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[1] Hurricane Katrina is one of the most destructive
natural disaster in U.S. history. The infrequency of severe
coastal hurricanes implies that empirical probability
estimates of the next big one will be unreliable. Here
we use an extreme-value model together with interpolated
best-track (HURDAT) records to show that a hurricane
of Katrina’s intensity or stronger can be expected to occur,
on average, once every 21 years somewhere along the
Gulf coast from Texas through Alabama and once every
14 years somewhere along the entire coast from Texas
through Maine. The model predicts a 100-year return level
of 83 ms�1 (186 mph) during globally warm years and
75 ms�1 (168 mph) during globally cool years. This
difference is consistent with models predicting an increase
in hurricane intensity with increasing greenhouse warming.
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1. Introduction

[2] On Sunday, August 28, 2005, Hurricane Katrina’s
winds increased to 78 ms�1 in the central Gulf of Mexico
making it one of the strongest hurricanes ever recorded in
this part of the world. Early morning the next day (7 a.m.
LDT) the eye of Katrina crossed over Plaquemines Parish in
Louisiana with winds estimated near 65 ms�1. It is useful to
know the return period of a storm of Katrina’s magnitude
and how it might vary under climate change. Probability
estimates of extreme hurricanes are available in the litera-
ture [Darling, 1991; Rupp and Lander, 1996; Heckert et al.,
1998; Chu and Wang, 1998] but they do not address the
question of variability under different climate regimes
[Jagger et al., 2001]. Here we use a model from extreme
value theory to estimate the return period of Katrina-like
hurricanes along the Gulf coast. The model, described in
detail by Jagger and Elsner [2006], is an application
from Coles [2001]. The analysis is useful in putting the
near-coastal strength of Hurricane Katrina into historical
perspective.

2. Data

2.1. Data Description and Sources

[3] Extreme value theory relies on asymptotic arguments
for the behavior of the maximum value observed in a data
set [Palutikof et al., 1999]. Here maximum sustained

(1-minute average) wind speed estimates near the coast
are interpolated from the best-track data set (HURDAT)
maintained by the U.S. National Hurricane Center (NHC).
Limiting our analysis to near-coastal hurricanes allows us to
use data back to 1899. The best-track data set is the official
record of tropical cyclones for the Atlantic Ocean, Gulf of
Mexico and Caribbean Sea, including those that have made
landfall in the United States. It consists of the 6-hourly
position and intensity estimates of tropical cyclones back to
1851 [Jarvinen et al., 1984; Neumann et al., 1999]. For
storms and hurricanes prior to 1931, the 6-hr positions and
intensities are interpolated from once daily (12 UTC)
estimates. For hurricanes in the period 1931–1956, the 6-
hr positions and intensities are interpolated from twice daily
(00 and 12 UTC) observations. Here we use the latest
version of data set as of February 2005, which includes
reanalysis of all known storms prior to 1911.
[4] The best-track data set does not contain a complete

list of hurricane events by landfall location so we develop
an objective technique for estimating near-coastal wind
speeds. First we divide the coast into 3 regions including
the Gulf coast, Florida, and East coast. The combined
coastal region of 1, 2, and 3 is referred to as the entire
coast. Second, a cubic spline interpolation is used to obtain
positions and wind speeds at 1-hr intervals from the 6-hr
values for all tropical cyclones in the best-track [Kossin,
2002]. The spline interpolation guarantees we do not miss
storms passing quickly through a near-coastal region. The
spline interpolation in this context is preferable because it
captures rapid changes in intensity better than linear inter-
polation. Also with spline interpolation the values at the
6-hr observations remain the same. Third, for each hurri-
cane, we note the maximum wind in each of 2 regions
affected by a given hurricane: Gulf coast and entire coast.
Fourth, for recent hurricanes where landfall intensities have
been reevaluated by experts (e.g., Hugo in 1989 and
Charley in 2004), we use these values instead of the 1 hr
interpolated best-track values. A comparison of the power
dissipation index (cubed of the wind speed integrated over
the lifetime of the storm [Emanuel, 2005]) using 6 hr
observations and 1 hr spline interpolations shows that there
is only a 1% difference providing support for our choice of
interpolation for capturing the maximum wind speed of a
hurricane in a region.
[5] We also obtain monthly global near-surface air tem-

perature anomalies (1961–1990 base period) from the
Intergovernmental Panel on Climate Change (IPCC) online
from the Climatic Research Unit (CRU) [Folland et al.,
2001]. We average the global temperature anomalies over
the months of August–October. The anomalies are accurate
to ±0.05�C for the period since 1951, but are about 4 times
as uncertain during the previous century. We treat the global
temperatures as a binary factor by subdividing the record
into years of above and below average.
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2.2. Hurricane Data Assumptions

[6] Considering only tropical cyclones with at least
tropical-storm force winds (>18 ms�1) over the period
1899–2004, we have N = 875 entries from 383 tropical
cyclones for the entire coast. Each entry i = 1, . . ., N is a pair
consisting of the year yi and the maximum wind wi, denoted
as D. Also, associated with each entry is a row vector of
global air temperature xyi. We consider D a sample from a
spatial point process, D, over the two dimensional space
composed of the integers and positive reals. Using the idea
of a spatial point process we define quantities useful for the
present analysis. For instance, the activity for year y of all
tropical cyclones with maximum winds exceeding u is the
number of points, N(y, u) from a realization of D inside the
region (y � (u, 1]). Thus, N(y, u) represents a family of
random variables on the positive integers, and N(y, H) is the
annual number of hurricanes for year y, where H = 33 ms�1

corresponding to hurricane intensity. We can view the
problem of finding the maximum yearly wind speed by
fixing the threshold, u, and noting that the distribution of the
yearly maxima can be determined from the distribution of
N(y, u) and the distribution of the maximum winds given
that the maximum winds exceed u. If u is large enough, then
for practical purposes, N(y, u) takes only values of zero and
one, so based on a conditioning argument the probability
that the maximum wind W exceeds a value v is Pr(N(y, u) =
1) Pr(W > vjW > u). This is called the peaks-over-threshold
method [McNeil and Saladin, 2000; Coles and Pericchi,
2003].
[7] Additional assumptions are necessary. First, we as-

sume that the occurrence of a hurricane within a coastal
region is independent of future hurricane occurrences in the
same region. Second we assume that hurricane intensity is
independent such that the intensity of a previous hurricane
has no bearing on the intensity of a future hurricane. Thus,
while the interpolated hurricane intensities along a particu-
lar hurricane track are not independent, the maxima from
one hurricane to the next are. Then, the two dimensional
spatial process describing set D is a two dimensional
Poisson process with an associated mean measure LA. For
example, if A = [1901, 2000] � [33,1] then LA is the
expected number of hurricanes in the 20th century occurring
within the region. Since D is a Poisson process, the number
of hurricanes observed during this century has a Poisson
distribution with a mean value of LA. Another feature of the
Poisson process is that the probability of a single event B
occurring in a smaller region contained in A is just lB/lA,
thus if a single hurricane occurs in year y then Pr(W > vjW >
u) = L(y, [v, 1])/L(y, [u, 1]). We also assume that the
maximum wind speed has a continuous distribution so our
process has an associated intensity l where L([a, b] � [c,

d]) =
Xb

a

Z d

c

l (y, w) dw. So our count N(y, u) is a Poisson

random variable with mean

Z 1

u

l(y, u) du. Finally, we

assume that a tropical cyclone occurrence in a given year is
a function of the set of yearly climate variables, and the
wind speed, w so that the intensity in each coastal region, l,
can be expressed as l(y, w) = l(xy, w).
[8] We model hurricane intensification and occurrence

separately. Using a generalized Pareto distribution (GPD),
we specify the probability that the maximum wind speed of

a near-coastal hurricane W will be greater than some value v
given that it exceeds some threshold intensity u. The GPD is
used because it describes the behavior of individual extreme
events. The frequency of hurricanes at intensity u or higher
is assumed to follow a Poisson distribution. With u at
hurricane intensity, Elsner et al. [2004] find no significant
rate shifts in hurricane activity along the Gulf coast during
the 20th century. The above formulation allows us to
obtain an annual return rate on the extreme winds, which
is meaningful for the businesses of insurance and risk
management.
[9] The probability that the maximum observed wind

speed exceeds some value v given that it exceeds the
threshold u is

P W > vjW > uð Þ ¼
exp � v� u½ 
=sð Þ x ¼ 0

1þ x
su

v� u½ 

� ��1=x

x 6¼ 0

8><
>: ð1Þ

¼ GPD v� ujsu; xð Þ ð2Þ

where su > 0 and su + x(v � u)  0. Since this model is true
for any u we have su = s0 + x � u and xu = x. The parameters
su and x are referred to as the scale and shape parameters
respectively. For negative shape parameters the GPD has an
upper limit of Wmax = u + su/jxj.
[10] The GPD describes the maximum wind distribution

for each hurricane whose winds exceed u but not the
frequency of hurricanes at that intensity. From our assump-
tions, the number of hurricanes in year y whose maximum
winds exceed u has a Poisson distribution with mean (or
exceedance) rate lu = L(y, [u, 1]). Thus by combining the
probability and the rate with our assumption that they are
independent we get the number of hurricanes per year with
winds exceeding v, Nv has a Poisson distribution with mean

lv ¼ lu � P W > vjW > uð Þ: ð3Þ

The threshold u is set to 41 ms�1. A plot of the mean
excess, where excess is the difference between a threshold
value and the observed speed for speeds exceeding the
threshold, shows a straight line fit starting at a threshold
between 39 and 46 m�1. Estimates of the scale and shape
parameters of the extreme value distribution are not
significantly different for different choices of threshold
within this range. Additional details on the choice of
threshold are provided by Jagger and Elsner [2006].

3. Results

[11] Figure 1 shows a return level plot of extreme
hurricane winds for the Gulf coast region from our model.
A map of the region is shown as an inset. The return level
(ordinate) has units of wind speed in ms�1 and knots (kt)
and the return period (abscissa) is given in years. The return
level is exceeded on average once every return period. The
middle curve is the expected return level for a given return
period and the thin lines are the 95% confidence limits. The
curves asymptote to finite levels as a consequence of the
negative value for the GPD shape parameter. The model
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shows a 5-year return level of 54 ms�1, a 50-year return
level of 77 ms�1 and a 500-year return level of 88 ms�1.
Model estimates are consistent with empirical estimates that
show three hurricanes over the past 106 years in the region
with maximum sustained winds of at least 71 ms�1 includ-
ing Hurricane Ethel in 1960 (71 ms�1), Hurricane Carla in
1961 (77 ms�1), and Hurricane Camille in 1969 (85 ms�1).
[12] Using the 2-hourly NHC updated positions and

intensities, within the Gulf coast region, we estimate
Katrina’s strongest wind speed to be 71 ms�1 (dot in
Figure 1). This corresponds to a return period of 21 years.
Thus assuming the future will be similar to the past, we
can expect to see a hurricane of Katrina’s strength or
stronger somewhere in this region (of course not neces-
sarily affecting the city of New Orleans) on average once
every 21 years. The 95% confidence limits on this
estimate are 10 and 50 years (Table 1). We extend the
model to include the entire U.S. coast from Texas to
Maine and find a return period of 14 years for hurricanes
of Katrina’s strength or stronger with a 95% interval
range from 9 to 30 years.
[13] The above results are based on the assumption that

hurricane events are independent. The increase in power
dissipation and frequency of strong Atlantic hurricanes
over the past 30 years suggests that things might be

changing [Emanuel, 2005; Trenberth, 2005; Webster et
al., 2005]. Local SST plays a direct role in powering
hurricanes by providing moist enthalpy and instability.
Warmer Atlantic SST caused by a faster thermohaline
circulation leads to more and stronger hurricanes. We
therefore rerun the extreme value model for the entire
coast separating years of above from years of below
average global temperature (Figure 1b). The model pre-
dicts an expected 100-year return level of 81 ms�1.
However, the expected value ranges from 83 ms�1 during
globally warm years to 75 ms�1 during globally cool
years. The magnitude of the difference in return levels is
consistent with a numerical modeling study predicting a
3–10% increase in maximum sustained surface winds
for CO2-induced hurricane intensification sustained over
80 years [Knutson and Tuleya, 2004]. Since we find no
substantial difference in the return periods for weaker
hurricanes, we conclude an increase in the average number
of hurricanes per year for warm years, with the increase
coming at the higher return levels. Although statistically we
find changes in return levels conditioned on global near-
surface air temperature, the causality is through regional
SST [Elsner et al., 2006]. Changes in North Atlantic SST
and hurricane activity are known to co-vary in aperiodic
multidecadal cycles [Goldenberg et al., 2001; Henderson-
Sellers et al., 1998].

4. Summary

[14] Here we employ a model described by Jagger and
Elsner [2006] and based on data from the period 1899–
2004. Since Katrina occurred in 2005, we use the model to
estimate an out-of-sample return period for Katrina-like
storms. Scientifically, the assessment of hurricane return
periods using the model goes beyond empirical methods of
storm counting by intensity category.
[15] Understanding the role climate plays in modulating

hurricane destructiveness is crucial to society, particularly as
coastal populations continue to swell [Pielke et al., 2005].
The recent increase in strong hurricanes over the Atlantic is
indeed troubling. Although Hurricane Katrina caused cata-
strophic damage we can expect another hurricane at that
strength or stronger somewhere along the U.S. coast with an
annual probability somewhat higher than 7%. Although the
annual probabilities for hurricanes weaker than Katrina do
not change between globally warm and globally cool years,
for hurricanes stronger than Katrina, we find that the
increase in the 100-year return level from cold to warm
years amounts to 11%.

[16] Acknowledgment. Financial support was provided by the U.S.
National Science Foundation (ATM-0435628 and BCS-0213980) and the

Figure 1. Exceedance probability curves. Near-coastal
hurricanes along the Gulf coast (Texas to Alabama). (a) The
curves are based on an extreme value model and asymptote
to finite levels. Parameter estimates are made using the
maximum likelihood approach. Thin lines are the 95%
confidence limits. The return level is the expected
maximum hurricane intensity over p-years. The map inset
shows the Gulf coast and entire coast regions. The dot
indicates the return level of Hurricane Katrina when it
entered the Gulf coast region. Near-coastal hurricanes along
the entire U.S. coast (Texas to Maine). (b) The solid
(dashed) line is for years with global temperatures above
(below) normal. The dashed horizontal lines correspond to
the minimum speed of the corresponding Saffir/Simpson
hurricane scale. Similar results are obtained using Atlantic
sea-surface temperature in place of global air temperature.

Table 1. Return Periodsa

Region 2.5% Mean 97.5%

Gulf Coast 10 21 50
Entire Coast 9 14 30

aValues are in years and represent the mean and 95% confidence limits
for a storm of Katrina’s strength or stronger to approach the near-coastal
waters of the United States. Values are derived from an extreme-value
model of U.S. hurricanes using data over the period 1899–2004.
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Risk Prediction Initiative (RPI-05001) of the Bermuda Biological Station
for Research.
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(2001), The recent increase in Atlantic hurricane activity: Causes and
implications, Science, 293, 474–479.

Heckert, N. A., E. Simiu, and T. Whalen (1998), Estimates of hurricane
wind speeds by ‘‘peaks over threshold’’ method, J. Struct. Eng. Am. Soc.
Civ. Eng., 124, 445–449.

Henderson-Sellers, A., et al. (1998), Tropical cyclones and global climate
change: A post-IPCC assessment, Bull. Am. Meteorol. Soc., 79, 19–38.

Jagger, T. H., and J. B. Elsner (2006), Climatology of extreme hurricane
winds near the U.S. coast, J. Climate, in press.

Jagger, T. H., J. B. Elsner, and X. Niu (2001), A dynamic probability model
of hurricane winds in coastal counties of the United States, J. Appl.
Meteorol., 40, 853–863.

Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis (1984), A tropical
cyclone data tape for the North Atlantic Basin, 1886–1983: Contents,
limitations, and uses, NOAA Tech. Memo., NWS NHC-22, 21 pp.

Knutson, T. R., and R. E. Tuleya (2004), Impact of CO2-induced warming
on simulated hurricane intensity and precipitation: Sensitivity to the
choice of climate model and convective parameterization, J. Clim., 17,
3477–3495.

Kossin, J. P. (2002), Daily hurricane variability inferred from GOES infra-
red imagery, Mon. Weather Rev., 130, 2260–2270.

McNeil, A. J., and T. Saladin (2000), Developing scenarios for future
extreme losses using the POT method, in Extremes and Integrated Risk
Management, edited by P. M. E. Embrechts, RISK Books, London.

Neumann, C. J., B. R. Jarvinen, C. J. McAdie, and G. R. Hammer (1999),
Tropical Cyclones of the North Atlantic Ocean, 1871–1998, 206 pp.,
Natl. Oceanic and Atmos. Admin., Silver Spring, Md.

Palutikof, J. P., B. B. Brabson, D. H. Lister, and S. T. Adcock (1999), A
review of methods to calculate extreme wind speeds, Meteorol. Appl., 6,
119–132.

Pielke, R. A., Jr., C. Landsea, M. Mayfield, J. Laver, and R. Pasch
(2005), Hurricanes and global warming, Bull. Am. Meteorol. Soc., in
press.

Rupp, J. A., and M. Lander (1996), A technique for estimating recurrence
intervals of tropical cyclone-related high winds in the tropics: Results for
Guam, J. Appl. Meteorol., 35, 627–637.

Trenberth, K. (2005), Uncertainty in hurricanes and global warming,
Science, 308, 1753–1754.

Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang (2005), Changes
in tropical cyclone number, duration, and intensity in a warming envi-
ronment, Science, 309, 1844–1846.

�����������������������
J. B. Elsner and T. H. Jagger, Department of Geography, Florida State

University, Bellamy Building 310, Tallahassee, FL 32306, USA. (jelsner@
fsu.edu)
A. A. Tsonis, Atmospheric Sciences Group, Department of Mathematical

Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201-
0413, USA.

L08704 ELSNER ET AL.: HURRICANE KATRINA RETURN PERIOD L08704

4 of 4


