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ABSTRACT

The authors build on their efforts to understand and predict coastal hurricane activity by developing
statistical seasonal forecast models that can be used operationally. The modeling strategy uses May–June
averaged values representing the North Atlantic Oscillation (NAO), the Southern Oscillation index (SOI),
and the Atlantic multidecadal oscillation to predict the probabilities of observing U.S. hurricanes in the
months ahead (July–November). The models are developed using a Bayesian approach and make use of
data that extend back to 1851 with the earlier hurricane counts (prior to 1899) treated as less certain relative
to the later counts. Out-of-sample hindcast skill is assessed using the mean-squared prediction error within
a hold-one-out cross-validation exercise. Skill levels are compared to climatology. Predictions show skill
above climatology, especially using the NAO � SOI and the NAO-only models. When the springtime NAO
values are below normal, there is a heightened risk of U.S. hurricane activity relative to climatology. The
preliminary NAO value for 2005 is �0.565 standard deviations so the NAO-only model predicts a 13%
increase over climatology of observing three or more U.S. hurricanes.

1. Introduction

Coastal hurricanes are a serious social and economic
concern in the United States. Strong winds, heavy rain-
fall, and storm surge kill people and destroy property.
The devastation from Hurricane Katrina is a horrific
reminder of this fact. Historical hurricane data provide
clues about the future frequency and intensity of
storms. Skillful seasonal forecasts of coastal hurricane
activity are important for land use planning, emergency
management, hazard mitigation, and (re)insurance con-
tracts.

Empirical and statistical research (Goldenberg et al.
2001; Elsner et al. 2000a, 1999; Gray et al. 1992) iden-
tifies factors that contribute to conditions favorable for
Atlantic hurricanes leading to prediction models for
seasonal activity (Gray et al. 1992; Hess et al. 1995).
Research shows that climate factors influence hurricane
frequency differentially. The effect of the El Niño–
Southern Oscillation (ENSO) on the frequency of hur-
ricanes forming over the deep Tropics is significant, but
its effect on the frequency of hurricanes over the sub-
tropics is small. Additional factors help explain local

variations in hurricane activity (Lehmiller et al. 1997).
In fact, the North Atlantic Oscillation (NAO) plays a
statistically significant role in modulating coastal hurri-
cane activity (Elsner 2003; Elsner et al. 2001; Jagger et
al. 2001; Murnane et al. 2000). Numerical models are
now capable of simulating hurricane seasons months in
advance with some skill (Vitart and Stockdale 2001;
Vitart et al. 2003).

Insights into regional hurricane activity have been
used to build successful seasonal landfall models (Leh-
miller et al. 1997; Saunders and Lea 2005). A limitation
of these landfall models is that they are based on a
restricted set of data (the last, approximately, 50 yr).
Assuming similar climate conditions over time, statisti-
cal models built on longer data records would be ex-
pected to perform with greater precision. However,
these earlier data are generally less reliable and more
uncertain. A solution is to use a model that does not
require all the data to have uniform precision. Elsner
and Bossak (2001) demonstrate such a model for cli-
matological analysis of U.S. hurricanes and Elsner and
Jagger (2004) extend the model to include predictors.
These models are based on Bayesian technology. In
short, a Bayesian model is a conditional probability
model that combines prior information with a likeli-
hood specification to determine a posterior distribu-
tion. In the context of prediction, the posterior distri-
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bution represents what we expect to happen along with
how certain we are that it will.

There is a large body of statistical literature on the
Bayesian approach to model building. A good starting
place is with the contributions emphasizing practical
applications in Gilks et al. (1998). Congdon (2003) pro-
vides an excellent overview of Bayesian modeling by
illustrating the techniques on a wide range of problems,
particularly from the health and social sciences. Only
more recently have Bayesian models been applied in
climate studies. Wikle (2000) gives an introduction to
the hierarchical Bayesian approach to modeling atmo-
sphere and ocean processes. Berliner et al. (2000)
shows how to forecast tropical Pacific sea surface tem-
peratures by incorporating the physical understanding
of ENSO. Katz (2002) reviews how to perform uncer-
tainty analysis within the context of integrated assess-
ment of climate change. Wikle and Anderson (2003)
demonstrate the utility of a Bayesian approach for cli-
matological analysis of tornado occurrences that are
complicated by reporting errors. Bayesian methods
have also been applied in the area of climate change
and detection (Solow 1988; LeRoy 1998; Berliner et al.
2000). Elsner et al. (2004) and Chu and Zhao (2004)
show how to detect change points in hurricane activity
with Bayesian models. A Bayesian approach to sea-
sonal hurricane modeling is illustrated in Elsner and
Jagger (2004). Comparison with a frequentist (or clas-
sical) approach demonstrates the usefulness of the
Bayesian approach in focusing our beliefs on the rela-
tive importance various factors have on coastal hurri-
cane activity. For example, the degree of belief we have
in the future impact El Niño might have on the prob-
ability of a U.S. hurricane is formed from two indepen-
dent information sources: the pre- and post-1900
records. Results confirm the utility of the earlier
records by showing a greater precision on the model
parameters when those records are included. Readers
not familiar with the Bayesian approach to seasonal
modeling are encouraged to examine the work of Els-
ner and Jagger (2004).

The purpose of the present paper is to offer a Bayes-
ian model that can be used for actual predictions of
U.S. hurricane activity by 1 July and that has been skill
assessed using cross validation. Cross validation of a
Bayesian model has yet to be done in the climate lit-
erature. The model makes use of the available hurri-
cane records and accounts for the uncertainty inherent
in the older data. The paper builds on our early work
(Elsner and Jagger 2004) by providing a complete as-
sessment of forecast skill. A comparison of forecast
methods for predicting the 2004 Florida hurricane sea-

son, reformulated as Bayesian models, is presented in
Elsner and Jagger (2006).

We begin with a discussion of the hurricane counts
and the selected predictors (covariates). In section 2 we
explain the general idea behind the Markov chain
Monte Carlo (MCMC) approach to Bayesian modeling.
In section 3, we discuss the particulars of our model
strategy for predicting the probability of U.S. hurricane
counts. The model uses the landfall counts back to
1851, but treats the counts prior to 1899 as somewhat
uncertain. Values during the nineteenth century for
some of the predictors are missing so we specify them in
the model as samples from a distribution. Since the
strategy relies on sampling, in section 4 we discuss con-
vergence diagnostics. The importance of the individual
predictors is discussed in section 5. In section 6, we
describe the procedure of cross validation in the con-
text of Bayesian models. Results are described in sec-
tion 7. Comparisons are made with a climatological
model. A summary and conclusions are given in section
8. Model code along with data and initial values are
provided as an appendix.

2. Data

a. Hurricane counts

A chronological list of all hurricanes that have af-
fected the continental United States in the period 1851–
2004, updated from Jarrell et al. (1992), is available
from the U.S. National Oceanic and Atmospheric Ad-
ministration (NOAA, online at http://www.aoml.
noaa.gov/hrd/hurdat/ushurrlist.htm). A hurricane is a
tropical cyclone with maximum sustained (1 min) 10-m
winds of 65 kt (33 m s�1) or greater. Hurricane landfall
occurs when all or part of the storm’s eyewall passes
directly over the coast or adjacent barrier islands. Since
the eyewall extends outward a radial distance of 50 km
or more from the hurricane center, landfall may occur
even in the case where the exact center of lowest pres-
sure remains offshore. A hurricane can make more
than one landfall as Hurricane Andrew did in striking
southeast Florida and Louisiana.

Here we only consider whether the observations in-
dicate that the cyclone struck the continental United
States at least once at hurricane intensity. The approxi-
mate length of the U.S. coastline affected by hurricanes
from the Atlantic is 6000 km. We do not consider hur-
ricanes affecting Hawaii, Puerto Rico, or the Virgin
Islands. An analysis of an earlier version of the U.S.
hurricane record in 50-yr intervals is presented in Els-
ner and Bossak (2001). Here it is assumed that the
annual counts of U.S. hurricanes are certain back to
1899, but less so in the interval of 1851–98. The justifi-
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cation for this cutoff is based on an increased awareness
of the vulnerability of the United States to hurricanes
following the Galveston tragedy of 1900 and on coastal
population levels at this time.

b. Potential predictors

The approach taken here differs from other work on
seasonal hurricane forecasting in that we do not search
for predictors, nor are we showcasing a new predictor.
We are informed about which predictors to include in
our models from the research literature so instead we
focus on the technology of the forecast modeling pro-
cess. We begin by describing this literature.

Building on the work of Ballenzweig (1959) in eluci-
dating climate controls for hurricane steering winds,
Lehmiller et al. (1997) were the first to develop a skill-
ful statistical model for seasonal forecasts of landfall
probability. They showed that—previous autumnal
rainfall within the Sahel region of western Africa, the
forward extrapolated vertical shear magnitude between
30- and 50-mb tropospheric winds [quasi-biennial oscil-
lation (QBO)], the 700–200-mb vertical shear in the
Miami–West Palm Beach area, the July monthly sea
level pressure at Cape Hatteras, and the July average
monthly East Coast sea level pressure—are important
precursors to hurricane activity over the southeastern
United States. They note that the highest likelihood of
a hurricane landfall occurs with relatively high July sea
level pressures over Cape Hatteras and strong vertical
wind shear over south Florida.

A regression model for the southeastern U.S. hurri-
canes that makes use of longer records describing
ENSO and NAO, rather than the more temporally lim-
ited upper-air sounding data used in Lehmiller et al.
(1997), is designed in Elsner (2003). The model is a
Poisson regression that uses August–October averaged
values of the Southern Oscillation index (SOI) as an
indication of ENSO together with May–June averaged
values of an index for NAO to predict the probability of
hurricanes from Texas to South Carolina. The impor-
tance of ENSO on U.S. hurricane activity is elucidated
in Bove et al. (1998) and the importance of NAO is
suggested in Liu and Fearn (2000) and Elsner et al.
(2000b). Poisson regression has been successfully ap-
plied in modeling tropical cyclone activity over the At-
lantic basin (Elsner and Schmertmann 1993) and else-
where (McDonnell and Holbrook 2004). The model in-
dicates that southeastern U.S. hurricanes are more
likely during La Niña conditions when NAO is weak in
comparison to climatology (Jagger et al. 2001; Elsner
and Bossak 2004). ENSO is also used as a predictor in
a seasonal prediction model of tropical cyclone activity
along the southern China coast (Liu and Chan 2003).

Saunders and Lea (2005) are the first to offer a sta-
tistical model of total U.S. landfalling activity. They
show that hurricane wind energy along the coast is pre-
dictable from 1 August using tropospheric height-
averaged wind anomalies over the North Atlantic,
North America, and eastern Pacific during July. They
use ordinary least squares regression to regress nor-
mally transformed accumulated cyclone energy onto
the wind anomalies. It is worth noting that although
their wind anomaly index is different from what was
used by Lehmiller et al. (1997), it captures similar in-
formation related to the position and strength of the
Bermuda high pressure (as does NAO). In fact, Saun-
ders and Lea (2005, manuscript submitted to Nature)
verify that the highest likelihood of southeast U.S. hur-
ricane landfall occurs with high values of July-averaged
sea level pressures over Cape Hatteras.

The Colorado State University Tropical Meteorology
Team issues forecasts of landfall probabilities along
with their traditional forecasts of overall activity [see
Gray et al. (1992) for a description of a model that
predicts overall Atlantic hurricane activity]. Although
not published in the peer-reviewed literature, their
methodology for predicting U.S. landfall activity is
readily accessible and uses a prediction of net tropical
cyclone activity together with a measure of North At-
lantic sea surface temperature (SST) anomalies as pre-
dictors. Net tropical cyclone activity (NTC) is a com-
bined measure of 6 indices of hurricane activity each
expressed as a percentage difference from the long-
term average. SST anomalies represent those of the
Atlantic multidecadal oscillation (AMO) for July.
AMO is characterized by fluctuations in SSTs over the
North Atlantic Ocean (Goldenberg et al. 2001) deter-
mined to some extent by temperature and density dif-
ferences across the basin (thermohaline circulation).

The research cited above provides us with the back-
ground to select a set of predictors for forecasting U.S.
hurricane activity. Based on physical and statistical re-
lationships as well as data availability, we choose NAO,
ENSO, and AMO. We do not include the tropospheric
wind anomalies, as data are only available since 1948.
Next, we describe in more detail the specific predictors
used in our model.

c. Predictors selected

NAO index values are calculated from sea level pres-
sures at Gibraltar and at a station over southwest Ice-
land (Jones et al. 1997), and are obtained from the
Climatic Research Unit. The values used in this study
are an average over the pre- and early-hurricane season
months of May and June and are available back to 1851.
Units are in standard deviations. These months are cho-
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sen as a compromise between signal strength and tim-
ing relative to the hurricane season. The signal-to-noise
ratio in NAO is largest during the boreal winter and
spring (see Elsner et al. 2001), whereas the Atlantic
hurricane season begins in June.

SOI values are used as an indicator of ENSO. Al-
though noisier than equatorial Pacific SSTs, values are
available back to 1866. SOI is defined as the normalized
sea level pressure difference between Tahiti and Dar-
win, Australia. SOI is strongly anticorrelated with
equatorial SSTs so that an El Niño warming event is
associated with a negative SOI. Units are standard de-
viations. Although the relationship between ENSO and
hurricane activity is strongest during the hurricane sea-
son, we use a May–June average of SOI values as our
predictor. The monthly SOI values are obtained from
the Climatic Research Unit where they are calculated
based on a method given in Ropelewski and Jones
(1987). Details on sources of the early pressure data are
available in Allan et al. (1991) and Können et al.
(1998).

AMO values are based on a blend of model values
and interpolated observations, which are used to com-
pute Atlantic SST anomalies north of the equator (En-
field et al. 2001). As with NAO and SOI, we use a

May–June average of AMO anomalies as our predictor.
The anomalies are computed by month using the cli-
matological time period 1951–2000 and are available
back to 1871. Units are in degrees Celsius. Values of
AMO are obtained online from the NOAA–CIRES
(Cooperative Institute for Research in Environmental
Sciences) Climate Diagnostics Center (CDC).

It is possible to include other predictors. However,
data on the QBO, Sahel rainfall, or tropospheric wind
anomalies, for example, are limited to the past 60 yr or
so. As such, the model would need to infer approxi-
mately 60% of the values for each additional predictor
chosen. As explained below, one of the advantages of
the approach taken here is that it can naturally handle
these missing values. Practically, however, this adds a
severe computational burden for the necessary cross-
validation exercise, so here we limit the number of pre-
dictors to three and choose ones that have the fewest
missing values.

Figure 1 shows the time series of the three predictors.
The sampling interval is 1 yr. Each predictor displays high
frequency (year to year) variations. Lower-frequency
changes are most pronounced in AMO. Note that only
NAO is available back to 1851. Pairwise correlations
between the predictors (computed over years without

FIG. 1. Time series of the annual predictors and predictand values used in the 1 July forecast
models of U.S. hurricane activity over the period 1851–2004. The predictors include the
May–June averaged value of (a) NAO, (b) SOI, and (c) AMO. (d) Time series of annual U.S.
hurricane counts from 1 July. A U.S. hurricane count is the number of landfalling hurricanes.
There are 30 yr without a U.S. hurricane from July to November, 53 yr with exactly one, 32
yr with exactly two, 27 yr with exactly three, 7 yr with exactly four, 2 yr with exactly five, and
3 yr with exactly six.
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missing data) are not large. The highest positive corre-
lation (�0.06) occurs between NAO and SOI. The larg-
est negative correlation (�0.20) occurs between NAO
and AMO, indicating that warm Atlantic SSTs tend to
occur with a positive phase of NAO. Since the approxi-
mate standard error on the correlation is N�1/2, this
correlation is marginally significant but captures only
4% of the variance. The present work makes no at-
tempt to model the level of uncertainty in these predic-
tor values, although a specification in the model is made
for the possibility of missing data.

d. Partial season hurricane counts

Since the predictors require data through the month
of June, our hurricane count predictand excludes hur-
ricanes making landfall before 1 July. The NOAA
chronological list of U.S. hurricanes includes a total of
274 storms over the period 1851–2004. Of these, 1 oc-
curred in May and 19 occurred in June. The 20 (7%)
hurricanes striking the United States before July are
eliminated in building the 1 July forecast model. The
partial season counts are shown as a time series in Fig.
1. The partial hurricane season excludes the months of
May and June. There is no significant trend in the
counts although somewhat fewer hurricanes are noted
during the most recent decades. Florida in particular
has seen a significant decline in hurricanes since the
middle of the twentieth century (Elsner et al. 2004). In
contrast, the 2004 season featured six U.S. hurricanes
after 1 July. This occurred two other times, in 1916 and
in 1985. Next, we discuss the general strategy for mod-
eling annual hurricane counts.

3. A model for annual hurricane counts

a. General specification

The canonical model for hurricane count data is the
Poisson regression (Elsner and Schmertmann 1993;
Solow and Moore 2000; Elsner et al. 2001; Jagger et al.
2002; Elsner 2003; McDonnell and Holbrook 2004). It is
based on the Poisson distribution, which is a discrete
distribution defined on the nonnegative integers. It is
derived from the distribution of wait times between
successive events. For our purpose, the Poisson regres-
sion model is used to model a set of partial season U.S.
hurricane counts hi ∈ 0, 1, 2, . . . , � � Z� on the nonneg-
ative integers for a set of observed years i � 1, . . . , N.

Additionally, we observe a row vector of predictor
variables x�i with dimensionality (1 � J). Thus the Pois-
son regression is

hi � Poisson��i	

�i � exp��0 � x�i�	
, �1	

where 
i is the hurricane rate for year i, �0 is the inter-
cept, and � is the vector of predictor coefficients. The
symbol � refers to a stochastic relationship and indi-
cates that the variable on the left-hand side is a sample
from a distribution specified on the right-hand side.
The equal sign indicates a logical relationship with the
variable on the left-hand side algebraically related to
variables on the right-hand side.

Values for the intercept (�0) and coefficients (�) de-
fine the specific model and are estimated using a Bayes-
ian approach. In short, we assume that the parameters
(intercept and coefficients) have a distribution and that
inference is made by computing the posterior probabil-
ity density of the parameters conditioned on the ob-
served data. Alternatively, in the frequentist (or classi-
cal) approach, we assume that the parameters are fixed
but unknown, and we find that the values for the pa-
rameters were most likely to have generated the ob-
served data by maximizing the likelihood. The Bayes-
ian approach combines the most frequent likelihood
with our prior belief f(�) using Bayes’s rule, so that for
the Poisson regression we are interested in

f��|h	 � f�h|�	f��	. �2	

The distribution f(�|h) is the posterior density and is
the probability density of �, which is conditional on the
observed hurricane counts. The posterior density sum-
marizes what we believe about the parameter values
after considering the observed counts. For example,
sample averages taken from the distribution approxi-
mate the posterior expectation of the parameter value.
Importantly, the posterior density allows us to make
probability statements, including those about whether
a particular parameter value differs from 0. In the
present context, the posterior density represents the
histogram of the probability of observing h hurricanes
in a given year. In general the posterior density f(�|h)
has no analytical solution, so MCMC sampling meth-
ods are used to simulate it (Geman and Geman 1984;
Gelfand and Smith 1990). Importantly, the level of pre-
cision on the posterior density can be made as high as
desired by increasing the number of samples.

b. Additional specifications

While the above specification mixing the Poisson dis-
tribution with the normal distribution forms the back-
bone of our prediction models, additional specifications
are needed. As mentioned, although hurricane counts
are available back to 1851, those earlier records are less
precise. Therefore, we include an indicator variable
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(IND) that is given a value of 1 for the years 1851–98
and a value of 0 for the years 1899–2004. The coefficient
associated with this term is the logarithm of the prob-
ability, p, that a hurricane is observed given that it oc-
curred. If one assumes that the actual hurricane rate is
independent of the observation process, and that this
rate is Poisson with rate 
, then conditioned on p and 
,
the observations form a Poisson process with rate 
 p.
In effect, the models allow for the possibility that a
hurricane occurred but was not recorded. We discuss
the influence that this term has on the other predictors
in section 6.

A Bayesian approach does not require that values for
the predictors start with the same year nor is it neces-
sary that the dataset be complete. In our case, values
for NAO start with 1851, but values for SOI and AMO
start somewhat later. We let the Bayesian approach
sample values for years in which predictor values are
missing. This is done by specifying a distribution for the
predictors that have missing data. Here we use the nor-
mal distribution centered on 0 with a precision of 1 for
SOI and 20 for AMO1. These additional specifications
are included in the model below (note that since there
are no missing values for NAO, there is no need to
specify a distribution):

SOIi � Normal�0, 1	

AMOi � Normal�0, 20	

hi � Poisson��i	

�i � exp��0 � �1NAOI � �2SOIi � �3AMOi

� �4IND	. �3	

The cost associated with a Bayesian approach is the
requirement to formally specify our prior beliefs. Here
we take the standard route and assume noninformative
priors, which as the name implies, provide little infor-
mation about the value of the parameters of interest.
To finish our model specification, we assume indepen-
dent normally distributed priors for each component of
the � vector, where the mean of the normal distribution
is 0 and the variance is 106 [�j � Normal(0, 106)]. This
is a flat distribution (very large variance) that contrib-
utes little information.

The leading contender model for anticipating U.S.
hurricane counts is climatology. We are interested
therefore in comparing the skill of our models against
the skill available from a climatology model. To make

honest comparisons, we keep the specifications identi-
cal with the exception that the climatology model in-
volves no predictors. To do this we replace the equation
specifying 
i [see Eq. (3)] with 
i � exp(�0 � �4IND).
The climatology model includes the same 154-yr
dataset of hurricane counts as well as the uncertainty
associated with the earlier records. The climatology
model is our baseline and thus, skill differences be-
tween our models and climatology are attributable to
the predictors.

4. Convergence of model samples

Samples of model parameters and data are generated
using the software WinBUGS (Windows version of
Bayesian inference using Gibbs Sampling) developed at
the Medical Research Council in the United Kingdom
(Gilks et al. 1994; Spiegelhalter et al. 1996). WinBUGS
chooses an appropriate MCMC sampling algorithm
based on the model structure. The WinBUGS code for
our U.S. hurricane forecast model is given in the ap-
pendix. Prediction is achieved by setting the hurricane
count for the year of interest to the missing data flag
[not available (NA)]. In this way, counts for the year
are sampled conditional on the model coefficients and
the available data.

We check for mixing and convergence of the models
by examining successive samples of the parameters. Al-
though convergence diagnostics are a good idea in gen-
eral, they are particularly important prior to cross vali-
dation to establish a minimum number of samples to
discard as burn-in. Typically a large number will all but
guarantee convergence, but since it is necessary to re-
run the sampler N times (where N is the number of
years) for hold-one-out cross validation, a small num-
ber is preferred.

Figure 2 shows 3000 samples of �1 from the full pre-
dictor model using two different sets of initial condi-
tions. Samples from the posterior distribution of �1 in-
dicate relatively good mixing and quick settling as both
sets of initial conditions result in samples that fluctuate
around a fixed median value. Autocorrelation values
for lags greater than three samples are generally less
than 0.07 (in absolute value), indicating that the
samples mix efficiently starting from either set of initial
conditions. Posterior densities computed using a kernel
smoother are nearly identical for the two starting con-
ditions. The average value of �1 over the last 1000
samples is �0.217 using the first set of initial conditions
and is �0.210 using the second set. Similar convergence
and mixing occurs with the other model parameters.

1 The precision is the inverse of the variance, here estimated
from the available data.
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Based on these diagnostics, we choose to discard the
first 2000 samples in each of our model runs.

5. Predictor importance

We examine the importance of the predictors by gen-
erating posterior samples for the respective coefficients
specified in Eq. (3). Based on the convergence diagnos-
tics results of the previous section, we generate 12K
samples and discard the first 2 � 103 as burn-in. The
coefficients �0, �1, �2, and �3 are stochastically specified
as having a normal distribution with a mean of 0. The
value of p is specified using a uniform distribution be-
tween 0.8 and 0.95. Values of the posterior samples indi-
cate the relative influence that the associated predictor
has in forecasting seasonal U.S. hurricane counts. Den-
sity plots of the 10 � 103 samples are shown in Fig. 3.

The ratio of the areas under the curve on one side of
0 to the total provides an estimate of the significance of
the associated predictor to the model. Sample values of

the coefficient �0 are greater than 0 with a mean of
0.445. We also note that the �1 sample values tend to be
less than 0 with a posterior mean of �0.214. This im-
plies that when NAO is weak, the probability of U.S.
hurricanes increases. This is consistent with our earlier
results (Elsner 2003; Jagger et al. 2001). Out of the 10K
samples, only 4 (0.04%) were greater than 0, which can
be interpreted as a p value of 0.0004, indicating little
support for the null hypothesis that the NAO term is
not important. The 95% credible interval on the value
of �1 is (�0.342, �0.085). In contrast, �2 and �3 sample
values lie on both sides of the zero line. This indicates
that SOI and AMO predictors tend to be less important
in the model. The posterior mean of the �2 samples is
0.063, indicating that when SOI is positive (La Niña
conditions), the probability of U.S. hurricanes in-
creases. However, the 95% credible interval for this
coefficient (�0.056, �0.184) includes 0. Nearly 15% of
the �2 samples are less than 0. The posterior mean of
the �3 samples is �0.226, indicating that when AMO is

FIG. 2. Diagnostic plots of the �1 parameter for the prediction model. Successive sample values starting with (a)
�0 � �1 � �2 � �3 � �4 � 0 and (b) �0 � �1 � �2 � �3 � �4 � 1. Three thousand samples are generated from
each set of initial conditions. (c), (d) Corresponding autocorrelation functions of the sample history. (e), (f)
Corresponding kernel densities of the posterior distributions of �1 for the two sets of initial conditions for samples
1–3000.
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positive, the probability of U.S. hurricanes increases
(Goldenberg et al. 2001). Like the SOI coefficient, the
95% credible interval on the AMO coefficient (�0.313,
�0.773) includes 0. Approximately 21% of the �3

samples are less than 0.
The �4 coefficient is used to express our belief about

how accurate the earlier records are relative to the later
records. The value of �4 is deterministically specified as
the logarithm of p, where p is the probability that the
earlier records are known perfectly. The higher the
value of p, the stronger our belief is that the earlier
records are as reliable as the later records and the less
influence this term has on the prediction. Experimen-
tation shows that SOI and AMO predictors are most
affected by the inclusion of the earlier records com-
pared with the NAO predictor. The relative change in
the posterior mean value of the �1 coefficient is only
�8.6% if we exclude the earlier records (by setting p to
0), as compared to a � 50.6% change in the mean value
of �2 if the earlier records are excluded. Most striking is
the mean value of �3, which changes from �0.226 to
�0.181 upon exclusion of the earlier records. The re-
sults presented in this section suggest that we perform a
cross-validated hindcast comparison among four com-

peting modeling strategies including climatology, the
full predictor model (all three predictors), the reduced
predictor model (NAO and SOI), and the NAO-only
model.

6. Cross validation

To assess how well each of the four modeling strat-
egies can be expected to perform in actual forecast situ-
ations, we perform hold-one-out cross validations
(Michaelsen 1987; Elsner and Schmertmann 1994).
Cross validation results in a relatively accurate measure
of a prediction scheme’s ability to produce a useful pre-
diction rule from historical data. In short, the method
works by successively omitting an observation from the
modeling procedure and then measuring the error that
results from using the model to predict the left out
observation. The idea is to remove the information
about the omitted observation that would be unavail-
able in an actual forecast situation. Since we assume
that one hurricane season is largely independent of the
next, we can remove one year at a time rather than
multiple years (block removal).

Although necessary for getting an honest measure of

FIG. 3. Kernel density of the posterior distribution of (a) �0, (b) �1, (c) �2, and (d) �3. The distributions are
based on 10 � 103 samples after the first 2 � 103 samples are removed.
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forecast skill, the procedure of cross validation poses
special challenges in the context of Bayesian modeling.
First, the model specification requires conditional sam-
pling to generate the posterior predictive distributions.
As such, it is necessary to assure that solutions starting
from different initial conditions adequately converge.
Second, there is no analytical solution to the cross vali-
dation. This requires us to rerun the sampler N � 154
times once for each year withheld. We note that cross
validation with Bayesian models can be done using a
procedure called “importance sampling.” Here we take
advantage of fast computation that allows us the direct
calculation of posterior predictive densities.

To automate the procedure in WinBUGS, we make
154 copies of our datasets. Within each copy of the
hurricane dataset (predictand), we replace an actual
count with the missing value code (NA). Furthermore,
it is necessary to duplicate the predictor values for
which a distribution is specified. Thus we obtain 154
copies of the 154 values (including the NAs) of the SOI

and AMO datasets. The WinBUGS code shown in the
appendix is modified by including an outer cross-
validation loop. This requires an additional index on
the predictors and the predictand. Furthermore, it is
necessary to add an index on the coefficients and on the
probability that the hurricane is observed.

7. Results

A hold-one-out cross validation as described above is
performed on four modeling strategies including clima-
tology (no predictors), full model (NAO, SOI, and
AMO as predictors), reduced model (NAO and SOI as
predictors), and single predictor (NAO only). Model
skill is assessed using the posterior expected error [also
called the mean-squared error (MSE)] given as the
squared difference between the posterior predicted
probability and the observation, where the observation
is either a 0 or 1 for each hurricane count:

FIG. 4. Cross-validated MSE for years with (a) h � 0, (b) h � 1, (c) h � 2, (d) h � 3, (e) h � 4, and (f) h � 5
hurricanes. Errors are computed for four modeling strategies including climatology (climate), a full predictor
model (NAO � SOI � AMO), a reduced predictor model (NAO � SOI), and a model with NAO as the only
predictor (NAO).
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MSE �
1
n �

i�1

n

�
k�0

�

pi�k	k � oi�k	�2 with n � 154.

�4	

The posterior predicted probability is based on 10 �
103 samples. For each year (i � 1, . . . , 154) and each
hurricane count (k � 1, . . . , 10), there is a predicted
probability [pi(k)] and an observed count [oi(k)]. The
squared differences are summed over all hurricane
counts (up to 10) and over all forecast years. Using the
MSE is useful for linear models. Linear nested models
in the Bayesian context choosing the model that mini-
mizes the squared prediction error is equivalent to
choosing the median probability model from all pos-
sible models (Barbieri and Berger 2002).

MSE over the 154 yr is 3.493 for climatology, 3.481
for the full model, 3.439 for the reduced model, and
3.410 for the NAO-only model. The smaller the error,
the better is the forecast. MSE equals the model error
plus the statistical error. The statistical error is equal to
the Poisson rate. For example, if the rate is 2 h yr�1

(hurricanes per year), then the minimum MSE is

2 (h yr�1)2. Thus, with a Poisson model, the minimum
MSE is not 0. With a Poisson distribution, the mean is
equal to the variance so that the minimum MSE will
only approach 0 if the mean approaches 0. This is dif-
ferent from the normal distribution where the mean
and variance are not related. It is also worth noting that
although forecasts of the mean hurricane count fluctu-
ate around 2, there can be a sizeable change in the
forecast probability of a large number of hurricane
landfalls with a small change in the forecast mean;
changes in the tails of these probability distributions are
of practical importance to catastrophe reinsurers and
risk managers.

The climatology model will perform well on years in
which the count is close to the mean rate. Therefore, it
is interesting to compute the MSE for years grouped by
the observation count. For example, we can compute
MSE for years in which no hurricanes were observed.
In this case, the outer summation in Eq. (4) is over the
30 yr of no U.S. hurricanes. Results are shown in Fig. 4.
The number of years is shown in the upper-right corner
of each panel. The predictor models capture the varia-
tion in annual counts better than does the climatology

FIG. 5. Same as in Fig. 4, but for median squared error.
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model. Of the three modeling strategies that include
predictors, the NAO-only strategy appears to have a
slight edge although the NAO � SOI strategy is some-
what better at predicting years with a large number of
hurricanes. The median-squared prediction errors are
shown in Fig. 5. The plots are similar, but we note that
the models outperform climatology for years in which
only one hurricane is observed.

In general, the model strategies show skill above cli-
matology for years in which there are no hurricanes or

more than two hurricanes. Table 1 shows the mean and
median errors for two groups of years where group 1
corresponds to years in which there are 1 or 2 hurri-
canes and group 2 to years in which there are 0 or 3�
hurricanes. The median error for the years of group 1 is
1.840 (1.863) for the NAO � SOI (climatology) model.
This compares with an error for the years of group 2 as
3.689 (3.997) for the NAO � SOI (climatology) model.

Since climatology is the benchmark for this kind of
seasonal forecast, it is interesting to examine hindcasts

FIG. 6. Posterior predictions showing the probability of observing h hurricanes when the observed hurricane count is zero. The
probabilities are based on the NAO � SOI model; (a)–(f) six best and (g)–(l) six worst predictions (in order) relative to climatology.

TABLE 1. Mean- and median-squared errors for two groups of years. The first group is years in which there were one or two U.S.
hurricanes, and the second group had 0 or more than two.

Climate NAO � SOI � AMO NAO � SOI NAO

Group Mean Median Mean Median Mean Median Mean Median

h � 1 or 2 1.987 1.863 2.096 1.886 2.072 1.840 2.065 1.859
h � 0 or 3� 5.348 3.997 5.186 3.870 5.122 3.689 5.067 3.625
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made in years in which the predictor models were bet-
ter and worse than climatology. The rationale for doing
this is to understand the limitations of the model. The
first step is the identification of years in which the
model does poorly. Are there any systematic failures
(e.g., all presatellite-era years)? The second step is to
determine how it failed. Did the model over- or under-
predict? The third step is to try to determine why it
performed poorly and what might need to be added to
improve performance. In addition, by including best
years with worst years, we can directly compare differ-
ences.

For each of the 154 yr, we compute the difference in
MSE between climatology and the NAO � SOI model.
We then rank the errors from largest to smallest and
choose the six best and six worst years grouped by the
observed count. Figure 6 shows the hindcasts for years
when no hurricanes occurred. The top six panels are the
best relative to climatology and the bottom six are the
worst. The black bars indicate the observed number for

that year and the bar heights are the hindcast probabil-
ity. The best hindcast relative to climatology was made
in the 1914 season. Other good years are 1922, 1972,
and 1994. The worst hindcast relative to climatology for
years in which no hurricanes were observed was made
in the 1927 season. The most recent bad year was 1981
when the predictor model indicated a somewhat active
season.

Figure 7 shows the hindcasts for years with one U.S.
hurricane. The best years are those in which the model
indicated an inactive season while the worst years are
those in which the model indicated an active season.
Note, however, that even for years in which the model
underperforms climatology, the hindcast probability of
observing exactly one hurricane is relatively high. This
is more pronounced for years in which two hurricanes
hit the United States (Fig. 8). Here we see that the
mode of the hindcast distributions for the bottom six
performing years relative to climatology corresponds to
what actually occurred. The reason the model scores

FIG. 7. Same as in Fig. 6, but when the observed count is one.
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better than climatology in years like 1996 is that clima-
tology assigns a higher probability to three or more
hurricanes. Likewise, the reason climatology outper-
forms the predictor model in years like 1995 when the
observed count matches the hindcast mode is that cli-
matology assigns a lower probability to three or more
hurricanes.

Figure 9 shows the hindcasts for years with three U.S.
hurricanes. The best years (like 1998) are those in
which the model predicts an active season and the worst
years (like 1999) are those in which the model predicts
an inactive year. Similar results are seen in years in
which there are four or more U.S. hurricanes (Fig. 10).
Since there are only 12 yr in this grouping, this figure
shows all cases. Although the hindcast for 2004 using
the NAO � SOI model is slightly worse than climatol-
ogy, we note that the NAO-only model hindcast is bet-
ter than climatology.

We find no systematic bias (clustering) for years in
which climatology outperforms the model or for years

in which the model outperforms climatology. We note
that during the modern era (since 1950), 1951 and 1981
were years in which the model seriously overpredicted
U.S. hurricane activity and 1979 and 1999 were years in
which the model seriously underpredicted activity. We
speculate that part of the reason for the model’s poor
performance during these years is connected to the
presence of baroclinically initiated (BI) hurricanes.
Since BI hurricanes are less likely to make landfall in
the United States (Elsner et al. 1996), their occurrence
tends to reduce the conditional probability of a landfall
given a hurricane. We find two BI hurricanes in 1951
(Able and Jig) and one in 1981 (Emily), but none in
1979 and 1999. Clearly, additional studying in under-
standing why the model fails to accurately predict hur-
ricane activity for some years is needed.

8. Summary and conclusions

Seasonal landfall forecasting is relatively new. More
work is needed to understand the physical mechanisms

FIG. 8. Same as in Fig. 6, but when the observed count is two.
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responsible for the frequency of particular storm tracks.
The topic is relevant to business, government, and so-
ciety. In fact, risk-modeling companies like Accurate
Environmental Forecasting are beginning to offer prod-
ucts that make use of the science and technology of
landfall forecasting. Statistical models of infrequent
events must rely on the longest available data records.
Here we develop prediction models for U.S. hurricane
activity that take advantage of the historical record ex-
tending back to 1851. The models use a log-linear speci-
fication for the annual hurricane rate and they include
three predictors previously identified as important in
modulating hurricane activity. Predictors include May–
June averaged values representing NAO, SOI, and
AMO.

Models are Bayesian and implemented using the
freely available WinBUGS software. Noninformative
priors are specified for the model coefficients, missing
predictor values, and hurricane count precision. Poste-
rior samples of the model coefficients are examined for

convergence. We generate 12 � 103 samples for each
model parameter and discard the first 2 � 103 as burn-
in. Predictions are achieved by setting the hurricane
count for the year being hindcast to the missing data
flag (NA) and allowing the sampler to generate samples
of hurricane counts for the hindcast year that are con-
ditional on the model parameters. A hold-one-out
cross-validation exercise is used to examine the skill of
the modeling strategies against climatology.

We examine three modeling strategies: a full model
that includes all three predictors (NAO, SOI, and
AMO), a reduced model that includes NAO and SOI,
and a single-predictor model that includes only NAO.
We compute the MSE for forecasts that could be issued
by 1 July. The models provide the predicted probability
of observing h hurricanes during the balance of the
hurricane season. Results show that all three models
capture the interannual variation in hurricane counts
better than does climatology. Of the three, the NAO �
SOI model and the NAO-only model perform the best.

FIG. 9. Same as in Fig. 6, but when the observed count is three.
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The importance of NAO in portending U.S. hurricane
activity is further highlighted by considering early-
nineteenth-century activity. The May–June averaged
NAO values for 1837 and 1842 were �2.0 and �2.6
standard deviations respectively, which correspond to
the lower 97th and 98th percentiles of the 1851–2004
NAO values. Based on hurricane records collated in
the Historical Hurricane Information Tool (Bossak and
Elsner 2004), we estimate six and four U.S. hurricanes
during these 2 yr, respectively. Although there is con-
siderable uncertainty as to the precise number of hur-
ricanes and to the value of NAO, it is likely that activity
during these years was above normal when NAO was
negative. We use the model to retrodict U.S. hurricane
activity for these 2 yr and find that the relative risk of
observing five or more hurricanes (three or more hur-
ricanes) during 1837 (1842) is 3 (2) times more likely
with NAO at the observed value compared to climatol-
ogy. The preliminary May–June averaged NAO value
for 2005 is �0.565 standard deviations, indicating a

13% increase over climatology of observing three or
more U.S. hurricanes this year, assuming the model is
correct.

The physical relationship between the springtime
NAO and summer/fall hurricanes is the subject of on-
going research. We speculate that it is related to how
NAO sets up the dry season summer climate over the
continents of Europe and North America. A weak
NAO during May–June is associated with weaker mid-
latitude weather systems (and thus less rainfall) over
Europe during spring. This creates a feedback with a
tendency for greater summer/fall midtropospheric ridg-
ing and an enhancement of the dry conditions. Ridging
over the eastern and western sides of the North Atlan-
tic basin during the hurricane season tends to keep the
midtropospheric trough, responsible for hurricane re-
curvature, farther north.

Forecast models of landfall activity can be improved
by including spatial information. For example, a model
that predicts activity regionally (e.g., Gulf Coast would

FIG. 10. Same as in Fig. 6, but when the observed count is four or more.
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be able to exploit the spatial correlation structure aris-
ing from the space–time nature of hurricane tracks. A
step in this direction is taken in Jagger et al. (2002). The
model is a statistical space–time specification based on
a truncated Poisson count process and includes neigh-
borhood response values (hurricane counts in adjacent
grid boxes), local offsets, and climate variables as pre-
dictors. The climate variables include a factor for the
state of ENSO, rainfall over Dakar, Senegal, and sea
level pressures (SLPs) over the Azores and Iceland.
The SLP variables indicate the state of NAO. Although
the Jagger model has yet to be implemented operation-
ally, our aim is to have it probabilistically predict the
likely near-coastal paths of hurricanes for an entire sea-
son. Toward this end, it is possible to reformulate the
model using a Bayesian approach.
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APPENDIX

Forecast Model and Data

Use the forecast model below together with the ob-
served data and the initial values to predict the prob-
ability of coastal hurricanes during the upcoming sea-
son. Download the WinBUGS software. Cut and paste
the model, data, and initial conditions into a WinBUGS
document (e.g., from a pdf). Add in the current values
for the predictors in the data statement. Set the last
hurricane count to NA. Use the specification tool,
sample monitor tool, and update tool to generate the
posterior predictive probabilities for h (the number of
coastal hurricanes

model; {
for(i in 1: N) {
AMO[i] � dnorm(0, 20)
SOI[i] � dnorm(0, 1)
h[i] � dpois (lambda [i])
log(lambda [i]) �� beta0 � beta1*NAO[i] �

beta2*SOI[i] � beta3*AMO[i] � beta4*IND[i]
}
beta0 � dnorm(0.0, 1.0E-6)
beta1 � dnorm(0.0, 1.0E-6)
beta2 � dnorm(0.0, 1.0E-6)
beta3 � dnorm(0.0, 1.0E-6)
beta4 �� log(p)
p � dunif(lower, upper)
}

# Initial conditions
list(beta0 � 0, beta1 � 0, beta2 � 0, beta3 � 0, p �

0.9)
data;
list(N � 154, lower�0.80, upper�0.95,
# Hurricane counts by year, the NA is for the season

to be forecast. Counts are for the period July–
November.

H�c(1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 3, 0, 0, 0, 2, 0, 1, 0, 4, 2,
3, 0, 2, 1, 1, 2, 2, 2, 3, 4, 2, 3, 1, 0, 1, 3, 3, 3, 1, 0, 1,
0, 5, 2, 1, 2, 1, 3, 3, 1, 1, 0, 2, 2, 0, 3, 0, 0, 3, 2, 2, 2,
1, 0, 3, 3, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 0, 2, 1, 0, 0, 2, 5,
0, 2, 1, 0, 2, 1, 2, 2, 2, 0, 3, 2, 1, 3, 3, 3, 3, 0, 1, 3, 3,
3, 1, 0, 0, 1, 2, 1, 0, 1, 4, 1, 1, 1, 1, 2, 1, 3, 0, 0, 1, 1,
1, 1, 0, 2, 1, 0, 0, 1, 1, 5, 1, 1, 1, 3, 0, 1, 1, 1, 0, 2, 1,
0, 3, 3, 0, 0, 1, 2, 6, NA),

# NAO index values averaged over the preseason
months of May–June.

NAOI�c(�1.575, 0.170, �1.040, �0.010, �0.750,
0.665, �0.250, 0.145, �0.345, �1.915, �1.515,
0.215, �1.040, �0.035, 0.805, �0.860, �1.775,
1.725, �1.345, 1.055, �1.935, �0.160, �0.075,
�1.305, 1.175, 0.130, �1.025, �0.630, 0.065,
�0.665, 0.415, �0.660, �1.145, 0.165, 0.955,
�0.920, 0.250, �0.365, 0.750, 0.045, �2.760,
�0.520, �0.095, 0.700, 0.155, �0.580, �0.970,
�0.685, �0.640, �0.900, �0.250, �1.355, �1.330,
0.440, �1.505, �1.715, �0.330, 1.375, �1.135,
�1.285, 0.605, 0.360, 0.705, 1.380, �2.385, �1.875,
�0.390, 0.770, 1.605, �0.430, �1.120, 1.575, 0.440,
�1.320, �0.540, �1.490, �1.815, �2.395, 0.305,
0.735, �0.790, �1.070, �1.085, �0.540, �0.935,
�0.790, 1.400, 0.310, �1.150, �0.725, �0.150,
�0.640, 2.040, �1.180, �0.235, �0.070, �0.500,
�0.750, �1.450, �0.235, �1.635, �0.460, �1.855,
�0.925, 0.075, 2.900, �0.820, �0.170, �0.355,
�0.170, 0.595, 0.655, 0.070, 0.330, 0.395, 1.165,
0.750, �0.275, �0.700, 0.880, �0.970, 1.155, 0.600,
�0.075, �1.120, 1.480, �1.255, 0.255, 0.725,
�1.230, �0.760, �0.380, �0.015, �1.005, �1.605,
0.435, �0.695, �1.995, 0.315, �0.385, �0.175,
�0.470, �1.215, 0.780, �1.860, �0.035, �2.700,
�1.055, 1.210, 0.600, �0.710, 0.425, 0.155, �0.525,
�0.565),

# SOI values averaged over the preseason months of
May–June.

SOID�c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, 0.38, 0.06, �0.94,
�0.02, �0.28, �0.78, �0.95, 2.33, 1.43, 1.24, 1.26,
�0.75, �1.5, �2.09, 1.01, �0.05, 2.48, 2.48, 0.46,
0.46, �0.2, �1.11, 0.52, �0.37, 0.58, 0.86, 0.59,
�0.12, �1.33, 1.4, �1.84, �1.4, �0.76, �0.23,
�1.78, �1.43, 1.2, 0.32, 1.87, 0.43, �1.71, �0.54,
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�1.25, �1.01, �1.98, 0.52, �1.07, �0.44, �0.24,
�1.31, �2.14, �0.43, 2.47, �0.09, �1.32, �0.3,
�0.99, 1.1, 0.41, 1.01, �0.19, 0.45, �0.07, �1.41,
0.87, 0.68, 1.61, 0.36, �1.06, �0.44, �0.16, 0.72,
�0.69, �0.94, 0.11, 1.25, 0.33, �0.05, 0.87, �0.37,
�0.2, �2.22, 0.26, �0.53, �1.59, 0.04, 0.16, �2.66,
�0.21, �0.92, 0.25, �1.36, �1.62, 0.61, �0.2, 0,
1.14, 0.27, �0.64, 2.29, �0.56, �0.59, 0.44, �0.05,
0.56, 0.71, 0.32, �0.38, 0.01, �1.62, 1.74, 0.27, 0.97,
1.22, �0.21, �0.05, 1.15, 1.49, �0.15, 0.05, �0.87,
�0.3, �0.08, 0.5, 0.84, �1.67, 0.69, 0.47, 0.44,
�1.35, �0.24, �1.5, �1.32, �0.08, 0.76, �0.57,
�0.84, �1.11, 1.94, �0.68),

#AMO values averaged over the preseason months
of May–June.

AMO�c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, �0.117, �0.211, �0.333, �0.229, �0.272,
�0.243, �0.148, 0.191, �0.263, �0.239, �0.168,
�0.381, �0.512, �0.338, �0.296, 0.067, 0.104,
�0.254, �0.167, �0.526, �0.096, �0.43, 0.013,
�0.438, �0.297, �0.131, �0.098, �0.046, �0.063,
�0.194, �0.155, �0.645, �0.603, �0.374, �0.214,
�0.165, �0.509, �0.171, �0.442, �0.468, �0.289,
�0.427, �0.519, �0.454, 0.046, �0.275, �0.401,
�0.542, �0.488, �0.52, �0.018, �0.551, �0.444,
�0.254, �0.286, 0.048, �0.03, �0.015, �0.219,
�0.029, 0.059, 0.007, 0.157, 0.141, �0.035, 0.136,
0.526, 0.113, 0.22, �0.022, �0.173, 0.021, �0.027,
0.261, 0.082, �0.266, �0.284, �0.097, 0.097, �0.06,
0.397, 0.315, 0.302, �0.026, 0.268, �0.111, 0.084,
0.14, �0.073, 0.287, 0.061, 0.035, �0.022, �0.091,
�0.22, �0.021, �0.17, �0.184, 0.121, �0.192,
�0.24, �0.283, �0.003, �0.45, �0.138, �0.143,
0.017, �0.245, 0.003, 0.108, 0.015, �0.219, 0.09,
�0.22, �0.004, �0.178, 0.396, 0.204, 0.342, 0.079,
�0.034, �0.122, �0.24, �0.125, 0.382, 0.072, 0.294,
0.577, 0.4, 0.213, 0.359, 0.074, 0.388, 0.253, 0.167),

# Indicator predictor for reliable (0) versus less reli-
able records (1)

IND�c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
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