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ABSTRACT

Hurricanes cause drastic social problems as well as generate huge economic losses. A reliable forecast of
the level of hurricane activity covering the next several seasons has the potential to mitigate against such
losses through improvements in preparedness and insurance mechanisms. Here a statistical algorithm is
developed to predict North Atlantic hurricane activity out to 5 yr. The algorithm has two components: a
time series model to forecast average hurricane-season Atlantic sea surface temperature (SST), and a
regression model to forecast the hurricane rate given the predicted SST value. The algorithm uses Monte
Carlo sampling to generate distributions for the predicted SST and model coefficients. For a given forecast
year, a predicted hurricane count is conditional on a sampled predicted value of Atlantic SST. Thus
forecasts are samples of hurricane counts for each future year. Model skill is evaluated over the period
1997–2005 and compared against climatology, persistence, and other multiseasonal forecasts issued during
this time period. Results indicate that the algorithm will likely improve on earlier efforts and perhaps carry
enough skill to be useful in the long-term management of hurricane risk.

1. Introduction

Hurricanes are a serious social and economic threat
to the United States. Strong winds, heavy rainfall, and
storm surge kill people and destroy property. Hurri-
cane activity over the Atlantic basin varies widely on
intraseasonal to multidecadal time scales. Several
factors are known to influence this activity including
the El Niño–Southern Oscillation (ENSO), the North
Atlantic Oscillation (NAO), and Atlantic sea surface
temperature (SST).

Seasonal forecasts of hurricane activity are routinely
issued by government agencies and academics. There
appears to be some general skill against climatology
with these forecasts, especially at lead times of a few
months or less. However, the usefulness of forecasts is
limited by the lack of regional specificity and by the
rather short lead times (forecast horizons). Approaches
are available to forecast activity near the coast (Elsner

et al. 2006; Saunders and Lea 2005; Elsner and Jagger
2004, 2006; Lehmiller et al. 1997). However, little has
been done to address the limited forecast horizon. One
exception is the multiseason model developed in Elsner
et al. (1998). The model (with slight modifications) has
been used to forecast the basin-wide hurricane count
since 1997. However, as anticipated by the authors, the
forecast skill has been only marginal against climatol-
ogy.

The objective of this paper is to show how improve-
ments can be made in multiseason forecasts of Atlantic
hurricane activity. The idea is to make multiyear fore-
casts of Atlantic SST and then predictions of hurricane
activity conditional on a forecast of the SST. A skillful
model that spans multiple years will help with long-
term emergency management planning as well as with
financial planning including capital allocation and in-
vestment strategies.

We begin in section 2 by examining the track record
of multiseason predictions. The skill level is put into the
context of the routinely issued seasonal forecasts. In
section 3 we examine time series of both Atlantic SST
and North Atlantic hurricane counts. In section 4 we
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perform diagnostics on the SST and hurricane records.
Time series diagnostics are run to help develop the time
series model and regression diagnostics are run to help
develop the regression model. In section 5 we tie the
two models together into a hierarchical prediction al-
gorithm. In section 6, the algorithm is used to retrodict
hurricane activity over the period 1997–2005 and the
hindcasts are compared with persistence and with ac-
tual forecasts made over this period. In section 7, we
provide a summary of the method and results.

2. Past research

The present work is motivated by Elsner et al. (1998;
hereafter ENT98) who use a time series model for the
annual North Atlantic hurricane counts. The ENT98
model is based on a singular spectrum analysis (SSA)
performed in Elsner et al. (1999). The results show im-
portant variations in North Atlantic hurricanes on sub-
decadal time scales that to some degree are predictable.
Here we choose a different approach that uses a time
series model for the SST variation and a regression of
hurricane activity onto the predicted SST values. The

main difference between the present approach and the
approach of ENT98 is the parametric time series model
for SST that replaces the empirical model for annual
hurricane counts.

With the exception of the El Niño years of 1997 and
2002, hurricane activity over the Atlantic basin has
been above normal every year since 1995. As expected,
predictive skill of the ENT98 model has been margin-
ally better than climatology. Interestingly, the overall
track record of the multiseasonal ENT98 model is
better than the track record of forecasts issued by Gray
et al. at Colorado State University (CSU) over this time
period. (Fig. 1). The correlation between predicted and
actual hurricane counts using the CSU June, April, and
December forecasts are �0.30, �0.12, and �0.47, re-
spectively. The correlation between predicted and ac-
tual hurricane counts using the ENT98 one-, two-, and
3-yr forecasts are �0.40, �0.31, and �0.47, respec-
tively.

Hurricane counts are used directly in building the
ENT98 model. It is our hypothesis that improvements
on this strategy can be made by forecasting rates rather
than counts. Thus our perspective is more statistical in

FIG. 1. Track records of the CSU seasonal hurricane forecasts and the multiseason forecasts based on Elsner
et al. (1998). (a) June, (b) April, and (c) December forecasts from CSU and (d) 1-yr, (e) 2-yr, and (f) 3-yr forecasts
from the multiseason model. The filled bars are the actual and the open bars are the forecast number of Atlantic
basin hurricanes.
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that we assume the counts to be random conditional on
the underlying rate. Another limitation to the ENT98
model is the lack of covariate information. Here we
make use of the fact that, in general, hurricane activity
responds to changes in SST. We thus develop a time
series model of the SST, rather than a time series model
of the raw counts as in ENT98, and then we use the
predicted values as covariate information to forecast
the hurricane rates. It is anticipated that, with both of
these improvements, the skill level of multiseason pro-
jections of Atlantic hurricane activity can be increased.

The change from a period of below-normal activity to
a period of above-normal activity is considered the re-
sult of low-frequency climate variations driven in part
by SST over the North Atlantic (Goldenberg et al.
2001). There is also a perspective that since SSTs are
influenced by climate change, the next lull in hurricane
activity will not be as low as in the past (Emanuel 2005;
Webster et al. 2005).

3. Atlantic SST and hurricanes

Hurricanes derive their power from the ocean
through moist enthalpy and instability. Other things be-
ing equal, the amount of energy available depends on
the SST and the depth of the ocean mixed layer. Cold
water below a surface layer of warm SST (shallow
mixed layer) will limit the energy available for hurri-
cane maintenance. In the absence of information about
the mixed layer depth and on interannual and longer
time scales, we use SST as a proxy for surface forcing of
hurricane activity.

Statistical analysis confirms that over the Atlantic ba-
sin warmer SST tends to result in more and stronger
hurricanes. Saunders and Harris (1997) using linear re-
gression showed that SST over the tropical Atlantic is
the dominating influence behind the interannual vari-
ance in Atlantic hurricane numbers. Kimberlain and
Elsner (1998) showed that the increase in hurricane
activity since 1995 could be related to warmer SSTs to
the east of the Lesser Antilles. Goldenberg et al. (2001)
show that the number and strength of Atlantic hurri-
canes have a multidecadal variation which they suggest
is related to SST changes resulting from North Atlantic
Ocean currents.

Modeled SST and National Oceanic and Atmo-
spheric Administration (NOAA) optimal interpolated
SST datasets are used to compute Atlantic SST anoma-
lies north of the equator in Enfield et al. (2001).
Anomalies (in °C) are computed by month using the
base period 1951–2000. Data are obtained from the
NOAA/Cooperative Institute for Research in Environ-
mental Sciences (CIRES) Climate Diagnostics Center

back to 1871. For this study we average the SST anoma-
lies over the hurricane-season months of August
through October.

Figure 2 displays the August–October averaged
value of the Atlantic SST by year over the period 1871–
2005. The data show large year-to-year fluctuations,
multidecadal variability, and a positive trend. The exact
cause of the low-frequency variation is open to debate,
but it has been suggested that is part of a multidecadal
mode [Atlantic Multidecadal Oscillation (AMO)] that
influences hurricane formation through changes in local
atmospheric boundary layer processes and vertical
wind shear, particularly in the main development re-
gion of the Atlantic (Bell and Chelliah 2006; Enfield
and Mestas-Nuñez 1999).

The distribution of the individual values is also dis-
played with a kernel density plot. The distribution ap-
pears symmetric and normal. Formally we check for
normality using the Shapiro–Wilks statistic and find
that the test statistic has a value of 0.985 corresponding
to a P value of 0.719 and providing no evidence against
the null hypothesis of normally distributed SST data.

A series of the annual hurricane counts over the
same time period is also displayed in Fig. 2. Similar to
the record of SST, the annual hurricane counts show
large interannual fluctuations superimposed on low-
frequency variations. The case for a trend in the counts
is less compelling than for the SST, especially when
considering the fact that data prior to 1946, when re-
connaissance flights began, is generally accepted as
somewhat incomplete. The distribution of annual
counts is discrete and follows a Poisson distribution. A
�2 goodness-of-fit test with 3 degrees of freedom gives
a P value of 0.662 providing no evidence against the
null hypothesis of Poisson distributed counts.

4. Data analysis and modeling

In this section we perform analysis and modeling of
the data to help us decide on the overall structure of the
prediction algorithm, which is outlined in the next sec-
tion. We begin with time series analysis of the Atlantic
SST record and continue with a regression analysis of
the hurricane counts.

a. Time series model of Atlantic SST

We employ standard tools from time series analysis
to help us model Atlantic SST. Our goal is a prediction
model for late summer/early fall Atlantic SST values.
Regardless of how well we understand the nature of the
phenomenon behind the identified time series patterns,
if we properly model them, we can extrapolate the pat-
terns to predict future values.
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The first step in developing a time series model is to
check for stationarity. Stationarity refers to the prop-
erty that the mean, variance, and autocorrelation of the
time series are roughly constant. Stationarity can be
checked with various statistics. The behavior of the auto-
correlation function can also be used. For example, a
slow decay of the autocorrelation values with increasing
lag is often evidence of nonstationarity. We begin
with the Kwiatkowski–Phillips–Schmidt–Shin (KPSS)
test.

The KPSS test is a commonly used direct method for
checking stationarity in time series (Kwiatkowski et al.
1992). It is a one-sided right-tailed test so that one re-
jects the null hypothesis of stationarity at the 100�%
level if the KPSS statistic is greater than the corre-
sponding quantile value. For the late summer/early fall
SST data the KPSS statistic is 1.249 under the null hy-
pothesis of no trend. The corresponding 99th percentile
value is 0.762, so we reject the null hypothesis of sta-
tionarity about a constant value (no trend). However, if
we test for stationarity under the null hypothesis of a
linear trend, the KPSS statistic drops to 0.125 (the cor-

responding 99th percentile value is 0.229), so we fail to
reject the null hypothesis and we proceed as if the time
series is stationary after a linear trend removal.

Trend removal is typically performed by fitting a
curve and subtracting the fitted values from the original
data. However, Box and Jenkins (1976) recommend
differencing the series to achieve stationarity and that
is what is done here. The time series of the first differ-
ence (SSTt � SSTt�1) is shown in Fig. 3. Note that the
long-term trend is removed with this procedure. A sta-
tionary time series has time invariant first and second
statistical moments. Thus, given a sample time series yt

(for t � 1, . . . , T ), the lag j sample autocorrelation is
defined as

�̂j �

�
t�j�1

T

�yt � y��yt�j � y�

�
t�1

T

�yt � y�2

, �1�

where y � (1/T)�T
t�1yt is the sample mean. The sample

autocorrelation function is a plot of 	̂j against lag j.

FIG. 2. (a) Time series of August–October averaged Atlantic basin SST anomalies (base: 1950–2000) over the
period 1871–2005. (b) Kernel density plot of the time series values. (c) Time series of annual Atlantic hurricane
counts over the period 1871–2005. (d) Distribution of annual hurricane counts.
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The autocorrelation function provides information
that can be used to model a time series. For compari-
son we plot the values of the autocorrelation function
for the original series and for the differenced series in
Fig. 3. The dashed lines indicate the 95% confidence
levels. Large autocorrelation values (above the 95%
level) extend to lag 11 for the raw time series. In con-
trast, the difference series shows only significant corre-
lation at lags 1, 11, and 12. The nonstationarity in the
raw series as evidenced by the slow decay in the auto-
correlation function makes it difficult to choose the or-
der of the time series model as the trend contributes to
the short lag autocorrelations.

A common way to specify a univariate time series is
to use an autoregressive (AR) model. Let yt be a zero-
mean time series, then

yt � �1yt�1 � �2yt�2 � · · · � �pyt�p � �t . �2�

Thus an autoregressive model is a linear regression of
the current value of the series against one or more prior
values of the series. The value of p is called the order of

the AR model, and is denoted AR(p). The AR inte-
grated moving average [ARIMA(p, d, q)] models ex-
tend the scope of the AR models to include moving
average (MA) terms (to order q) and differencing (to
order d), where the “I” in ARIMA stands for “inte-
grated” since the predictions must be integrated (anti-
differenced) to forecast the original time series. Once
the orders are determined, the model coefficients are
estimated using the method of maximum likelihood.

For comparisons we entertain two time series mod-
els. The first is an ARIMA(3, 0, 0) model [or equiva-
lently, a AR(3) model on the raw time series] and the
second is a ARIMA(12, 1, 1) model with coefficients
for all lags except 1, 11, and 12 set to zero. The models
can be expressed as

SSTt � �1SSTt�1 � �2SSTt�2 � �3SSTt�3 � �t , �3�

SSTt � �1SSTt�1 � �11SSTt�11 � ��12 � �11�1�SSTt�12

� �12�11SSTt�23 � �t�1, �4�

where 
t � zt � m1zt�1.

FIG. 3. (a) Time series of the first difference in August–October Atlantic SST. (b) Autocorrelation function of
the raw (not differenced) time series, and (c) autocorrelation function of the differenced time series. (d) Partial
autocorrelation function of the raw and (e) differenced time series.
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The ARIMA model is somewhat more complicated
than the AR model. Note that the ARIMA model con-
tains a component corresponding to an 11–12-yr cycle
in the differenced series. We offer no physical explana-
tion for this, only noting its frequency correspondence
with the 11-yr solar cycle. Elsner and Kara (1999) pro-
vide a historical summary of studies related to the sun–
hurricane connection and describe a few mechanisms
for a possible extraterrestrial influences on Atlantic
hurricane activity, including cosmic rays (Elsner and
Kavlakov 2001). We note that August–October SST
values are generally lower (higher) during years of low
(high) sunspot numbers, which correspond to a
“cooler” (warmer) sun. For example, the periods 1963–
66, 1971–77, 1983–87, and 1992–97 featured reduced
sunspot activity and an average hurricane-season North
Atlantic SST anomaly of �0.066 which compares with
an anomaly of �0.146 for the years not included in the
above list during the period 1957–2003. Under the as-
sumption of independence (not entirely valid), the
p value for the difference in mean anomalies is 0.0013
(N � 46) indicating a statistical relationship.

A qualitative comparison of the two competing mod-
els is made by examining the partial autocorrelation
functions of the model residuals (Fig. 3). The partial
autocorrelation at lag j is the autocorrelation between
SSTt and SSTt�j that is not accounted for by lags 1
through j � 1. In general, partial correlation values are
larger for the AR model. Specifically, a significant par-
tial correlation value (above the 95% line) at lag 10 is
noted for the AR model residuals indicating that the
model might be inadequate in describing all the impor-
tant serial correlation in the time series. In contrast, no
significant lag correlations are noted in the partial auto-
correlation function of the residuals from the ARIMA
model. Another comparison is made by examining the
Akaike information criteria (AIC) given by

AIC� p, q� � ln��̂2� p, q�� �
2
T

� p � q�. �5�

The information criterion captures the trade-off be-
tween model fit and parsimony. Models with too many
parameters are penalized by lack of parsimony. A
model with a lower AIC value is the better model ac-
counting for fit and number of parameters. For the AR
model the AIC is �86 which compares with �96 for the
ARIMA model. Based on the autocorrelation analysis
and the AIC values we choose the ARIMA(12, 1, 1)
model for predicting the SST out to 5 yr.

More explanation is needed on the chosen model.
The SSTt�23 term arises from the product expansion of
an ARIMA(12, 1, 1) and an ARIMA(11, 1, 1) model

resulting in autoregressive terms with 1, 11, 12, and 23
lags. The coefficient on the SST t�12 term is based on
examining another model where the lag 11 and lag 12
terms are added simultaneously (separate coefficients).
The chosen model, where the coefficient on the lag 12
term contains the lag 1, lag 11, and lag 12 coefficients,
had a smaller AIC while still removing the significant
correlations and partial coefficients at lags 11 and 12.
The model also contains a moving average term 
t con-
taining a first-order coefficient m1 where zt is a random
uncorrelated value (innovation) at year t.

In summary, our time series model for Atlantic late
summer/early fall SST contains an autoregressive com-
ponent to capture the interannual persistence in SST
values, a moving average component to capture the
possibility that a random fluctuation may propagate to
future values through feedbacks, a cyclic component
possibly related to changes in solar insolation, and a
trend component to capture the low-frequency variabil-
ity possibly related to climate change. The model is
from a family of models referred to as Box–Jenkins
models after Box and Jenkins (1976).

b. Regression model of hurricanes on SST

Since hurricanes derive energy from the heat and
moisture of the underlying ocean, theoretically the
maximum potential intensity of a hurricane increases
with increasing SST, all else being equal (Emanuel
1987; Holland 1997). Thus, as a first approximation, a
season with a uniform distribution of maximum inten-
sities over an ocean of uniform temperature will result
in more hurricanes if the ocean warms even if the num-
ber of tropical cyclones remains constant. In fact, at
least over the Atlantic, the year-to-year variation in
hurricane activity is statistically linked (positively cor-
related) to Atlantic SST (Saunders and Harris 1997;
Kimberlain and Elsner 1998; Goldenberg et al. 2001).
More realistically the thermal structure of the ocean’s
mixed layer (top several hundred meters) is a better
representation of the available energy for hurricanes
against mixing and overturning generated by the strong
winds. Thus, SST serves as a proxy for oceanic heat con-
tent. Figure 4 shows time series’ plots of the August–
October Atlantic SST and annual Atlantic hurricane
counts.

The interannual variation in the pattern of hurricane
activity appears to coincide with the interannual varia-
tion in the pattern of SST. This association is confirmed
quantitatively in the scatterplot. The regression line
indicates that SST explain a statistically significant
(P value 0.001) 17% of the interannual variability in
hurricane counts. Considering the complexity of hurri-
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cane genesis and the fact that SST is only a proxy for
oceanic heat content, the result is encouraging. Indeed
it is well understood that, regardless of surface warmth,
atmospheric winds creating a shearing environment can
inhibit hurricane activity. This is why seasonal forecast
models can be improved by including a variable char-
acterizing ENSO, which tends to modulate Atlantic
hurricane activity through its effect on environmental
wind shear and subsidence.

On longer time scales, the effect of ENSO can be
considered a “random” component to hurricane activ-
ity, whereas the autocorrelative structure of the SST
data as described in the previous section suggests that
the relationship with hurricane activity likely will be
stronger. The scatterplot of the smoothed hurricane
counts against the smoothed SST verifies this. Here we
find that SST explains 32% of the variability in hurri-

cane activity. The series’ are smoothed using a local
regression with a span of 5 yr. These diagnostics pro-
vide statistical validation for our approach to modeling
hurricane counts from SST. However, since interest is
in future hurricane counts we use a regression model
appropriate for discrete data.

The canonical model for hurricane count data is the
Poisson regression (Elsner and Schmertmann 1993;
Solow and Moore 2000; Elsner et al. 2001; Jagger et al.
2002; Elsner 2003; McDonnell and Holbrook 2004). It is
based on the Poisson distribution, which is a discrete
distribution defined on the nonnegative integers. It is
derived from the distribution of wait times between
successive events. For our purpose the Poisson regres-
sion model is used to model a set of basin-wide hurri-
cane counts ht ∈ 0, 1, 2, . . . , � � Z� on the nonnegative
integers for a set of observed years t � 1, . . . , T. Ad-

FIG. 4. (a) Time series of the August–October Atlantic SST (black) and annual hurricane count (red). (b) Scatterplot of the SST and
hurricane counts, and (c) scatterplot of the 5-yr smoothed SST and hurricane counts. The straight lines in the scatterplots are the least
squares regression line of hurricanes on SST. The regression slope is significantly different from zero for both raw and smoothed data
as can be seen by the 95% confidence lines on the regression line.
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ditionally we have a set of SST values one for each year.
Thus the Poisson regression is

ht � Poisson��t�

�t � exp��0 � SSTt�1�, �6�

where �t is the hurricane rate for year t, �0 is the inter-
cept, and �1 is SST coefficient. The symbol � refers to
a stochastic relationship and indicates that the variable
on the left-hand side is a random draw (sample) from a
distribution specified on the right-hand side. The equal
sign indicates a logical relationship with the variable on
the left-hand side algebraically related to variables on
the right-hand side.

5. Prediction algorithm

Diagnostic results from the previous section provide
us with the background to build a multiyear prediction
algorithm for annual hurricane counts. In short, the al-
gorithm generates a predictive distribution of annual
hurricane counts out to 5 yr by generating predictive
samples of SST values and predictive samples of regres-
sion model coefficients and combining them math-
ematically through Eq. (6). Specifically the algorithm
uses Monte Carlo (MC) sampling within a hierarchy. A
schematic of the hierarchy is shown in Fig. 5. At the top
are the SST and hurricane data records. The SST data
are used alone to build a univariate time series model
and are used together with the hurricane data to build
a regression model. Details of the time series and re-
gression models were given in the previous section.

Given values for the coefficients of the ARIMA
model and random uncorrelated innovations for each
year, the time series model together with the historical
series of SST values produces a single sample of pre-
dicted SST values with a single value for each year out
to 5 yr. Using 100 different innovation series provides a
sample consisting of 100 5-yr SST predictions. Given
the historical series of SST values and corresponding
hurricane counts, the regression model produces a
single set of model coefficients (offset and slope), rep-
resenting expected values from a Student’s t distribu-
tion. The regression model specifies a Poisson rate for
a single year conditional on a value of SST. Choosing a
random set of model coefficients from their respective
distributions together with a single SST value produces
a single rate for a single year. The procedure is repeated
for each forecast year and for 100 sampled SST predic-
tions and 1000 sampled regression coefficients for a to-
tal of 500 000 hurricane counts. To get a single pre-
dicted rate we average over all samples for a given
forecast year. This MC approach combines the uncer-

tainty inherent in the time series predictions with the
uncertainty associated with the regression of hurricanes
on SST to give an assessment of overall predictive un-
certainty.

6. Validation

Model skill is examined by estimating the time series
and regression parameters on data over the period
1871–1996 (training period), then applying the predic-
tion algorithm to forecast hurricane counts from 1997–
2005 (forecast period). The length of the training pe-
riod (initially 116 yr) is dictated by a trade-off between
having enough data to produce an accurate model and
leaving enough data to get reliable validation statistics.
The choice of years for the training period is made

FIG. 5. Graph illustrating the algorithm for generating a predic-
tive distribution of annual Atlantic basin hurricane counts out to
5 yr. The data are the time series of Atlantic SST and hurricane
counts (H). Samples of the SST predictions are generated from
the time series model and samples of the regression coefficients
are generated from the regression model.
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partly based on the fact that comparisons can be made
with actual forecasts from the ENT98 model. The first
forecast in the validation period is issued for 5 consecu-
tive seasons 1997–2001 and is initialized in December of
1996. The training period is then updated to include the
observed number of hurricanes for 1997 and the model
parameters reestimated to make a forecast for the pe-
riod 1998–2002. This is repeated 7 times so that the last
forecast period is 2003–05.

Figure 6 shows various results from the validation
exercise. First, we compare the observed relative hurri-
cane rate with forecast relative rates. Relative rates are
computed by taking the ratio of the short-term (5 yr)

mean hurricane count to the long-term mean hurricane
count. A relative rate of 1 indicates a long-term clima-
tological mean number of hurricanes. The long-term
mean is the average number of hurricanes starting with
1871 and ending with the year before the first forecast
year. For example, in comparing the 5-yr forecast is-
sued beginning with the 1997 season, we use a long-
term mean of 5.14 hurricanes based on the period 1871–
1996. The observed short-term mean is 7.60 hurricanes
so the observed relative rate is 1.48. Forecasts made
with the present model are converted to relative rates
by taking the ratio of the 5-yr forecast mean to the
observed long-term mean. The same procedure is used

FIG. 6. Forecast validation statistics and a forecast for the 5 yr beginning with 2006. (a) 5-yr observed and predicted hurricane rates
relative to a climatological base period. The black line indicates the observed rates, the blue line the present SST model, the green line
a persistence forecast, and the red line the ENT98 model. Note that all three models predict above the long-term climatological
mean represented by a relative rate of 1 with the SST model providing the best forecasts, although all fall short of the observed rates.
(b) Correlation between observed and predicted counts for each of the 7 forecast periods using the SST (blue line) and the ENT98 (red
line) model. (c) Same as (b) except RMSE. (d) Forecast relative hurricane rate for the period 2006–10 using the SST model. The mean
relative rate is the solid line and the 95% confidence lines are the dashed lines. The X marks the observed relative hurricane rate for
2006.
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to convert the forecasts from the ENT98 model and a
persistence model that uses the previous 10 yr as a fore-
cast for the next 5 yr. Note that with forecasts made
starting with the 2002 and 2003 seasons, the number of
forecast years is 4 and 3, respectively.

The observed short-term hurricane rates have ex-
ceeded the long-term mean rate in each of the 7 fore-
cast periods. The three forecast models do a good job in
predicting the above-normal activity with the SST
model performing the best, although all three forecast
models fall short in predicting the magnitude of the
recent high level of hurricane activity. The correlation
between the observed and predicted number of hurri-
canes over each of the 5-yr prediction intervals for the
SST model and the ENT98 model is also shown. The
correlation are generally above 0.5 for the SST model
and better than the ENT98 model, although the ENT98
model proved superior with its 2001 and 2002 forecasts.
Note that the persistence model provides a 5-yr mean
rate forecast rather than forecasts of annual counts, so
correlation as a measure of skill is meaningless. The
root-mean-squared error statistics show similar results,
with the SST model providing more skill than the
ENT98 model with the exception of the 2001 forecast
when the ENT98 model predicted 11 hurricanes (ob-
served � 15) for the 2005 season 5 yr in advance.

The amount by which the model underestimates the
observed activity over the verification period might be
partly due to a low bias in hurricane counts in the years
prior to about 1944. Recent work in trying to quantify
this bias (Landsea 2007) could lead to a more accurate
forecast model. This can be done by using the bias-
corrected set of hurricane counts to recalibrate the
Poisson regression.

In general the validation results indicate skill for the
SST model. Thus we use the model to predict the rela-
tive rates out to the year 2010. The rates are integrated
over the forecast period. The forecast calls for a con-
tinuation of an active hurricane period with expected
relative rates at levels about 50% above the long-term
mean. The 95% confidence interval ranges between
10% and 100% of the long-term rate.

The 2006 Atlantic hurricane season, which featured
5 hurricanes, came and went during the course of the
research and review process. This is slightly below the
long-term (1871–2005) mean number of 5.34 and well
below the forecast mean relative rate of 1.46. Model
failure is attributed to El Niño. The El Niño produced
greater wind shear and subsidence across the tropical
Atlantic that is not accounted for in the model. How-
ever, to put this forecast into context, a mean relative
rate of 1.46 translates into 7.8 hurricanes. For compari-
son, Klotzbach and Gray (2006) forecast 9 hurricanes

for 2006 as late as 1 June 2006, while Saunders and Lea
(2006) forecast 8.2 hurricanes for 2006 as late as 4 April
2006.

7. Summary

Hurricanes are capable of generating large financial
losses to the insurance industry. Predictions of the level
of hurricane activity have been around since the mid-
1980s, and currently there are at least a half dozen
groups regularly issuing such forecasts, but with the
exception of ENT98 outlooks covering a longer time
horizon of several years have not been routinely at-
tempted.

Here we develop a statistical algorithm to predict
basin-wide North Atlantic hurricane counts out to 5 yr
that improves on the strategy of ENT98. The algorithm
has two components: an ARIMA time series model to
forecast average hurricane-season Atlantic SST, and a
regression model to forecast the annual hurricane
counts conditional on the predicted SST. The algorithm
is developed based on results from diagnostic tests for
goodness of fit, stationarity, component order, and sig-
nificance of the regression coefficients. The algorithm
uses Monte Carlo sampling to generate predictive
samples of SST and samples of the regression coeffi-
cients. In this way forecasts are samples of hurricane
counts that combine uncertainty in the predictive SST
values with uncertainty in the regression model of hur-
ricanes on SST.

Forecast skill is evaluated over the period 1997–2005
and compared with skill from a persistence forecast
and the skill from the original multiseasonal forecast
model. Results indicate the algorithm has sufficient
skill to be useful in the long-term guidance of hurricane
risk. The model contains no term to account for higher-
frequency fluctuations associated with, for example, the
inhibiting or enhancing conditions of ENSO, so fore-
casts will fail in years when such conditions dominate.
A forecast to the year 2010 indicates a continuation of
the recent above-normal activity. The connection be-
tween regional North Atlantic SSTs and hurricanes
could lead to the development of space–time multisea-
son forecast models.
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