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[1] Katrina is a grim reminder of the serious social and
economic threat that hurricanes pose to the United States.
Recent advances in hurricane climate science provide
skillful forecasts of the U.S. hurricane threat at (or near)
the start of the season. Predictions of hurricane landfalls at
longer lead times (forecast horizons) for the complete
hurricane season would greatly benefit risk managers and
others interested in acting on these forecasts. Here we show
a model that provides a 6-month forecast horizon for annual
hurricane counts along the U.S. coastline during the June
through November hurricane season using the North
Atlantic Oscillation (NAO) and Atlantic sea-surface
temperature (SST) as predictors. Forecast skill exceeds
that of climatology. The long-lead skill is linked to the
persistence of Atlantic SST and to teleconnections between
North Atlantic sea-level pressures and precipitation
variability over North America and Europe. The model is
developed using Bayesian regression and therefore
incorporates the full set of Atlantic hurricane data
extending back to 1851. Citation: Elsner, J. B., R. J.

Murnane, and T. H. Jagger (2006), Forecasting U.S. hurricanes

6 months in advance, Geophys. Res. Lett., 33, L10704,

doi:10.1029/2006GL025693.

1. Introduction

[2] Predictions of basin-wide Atlantic hurricane activity
have been around since the middle 1980s [Gray, 1984b].
Research focusing on climate factors that influence hurri-
cane frequency regionally [Lehmiller et al., 1997; Bove et
al., 1998; Maloney and Hartmann, 2000; Elsner et al.,
2000; Murnane et al., 2000; Jagger et al., 2001; Larson et
al., 2005] is more recent. Insights into regional hurricane
activity are used to help predict landfall activity [Elsner and
Jagger, 2006a; Saunders and Lea, 2005; Lehmiller et al.,
1997]. However, current landfall forecasts have short lead
times (less than 1 month) and rely on data spanning
approximately the past half century. In general, statistical
models built from longer data records would be expected to
perform with greater precision. However, older data tend to
be less reliable and more uncertain. Here we maximize the
utility of available data by combining the relatively short,
high quality time series of observations with older, less
precise time series using a Bayesian approach that does not
require data to have uniform precision [Elsner and Bossak,
2001; Elsner and Jagger, 2004]. In doing so we offer for the
first time a forecast model that can be used to predict the

number of hurricane landfalls along the U.S. coastline (U.S.
hurricane activity) by February 1st (4 months prior to the
official start of the hurricane season and 6 months prior to
the active portion of the season). The work builds on Elsner
and Jagger [2006b] who demonstrate a skillful prediction
model for U.S. hurricanes by July 1st.

2. Data

[3] A chronological list of all hurricanes that have affect-
ed the continental United States in the period 1851–2004 is
available from the U.S. National Oceanic and Atmospheric
Administration. The approximate length of the U.S. coast
line affected by hurricanes from the Atlantic is 6000 km. We
do not consider hurricanes affecting Hawaii, Puerto Rico, or
the Virgin Islands. Hurricane landfall occurs when all or
part of the storm’s eye wall passes over the coast or adjacent
barrier islands. A hurricane can make more than one landfall
as hurricane Andrew did in striking southeast Florida and
Louisiana. Here we consider only whether the cyclone made
landfall the continental United States at least once at
hurricane intensity. Here it is assumed that the annual counts
of U.S. hurricanes are certain back to 1899, but less so in
the interval 1851–1898. Justification for this cutoff is based
partly on U.S. legislation in July 1898 to create a hurricane
warning system for the protection of military and merchant
ships in the Caribbean that led to the establishment of a
Weather Bureau forecast center at Kingston, Jamaica
[Arsenault, 2005].
[4] We consider as predictors of U.S. hurricanes two

variables shown previously to be related to seasonal activ-
ity; Atlantic SST and the North Atlantic oscillation (NAO),
represented by a sea-level pressure difference between
subtropical and polar latitudes [Hurrell et al., 2001].
Atlantic SST values are based on a blend of model values
and interpolated observations, which are used to compute
anomalies north of the equator. The anomalies are computed
by month using the climatological time period 1951–2000
and are available back to 1871. Units are �C. January
SST values are obtained online from NOAA-CIRES
Climate Diagnostics Center (CDC). The low frequency
variation in linearly detrended Atlantic SST is sometimes
referred to as the Atlantic Multidecadal oscillation (AMO)
[Enfield et al., 2001; Goldenberg et al., 2001]. For short-
hand we use the acronym ‘‘AMO’’ for Atlantic SST
variation. NAO index values are calculated from sea
level pressures at Gibraltar and at a station over southwest
Iceland [Jones et al., 1997], and are obtained from the
Climatic Research Unit. The values used here are an
average over the fall and early winter months of October
through January and are available back to 1851. Units are
standard deviations.
[5] We also consider the Southern Oscillation Index

(SOI) as a predictor, but find no significant relationship
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with U.S. hurricanes at this lead time (6 months). While
not used directly in the long-lead forecast model, the SOI
helps explain the secular variations in model skill. SOI
values are an indicator of ENSO. Although noisier than
equatorial Pacific SSTs, values are available back to 1866.
The SOI is defined as the normalized sea-level pressure
difference between Tahiti and Darwin. The SOI is strongly
anti-correlated with equatorial SSTs so that an El Niño
warming event is associated with negative SOI values.
Units are standard deviations. The relationship between
ENSO and hurricane activity is strongest during the
hurricane season, so we use an August–October average
of the SOI as our predictor. The monthly SOI values
[Ropelewski and Jones, 1997] are obtained from the
Climatic Research Unit.
[6] SST variability is determined by temperatures across

the Atlantic basin with a warm ocean resulting in high
values for the AMO. NAO variability results from changes
in the atmospheric mass and pressure fields that change
middle latitude storminess and the strength and geographic
position of the subtropical high pressure cell. A strong
north-south pressure gradient results in high values for the
NAO. A warm tropical ocean provides fuel for tropical
cyclones and the subtropical high provides steering. Years
coincident with a warm ocean and low NAO values result in
a significantly greater threat of U.S. hurricanes.

3. Bayesian Regression Model

[7] Time series of annual U.S. hurricane counts, fall to
winter (October–January) averaged values of an NAO
index, and January values of Atlantic SST are shown in
Figure 1. The NAO shows greater high frequency (year-to-
year) variation while the AMO shows pronounced low

frequency variability. Only the NAO is available back to
1851. U.S. hurricane landfalls tend to be more abundant
when the NAO is low and the Atlantic is warm. The
correlation (Pearson) between the annual count and the
NAO is �0.19 (P = 0.017) and between the annual count
and a linearly-detrended AMO is +0.20 (P = 0.021). We
note that the NAO-U.S. hurricane correlation changes to
�0.27 (P = 0.006) when the years 1949–1997 are removed
from the analysis. Correlation analysis does not provide an
equation for prediction nor does it consider missing predic-
tor values or the fact that annual coastal hurricane counts are
small non-negative integers and likely uncertain before
1899. We account for these limitations using a Bayesian
regression model and forecast the number of hurricanes for
each year conditional on values of the NAO, Atlantic SST,
and year. Remarkably, these predictors provide useful skill
in forecasting the hurricane threat 6 months in advance.
[8] The annual coastal hurricane count is assumed to

follow a Poisson distribution. The logarithm of the Poisson
rate is logically linked to a summation of the predictors.
Although hurricane counts are available back to 1851, older
counts are less precise. Therefore we include an indicator
variable given a value of 1 for years 1851–1898, and a
value of 0 for years 1899–2004. The model coefficient
associated with this term is the logarithm of the probability
that a hurricane is recorded in the database given that it
occurred. In effect, the model allows for the possibility that
a hurricane occurred but was not recorded. The model is
evaluated using Markov chain Monte Carlo (MCMC)
sampling [Gilks et al., 1994; Spiegelhalter et al., 1996].
Diagnostic plots reveal good mixing of the samples. We
generate 12K samples and discard the first 2K. The mod-
eling procedure is cross-validated in the spirit of Elsner and
Schmertmann [1994]. Details of the model and cross

Figure 1. Time series of the predictand and predictors used in the long lead forecast model of U.S. hurricane activity. (top)
Annual U.S. hurricane count (predictand). (middle) October–January averaged value of the North Atlantic Oscillation
(NAO) (predictor). (bottom) January averaged value of the linearly detrended Atlantic SST (AMO) (predictor). The NAO
explains less than 2% of the variation in the AMO. For presentation purposes only, all series have been smoothed using a 3-
year kernel (Parzen) filter. Results from correlation analyzes and regression modeling reported in the text are based on
unfiltered values.
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validation procedure are given by Elsner and Jagger [2004,
2006b].

4. Model Results and Discussion

[9] Analysis of the distribution of posterior samples of
the regression coefficients (Figure 2) shows the significance
of the predictors of hurricane landfall. The posterior mean
of the NAO coefficient (Table 1) is �0.166 with a 95%
credible interval of (�0.303, �0.027) and a P = 0.0085
(only 85 out of 10K samples had a coefficient value greater
than 0). The posterior mean of the Atlantic SST coefficient
is +0.455 with a 95% credible interval of (�0.193, +1.106)
and a P = 0.085. Correlation between the observed count
and the predicted mean number of hurricanes is +0.24, but
increases to +0.29 when the years from 1949 through 1997
are removed.
[10] The leading contender model for anticipating U.S.

hurricane counts at this long lead time is climatology. The
model outperforms climatology in 56% (86/154) of all years
and in 61% (42/69) of years in which the number of U.S.
hurricanes is zero or more than 2 (below and above average
years). These percentages are 55 and 59, respectively when
the model is cross-validated. Even for years in which the
model under-performs climatology, the forecast probability
of what actually occurred is relatively high. Thus, the model
anticipates the coastal hurricane season 4–6 months in
advance with an out-of-sample skill level that exceeds that
of simply predicting an average number each year. Skill
levels are modest but useful especially for years of height-
ened (three or more) and no hurricane landfalls. In com-
parison, the correlation over the past 13 years (1992–2004)

between observed and predicted basin-wide hurricane
counts from actual forecasts made by December (W. M.
Gray et al., Summary of 1999 Atlantic tropical cyclone
activity and verification of author’s seasonal activity
prediction, Dep. of Atmos. Sci., Colorado State Univ., Fort
Collins, 1999, available at http://hurricane.atmos.colostate.
edu/Forecasts/1999/nov99/, and W. M. Gray and P. J.
Klotzboch, Extended range forecast of Atlantic seasonal
hurricane activity and U.S. landfall strike probability for
2005, Dep. of Atmos. Sci., Colorado State Univ., Fort
Collins, 2004, Available at http://hurricane.atmos.colostate.
edu/Forecasts/2004/dec2004/) is +0.08, which compares
with +0.35 from our cross-validated model predicting U.S.
hurricane counts by February. Our model also outperforms

Figure 2. Posterior distributions of regression coefficients from a Bayesian model of U.S. hurricane counts. (a)
Regression coefficient of fall/winter NAO. (b) Regression coefficient of January AMO. (c) Regression coefficient of year.
(d) Time-series of observed annual number of U.S. hurricanes and model-predicted mean hurricane rate for each year
1851–2004. The observed counts are smoothed as in Figure 1 to better match the smaller variability of the rate.

Table 1. Bayesian Regression Resultsa

Term Averaging Months

Model Coefficient

Mean 95% CI P-value

NAO October–January �0.166 (�0.303, �0.027) 0.0085
AMO January +0.455 (�0.193, +1.106) 0.0850
Year – �0.003 (�0.006, �0.001) 0.0220
SOI August–October +0.177 (+0.047, +0.304) 0.0046
NAO May–June �0.202 (�0.327, �0.077) 0.0003

aPosterior mean, 95% credible interval and P-value of the model
coefficients. Only the first three terms are used in the long-lead model. The
SOI term is added to explain the long-lead model’s poor performance over
the period 1949–1997. The May–June NAO term improves the model’s
predictive capability, although it reduces the model’s usefulness as the lead
time is shortened considerably. The mean October – January NAO
coefficient decreases by less than 1% and the mean January AMO
coefficient decreases by 14% with the addition of the SOI and May–June
NAO terms to the model.
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long-range forecasts of U.S. hurricane activity issued by
Benfield Hazard Research Centre (http://tropicalstormrisk.-
com), though the comparison is based on a limited number
of years (see Table 2).
[11] The model has skill because Atlantic SST predicts

how active the basin will be in terms of the number of
hurricanes and the NAO predicts the general path the
hurricanes will take when they form. Warm Atlantic ocean
conditions in January generally persist into the hurricane
season. We quantify the relationship between a warm ocean
and hurricane number by modeling the total basin-wide
hurricane count using the January AMO from 1943–2004
and find a significant lead relationship (P = 0.0047).
[12] The relationship between October–January NAO

and hurricane tracks is more complex. A weak fall/winter
NAO is associated with weaker middle latitude weather
systems (and thus less precipitation) over North America
and Europe. The relatively dry fall/winter season continues
into spring and the dry conditions subsequently lead to a
tendency for greater middle tropospheric ridging during the
summer and fall. Ridging over the eastern and western sides
of the North Atlantic basin during the hurricane season
displaces the middle tropospheric trough of lower pressures
to the north. The trough, which induces hurricane move-
ment to the north and east, is therefore unable to recurve
hurricanes that are moving westward toward the United
States thus increasing the probability of landfalls along the
Gulf and southeast coasts. Support for this hypothesis
comes from the positive correlation between monthly pre-
cipitation totals from January through May at stations in a
region extending from Ohio to Massachusetts and fall/
winter NAO values. In other words, weak fall/winter
NAO conditions lead to less precipitation, more ridging,
less recurvature, and a higher probability of landfall.
[13] We consider 11 stations with monthly precipitation

totals (from the U.S. Historical Climatology Network dating
back at least 100 years from Ohio to Massachusetts and
compute the fall/winter-averaged NAO coefficient for an
ordinary linear regression model of monthly precipitation
on NAO and year for each station and for each month from
January through May. Of the 55 coefficients (5 mo � 11
stations), 45 (82%) are positive (for each station at least 3 of

the 5 months have a positive coefficient) indicating that fall/
winter NAO tends to lead springtime precipitation totals
with a weak NAO associated with drier conditions over the
Midwest into the Northeast. We repeat the analysis with the
January AMO used in place of the NAO and find that only
31 (56%) of the coefficients are negative indicating Atlantic
SST explains less of the interannual variation in spring
precipitation over this region. These results are similar to
Ogi et al. [2004] showing a linkage between wintertime
NAO and the following summertime high pressure over the
Sea of Okhotsk and it’s regulation of the Asian summer
monsoon.
[14] The El Niño-Southern Oscillation (ENSO) cycle also

plays a role in how active the hurricane season will be
[Gray, 1984a], and it thus modifies the probability of a U.S.
strike possibly through changes in tropospheric wind shear
[Goldenberg and Shapiro, 1996]. This effect is not included
in the long-lead model, but it explains why the model
performs rather poorly over the period from 1949–1997.
We show this by adding the August through October (main
hurricane season) averaged value of the SOI to the model.
The term is significant (P = 0.0046) after accounting for
values of fall/winter NAO and January AMO. In-sample
model skill over climatology increases to 58% of all years
and to 68% of years in which the number of U.S. hurricanes
is zero or more than 2. In particular, the mean value of the
hurricane-season SOI over the period 1949–1997 for the 7
years in which the fall/winter NAO is most negative (most
favorable for U.S. hurricanes) is �0.92 which compares to
an average of �0.12 over the period 1867–2004. Thus in
years over the period 1949–1997 that portended favorable
conditions for storms to track toward the U.S. (negative
NAO), ENSO was an inhibiting factor in hurricane devel-
opment. This underscores the value of accurate long-lead
forecasts of ENSO. Interestingly, since the effect of the
NAO is accumulative (more pre-hurricane season months of
negative NAO implying more drying) if we also include a
May through June averaged value for the NAO to the model
(P = 0.0003), model skill over climatology increases to 62%
of all years and to 80% of years in which the number of U.S.
hurricanes is zero or more than 2.

5. Conclusion

[15] Seasonal prediction of hurricane landfalls is of
potentially great value to business, government, and society.
Better forecasts provide a sound basis for assessing the
likely losses associated with a catastrophic reinsurance
contract [Michaels et al., 1997], but forecasts will need to
be issued well before January 1, the start date of most
reinsurance treaties, to be of greatest value to reinsurers. It is
worth noting that although forecasts of the mean hurricane
count fluctuate around 2, there can be a sizeable change in the
forecast probability of a large number of hurricane landfalls
with a small change in the forecast mean, and changes in the
tails of these probability distributions are of practical impor-
tance to catastrophe reinsurers. Our model of hurricane
landfalls, which shows skill at lead times of at least 4 months
before the hurricane season, begins to provide risk managers
the advance information needed for action.

[16] Acknowledgments. Support for this study was provided by the
National Science Foundation (ATM-0435628) and the Risk Prediction

Table 2. Out-of-Sample Skill Comparisonsa

Forecast
Year

Observed
Number

Bayesian Regression
Predicted Mean

BHRC Method
Predicted Mean

2000 0 1.44 2.0
2001 0 1.46 1.8
2002 1 1.68 1.9
2003 2 1.73 1.8
2004 5 2.02 1.9
r — 0.98 �0.06
MSE — 2.72 3.54

aObserved number of U.S. hurricanes during the most recent five-year
period (2000–2004) versus predicted mean rates from our Bayesian
regression model and from methods developed at Benfield Hazard Research
Centre (BHRC), University College London. Skill is measured by the
correlation (r) and mean squared error (MSE) between observed counts and
mean rates. To simulate actual forecast situations, predictions made with the
Bayesian regression use hurricane data only through the previous year and
predictor data only through the forecast year. After each prediction an
additional year of data is added. Predictions made by the BHRC were
issued in early February for the 2002, 2003, and 2004 seasons, and in late
November (previous year) for the 2000 and 2001 seasons.
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