between
signal strength and timing relative to the hurricane sea-
son. The signal-to-noise ratio in the NAO is largest
during the boreal winter and spring, whereas the U.S.
hurricane season begins in June (see Elsner et al. 2001).

We divide the range of ENSO and NAO values oc-
curring over the 102-yr period into equal-interval tercile
values (terciles) describing below-normal, normal, and
above-normal years. The upper and lower terciles of the
August–October average CTI are 0.908 and 20.238C,
respectively. The upper and lower terciles of the May–
June average NAO index are 1.05 and 20.85 standard
deviations respectively. Years of above- (below)-normal
CTI correspond to El Niño (La Niña) events. Years of
above- (below)-normal NAO index values correspond
to positive (negative) phases of the NAO. With this
specification, there are 14 (39) above (below) normal
ENSO years and 11 (34) above- (below)-normal NAO
years during the twentieth century. We remove the nor-
mal years and create a sequence of hurricane counts.
The sequence is a set of hurricane counts for years of
above-normal climate conditions followed abruptly by
the set of counts for years of below-normal conditions.
For instance, assuming an equal number of above, be-
low, and normal years, let Ya be the counts for years in
which NAO is above normal where a 5 1, . . . , n/3 and
Yb be the counts for years in which NAO is below nor-
mal, where b 5 1, . . . , n/3. Then we create a new series
by concatenating Ya and Yb. In this way we create an
artificial time series that contains a potential change
point and then compare the hurricane rates for years of
above-normal (before the change point) and below-nor-
mal (after, and including the change point) climate con-
ditions.

Figure 15 shows the posterior densities of the rate
differences (above-normal years minus below-normal
years). As anticipated we see that during El Niño years
(above normal) the annual rate is significantly less than
the rate during La Niña years (below normal). A 30-
member ensemble gives an average rate of 0.72 hurri-
canes yr21 during El Niño years compared with 2.18
hurricanes yr21 during La Niña years. This difference
results in a p value that is less than 0.001 conditioned
on a change occurring. The influence of El Niño on
hurricanes appears along the entire coast, but is strongest
over Florida which has a mean rate of 0.37 hurricanes
yr21 during El Niño compared with 0.93 hurricanes yr21

during La Niña. This difference corresponds to a p value
of 0.011. Figure 15 also shows the effect of NAO on
U.S. hurricanes. During its strong phase (above normal),
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FIG. 15. Posterior densities of the hurricane-rate differences (below-normal years minus
above-normal years) for (a) all U.S. hurricanes and ENSO, (b) Gulf Coast hurricanes and
ENSO, (c) Florida hurricanes and ENSO, (d) East Coast hurricanes and ENSO, (e) all
U.S. hurricanes and NAO, (f ) Gulf Coast hurricanes and NAO, (g) Florida hurricanes
and NAO, and (h) East Coast hurricanes and NAO.

the ensemble average rate is 1.02 hurricanes yr21 com-
pared with 2.21 hurricanes yr21 during its weak (or neg-
ative) phase (below normal). This provides a p value of
0.003. Unlike ENSO the influence of the NAO is only
significant along the Gulf Coast. Here the annual rate
is 0.38 hurricanes yr21 during the NAO strong phase
and 0.86 during the NAO weak phase. This is consistent
with the NAO as a factor influencing hurricane tracks
as hypothesized in Elsner et al. (2000b, 2001). A weaker
NAO during boreal spring is associated with a subtrop-
ical high pressure cell displaced farther south and west
of its mean position (near the Azores) during the fol-
lowing hurricane season. Tropical cyclones forming and
remaining equatorward of the subtropical high tend to
intensify at low latitudes, crossing through the Carib-
bean before reaching the Gulf Coast (see Elsner 2003).

6. Summary and conclusions

This paper demonstrates an application of a proba-
bilistic framework for determining sudden changes at
unknown times in records involving counts. The ap-
proach is through a hierarchical algorithm involving the
Poisson and gamma distributions and Gibbs sampling.
Gibbs sampling is a commonly used MCMC procedure
to sample from conditional distributions. Our purpose
is to use the approach for identifying shifts in the rates
of coastal hurricane activity. The technique is also ap-
plied to the problem of detecting the influence of co-
variates (ENSO and NAO) on coastal storm activity.

The changepoint analysis is first run on annual counts

of major North Atlantic hurricanes. Results are consis-
tent with those from a regression-based changepoint
model (Elsner et al. 2000a) including an ominous rate
increase starting in 1995. When the algorithm is applied
to annual counts of overall U.S. hurricane activity there
is little evidence for significant rate changes during the
twentieth century. A similar result is found when the
counts are grouped by regions including the Gulf and
East Coasts. The exception is Florida. Results show sig-
nificant decreases in the number of Florida hurricanes
during the early 1950s and likely again during the late
1960s. A closer examination reveals that this decrease
results from fewer storms approaching the southern half
of the state from the Bahamas and western Caribbean
Sea. The decrease occurs during a period of substantial
growth in the state’s population.

The analysis is then used to study the influence of
ENSO and the NAO on coastal hurricane activity. Cli-
mate data representing these two modes of variability
are divided into terciles representing above-normal,
near-normal, and below-normal conditions. As expected
from previous studies, we find a statistically significant
link to the ENSO. During El Niño years coastal hur-
ricane rates are reduced from Texas to Maine. The most
pronounced effect occurs over Florida. The NAO might
also play a role. On average during years in which the
NAO index is below normal, more than twice as many
hurricanes reach the coast. However, unlike the ENSO’s
influence which is felt along the entire coast, NAO’s
influence is significant only for the Gulf Coast from
Texas to Alabama.



1 JULY 2004 2665E L S N E R E T A L .

The conclusions are the following:

• A changepoint model utilizing Gibbs sampling is a
useful tool for climate analysis.

• Major North Atlantic hurricanes have become more
frequent since 1995, at a level reminiscent of the
1940s and 1950s.

• In general, twentieth-century U.S. hurricane activity
shows no abrupt shifts in activity.

• The exception is over Florida where activity decreased
during the early 1950s and again during the late 1960s.

• Florida’s hurricane decline results from fewer hurri-
canes passing through the Bahamas and western Ca-
ribbean Sea.

• El Niño events tend to suppress hurricane activity
along the entire coast with the most pronounced ef-
fects over Florida.

• Below-normal NAO conditions are associated with an
increase in hurricane activity from Texas to Alabama.
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APPENDIX

Derivation of the Likelihood Function

The conditional distribution of the changepoint lo-
cation given the data and all the parameters can be es-
timated from the joint distribution of the data given the
rates la, lb, and the changepoint location k, using
Bayes’s rule. Since the rates are given and the model is
hierarchical, the joint distribution does not depend on
the hyperparameters (parameters of a parameter) or the
parameters of their distributions; that is, b1, b2, a1, a2,
or g1, g 2, «1, «2, respectively. Denote the vector of these
eight parameters as u. Then, the joint distribution of the
data Y given the parameters is

p(Y | k, l , l , u) 5 p(Y | k, l , l ) (A1)a b a b

k n2l Y 2l Yb i a ie l e lb a5 (A2)P P
Y ! Y !i51 i5k11i i

kS Yi51 in 2l Ya ie l la bk(l 2l )a b5 eP1 2 1 2[ ]Y ! li51 i a

(A3)

5 f (l , Y )L(Y; k, l , l ) (A4)a b a

kS Yi51 ilbk(l 2l )a bL(Y; k, l , l ) 5 e . (A5)b a 1 2la

Now an application of Bayes’s rule, shows us that

p(k | Y, l , l , u)a b

p(Y | k, l , l , u)a b5 [p(k)] (A6)n

p(Y | j, l , l , u)p( j)O a b
j51

p(Y | k, l , l )a b5 [p(k)] (A7)n

p(Y | j, l , l )p( j)O a b
j51

f (l , Y )L(Y; k, l , l )a b a5 [p(k)] (A8)n

f (l , Y )L(Y; j, l , l )p( j)O a b a
j51

L(Y; k, l , l )b a5 [p(k)]. (A9)n

L(Y; j, l , l )p( j)O b a
j51

If we assume a noninformative prior for the change
point, for example, p(k) 5 1/n, then

p(k | Y, l , l , u) 5 p(k | Y, l , l ) (A10)a b a b

L(Y; k, l , l )b a5 . (A11)n

L(Y; j, l , l )O b a
j51
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