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ABSTRACT

Advances in hurricane climate science allow forecasts of seasonal landfall activity to be made. The
authors begin with a review of the forecast methods available in the literature. They then reformulate the
methods using a Bayesian probabilistic approach. This allows a direct comparison to be made while focusing
on a single hindcast of the 2004 season over Florida. The models, including climatology, are estimated using
Gibbs sampling. Diagnostic checks verify convergence and efficient mixing of the samples from each of the
models. A below average sea level pressure gradient over the eastern North Atlantic Ocean during May and
June in combination with an above average tropospheric-averaged wind index associated, in part, with a
strengthening of the Bermuda high pressure during July resulted in an above average probability of at least
one Florida hurricane. The relatively high hindcast probabilities for 2004 were in marked contrast to the
most recent 50-yr empirical probabilities for Florida, but fell short in anticipating the unprecedented level
of activity that ensued. Similar results are obtained from hindcasts of total U.S. hurricane activity for 2004.

1. Introduction

Florida experienced an unprecedented number of
hurricanes during the 2004 season. Hurricane Charley
made landfall over southwestern Florida on 13 August
with a maximum (1-min average at 10 m) wind speed
estimated at 67 m s�1. Hurricane Frances made landfall
over southeastern Florida on 5 September with a maxi-
mum wind speed estimated at 46 m s�1. A mere 21 days
later, Hurricane Jeanne hit nearly the same location
with winds estimated as fast as 54 m s�1. Between
Frances and Jeanne, Hurricane Ivan made landfall over
the state of Alabama, with hurricane force winds ex-
tending over a significant portion of northwestern
Florida. Thus, within a span of 6 weeks, Florida was
impacted by four hurricanes with an estimated total
damage of around $40 billion (U.S. dollars).

Forecasts in anticipation of the 2004 Atlantic hurri-
cane season indicated above normal activity. By 1 June
2004 the Colorado State University (CSU) team led by
W. M. Gray predicted eight hurricanes and the Na-
tional Oceanic and Atmospheric Administration’s
(NOAA’s) Climate Prediction Center predicted a 50%

probability of an above normal hurricane season with
only a 10% chance of a below normal season. Earlier,
on 11 May 2004, the Benfield Hazard Research Center
was indicating a 61% chance of an above normal hur-
ricane season. Later, updated forecasts from these
groups portended an even greater level of activity. The
forecasts verified as the North Atlantic season saw nine
hurricanes with six of them becoming major (having
wind maxima in excess of 50 m s�1).

The success of seasonal hurricane forecasts has en-
couraged attempts at greater geographic specificity. In
particular, we are interested in forecasts of landfall ac-
tivity. For example, how many hurricanes are likely to
strike the United States in 2007? Skillful prediction of
landfalling hurricane activity would benefit society and
business through preparedness and insurance mecha-
nisms. Although research and risk modeling groups
have begun issuing hurricane landfall forecasts, there
remains little peer-reviewed literature on methods and
verification, which is in contrast to the extensive litera-
ture describing forecast algorithms of basin-wide activ-
ity (Gray et al. 1992, 1993, 1994; Elsner and Schmert-
mann 1993, 1994; Klotzbach and Gray 2003; Blake and
Gray 2004). The exceptions include the work of Leh-
miller et al. (1997), Elsner (2003), Elsner and Jagger
(2004), and Saunders and Lea (2005). Here we aim to
provide some coherence to the fledgling science and
technology of seasonal landfall forecasts. The purpose
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is twofold: 1) to compare the predictors used by the
current suite of operational landfall forecasters, and 2)
to continue our argument for a more probabilistic ap-
proach to the problem of seasonal hurricane prediction;
an argument first articulated in Elsner and Bossak
(2001) and refined in Elsner and Jagger (2004).

The present paper provides a comparison of hind-
casts for the 2004 hurricane season made from current
operational methods. By necessity the comparison is
limited. First, the comparison is for a single season only.
A comprehensive examination of the various methods
would include many seasons. Second, the comparison is
for Florida. Currently there are no operational seasonal
hurricane models specifically for Florida. Instead, in
this paper we compare the different forecast schemes
by reinterpreting them as forecasts for Florida activity
only. This might at first seem unfair. However, it can be
argued that if a scheme is successful at forecasting en-
tire coastal activity, then it is likely to be able to antic-
ipate Florida activity. Another way to understand this is
to consider the fact that over the period 1900–2002,
inclusive, 63 of the 170 (37%) hurricanes to impact the
United States did so in Florida. Third, we do not at-
tempt to duplicate the forecast schemes. Instead, we
choose a common probabilistic framework and recode
the various forecast methods accordingly. In this way
we provide a baseline for comparing what predictors
were important in portending the Florida season of
2004.

As a consequence of the above limitations, the re-
sults presented below cannot be interpreted to mean
one method is better than another at predicting Florida
hurricane activity. Rather, the results provide some
guidance toward improving the current suite of forecast
techniques by identifying which predictors were useful
in 2004. The results also argue for the utility of a Bayes-
ian approach to seasonal hurricane modeling. The pa-
per is organized as follows. In section 2 we provide a
brief description of the forecast methodologies cur-
rently available in the scientific literature. In section 3
we expand this view to include the work of the CSU
team and we categorize the methods according to type
and predictors used. Because Bayesian inference is not
standard practice in our discipline, in section 4 we de-
scribe the approach to predictive inference from hurri-
cane count data. In section 5 we reformulate the meth-
ods in terms of Bayesian models for Florida counts and
in section 6 we compare the hindcasts for the 2004
Florida hurricane season. Results show that a weaker
than normal sea level pressure gradient over the east-
ern North Atlantic Ocean during May and June and an
above normal tropospheric wind index during July—

both associated with the strength and position of the
Bermuda high pressure—indicated a higher than
normal chance of at least one Florida hurricane. Hind-
cast probabilities for 2004 are in bold contrast to the
most recent 56-yr historical probabilities. Similar re-
sults are obtained from hindcasts of total U.S. hurricane
activity.

2. Seasonal landfall forecast methods in the
literature

Only a few papers describing methods for seasonal
forecasts of landfalling hurricane activity exist in the
literature. Building on the work of Ballenzweig (1959)
in elucidating climate controls for hurricane steering
winds, Lehmiller et al. (1997) were the first to develop
a skillful statistical model for seasonal forecasts of land-
fall probability. Their work revealed a statistically sig-
nificant model for southeastern U.S. (Key Largo,
Florida, to 35°N) hurricane activity that provides a con-
ceptual advance in seasonal forecasts by focusing on
factors that are conducive to hurricane activity region-
ally. Their model is a discriminant analysis that includes
as predictors the previous autumnal rainfall within the
Sahel region of western Africa; the forward-extrap-
olated vertical shear magnitude between 30- and 50-mb
(1 mb � 1 hPa) tropospheric winds (quasi-biennial os-
cillation), the 700–200-mb vertical shear in the
Miami–West Palm Beach, Florida area, the July
monthly sea level pressure at Cape Hatteras, North
Carolina, and the July average monthly East Coast sea
level pressure. They note the highest likelihood of a
hurricane landfall occurs with relatively high July sea
level pressures over Cape Hatteras and high vertical
shears over south Florida. Skill for this model has been
demonstrated only in hindcasts.

Because regional hurricane probabilities are small, it
is important to use the longest available records for
statistical models. Toward this end, a regression model
for the southeastern United States that makes use of
longer records describing the El Niño–Southern Oscil-
lation (ENSO) and the North Atlantic Oscillation
(NAO), rather than the more temporally limited upper-
air sounding data, is designed in Elsner (2003). The
model is a Poisson regression that uses August–
October-averaged values of the Southern Oscillation
index (SOI) together with May–June-averaged values
of the NAO index to predict the probability of hurri-
canes from Texas through South Carolina. The impor-
tance of ENSO on U.S. hurricane activity is elucidated
in Bove et al. (1998) and the importance of the NAO is
first suggested in Liu and Fearn (2000) and Elsner et al.
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(2000). Poisson regression has been successfully applied
in modeling tropical cyclone activity over the Atlantic
basin (Elsner and Schmertmann 1993) and elsewhere
(McDonnell and Holbrook 2004). The model indicates
that southeast U.S. hurricanes are more likely during
La Niña conditions when the NAO is weak (Jagger et
al. 2001; Elsner and Bossak 2004). ENSO is also used as
a predictor in a seasonal prediction model of landfalling
tropical cyclone activity along the southern China coast
(Liu and Chan 2003).

Saunders and Lea (2005) offer a statistical model of
total U.S. landfalling activity. They show that hurricane
wind energy along the coast is predictable from 1 Au-
gust using tropospheric height-averaged wind anoma-
lies (wind index) over the North Atlantic, North
America, and eastern Pacific Ocean during July. They
use ordinary least squares (OLS) regression to regress
normally transformed accumulated cyclone energy
(ACE) onto the July averaged wind index. It is worth
noting that although the height-averaged wind index
from July used by Saunders and Lea (2005) is different
from what was used by Lehmiller et al. (1997), it cap-
tures similar information related to the position and
strength of the Bermuda high pressure system (as does
the NAO). In fact, Saunders and Lea (2005) verified
that the highest likelihood of southeast U.S. hurricane
landfall occurs with high values of July-averaged sea
level pressures over Cape Hatteras.

3. Categorization of forecast methods

The methods used for seasonal landfall forecasts can
be grouped in different ways. One way to group the
forecast methods is by predictors. A climatology model
used as a benchmark for assessing model skill contains
no predictors. In contrast, the CSU team, which now
issues forecasts of landfall probabilities along with their
forecasts of overall activity, uses a prediction of net
tropical cyclone activity together with a measure of
North Atlantic sea surface temperature (SST) anoma-
lies as predictors. Net tropical cyclone activity (NTC) is
a combined measure of six indices of hurricane activity
each expressed as a percentage difference from the
long-term average. The model of Elsner (2003) uses a
prediction of the August–October-averaged SOI and
the preseason May–June-averaged NAO index as pre-
dictors. The NAO is a variation in the sea level pressure
gradient over the eastern North Atlantic (Hurrell et al.
2003). Under normal conditions pressures are low over
Iceland and high over Gibraltar. Variations in this
north–south gradient related to the position of the
subtropical high pressure ridge have been linked to
a greater threat of hurricane landfall (Jagger et al.
2001).

The model of Saunders and Lea (2005) uses a July
wind index constructed as a linear combination of six
vertical- and areally averaged wind anomalies from re-
gions extending across the eastern equatorial Pacific
through the North Atlantic basin. In five of the regions
zonal wind is used and in the other region meridional
wind is used. Vertical averaging extends from 925 to
400 mb, and the time averaging is for the month of
July.

Another way to group the forecast methods is by
methodology. The methodology used by the CSU team
is empirical. Their landfall forecasts are based on a for-
mula that combines a forecast of NTC activity with a
measure of the North Atlantic SST anomaly (SSTA).
Though not available in the peer-reviewed literature,
their formula for landfall “probability” is

landfall “probability” � forecast NTC � measured SSTA.

�1�

Quotes are needed on the word probability because the
value obtained by using this empirical methodology is
not, strictly speaking, a probability.

The forecast methods of Elsner (2003) and Saunders
and Lea (2005) described above are based on statistical
models. In the Elsner (2003) model, the predictors are
related to the logarithm of the mean hurricane rate.
Values for the model coefficients are found using the
method of maximum likelihood. In the Saunders and
Lea (2005) model, the predictor is linearly related to
the mean of the transformed values of ACE and the
values for the model coefficients are found using the
method of OLS. In forecasting the unknown future,
statistical models have an advantage over empirical
models as forecasts can be expressed in terms of uncer-
tainty (e.g., prediction intervals).

Another approach is Bayesian modeling. Here, both
the model coefficients and the observed data are
treated as random variables and forecasts are expressed
in terms of a posterior distribution. Bayesian models
have an advantage over classical statistical models as
the posterior distribution contains all the information
about predictive uncertainty (not only the prediction
intervals). Elsner and Jagger (2004) describe a Bayes-
ian regression model and explain its advantage for
coastal hurricane count data.

Bayesian models are implemented naturally using
Markov chain Monte Carlo (MCMC) methods such as
the Gibbs sampler with distributions derived from an
application of Bayes’s rule. The Gibbs sampler gener-
ates empirical distributions from a model using random
samples from appropriate marginal and conditional dis-
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tributions. Suppose the model defines probability dis-
tributions F(X|Y) and G(Y|X), where the vertical line
is read “conditional on.” The sampler starts with a ran-
dom set of possible values for X, then draws a set of Y
values from G(), which are subsequently used to update
the values for X from F(), and so on.

Bayesian methods are applied in the area of climate
change and detection (Solow 1988; LeRoy 1998; Ber-
liner et al. 2000). An argument in support of the Bayes-
ian approach to predictive inference is the ability to
incorporate older, less reliable data. Since regional hur-
ricane probabilities are quite small, longer records are
needed to accurately assess the risk of future storm
occurrences. For practical reasons that become appar-
ent below, we adopt a Bayesian approach to modeling
hurricane counts. The approach allows us to reformu-
late the different prediction schemes using a common
framework that then makes comparison of the hindcast
results straightforward. Here, the results take the form
of the expected value of the predictive probability dis-
tribution for the number of hurricanes over Florida
during 2004.

4. Bayesian inference for hurricane counts

The canonical model for event count data is the Pois-
son regression model. The model is used extensively in
hurricane climate studies (Elsner and Schmertmann
1993; Solow and Moore 2000; Elsner et al. 2001; Jagger
et al. 2002; Elsner 2003; McDonnell and Holbrook
2004). It is based on the Poisson distribution, which is a
discrete distribution defined on the nonnegative inte-
gers. It can be derived from the distribution of waiting
times between successive events. For our purposes, the
Poisson regression model is used to model a set of
Florida hurricane counts hi ∈ 0, 1, 2, . . . , � � Z� on the
nonnegative integers for a set of observed years i � 1,
. . . , N.

Additionally, we observe a row vector of predictor
variables x�i with dimensionality (1 � J). Thus, the Pois-
son regression is

hi 	 Poisson��i�,
�i � exp��0 � x�i� � �i�, and
�i 	 Normal�0, ��1�, �2�

where 
i is the hurricane rate for year i, �0 is the inter-
cept, and �i is a random effect that has zero mean (does
not contribute to the count) but adds to the variance of
the counts. The symbol 	 refers to a stochastic rela-
tionship and indicates that the node on the left-
hand side is a sample from a distribution specified

on the right-hand side. The equal sign indicates a
logical relationship with the node on the left-hand
side algebraically related to terms on the right-hand
side.

The scalar  captures the precision (inverse variance)
of the random effect, thus indicating how much (or
little) overdispersion there is (Martin 2003). Compo-
nent values for the offset and parameter vector � define
the specific model and are estimated using a Bayesian
approach. In short, with the Bayesian approach, we as-
sume that the parameters have a distribution and infer-
ence is made by computing the posterior probability
density of the parameters conditioned on the observed
data. Alternatively, in the frequentist (or classical) ap-
proach, we assume the parameters are fixed, but un-
known, and we find values for the parameters most
likely to have generated the observed data by maximiz-
ing the likelihood. The Bayesian approach combines
the frequentist likelihood with our prior belief f(�) us-
ing Bayes’s rule so that, for the Poisson regression
model, we are interested in

f��|h� � f�h|��f���. �3�

The distribution f(�|h) is the posterior density indicat-
ing the probability of � conditional on the observed
hurricane counts. The posterior density summarizes
what we believe about the parameter values after con-
sidering the observed counts. For example, sample av-
erages taken from the distribution approximate the
posterior expectation of the parameter value. Impor-
tantly, the posterior density allows us to make probabil-
ity statements, including those about whether a particu-
lar parameter value differs from zero.

In general, the posterior density f(�|h) has no ana-
lytical solution so MCMC sampling methods are used
to simulate it (Geman and Geman 1984; Gelfand and
Smith 1990). Importantly, the level of precision on the
posterior density can be made as high as desired by
increasing the number of samples. However, Bayesian
approaches require the user to formally specify prior
beliefs. Here, we take the standard route and assume
noninformative priors that, as the name implies,
provide little information about the value of the param-
eters of interest. Thus, to finish the Bayesian specifica-
tion of the Poisson regression model, we assume inde-
pendent normally distributed priors for each compo-
nent of the � vector, where the mean of the normal
distribution is zero and the variance is 106 [�j 	 Nor-
mal(0, 106)]. This is a flat distribution that contributes
little information. [Alternatively, we could use the
dflat() distribution; see the discussion of the Bayesian
inference using Gibbs sampler (BUGS) below.] We
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also assume a gamma distributed prior for the precision
parameter [ 	 G(0.001, 0.001)], which has its mass just
to the right of zero and is decreasing on R�. The
gamma distribution is often used for the precision pa-
rameter as it is bounded on the left by zero and small
values reflect a lack of prior information available for
this parameter (large variance). The influence of these
prior specifications on results is examined in section 6.

5. Reformulation of the landfall forecast methods

The above Bayesian specification mixing the Poisson
with the normal distribution together with the prior
specifications provides a framework for comparing the
disparate forecast methods. The models are listed be-
low and for completeness we include a climatological
forecast:

hi 	 Poisson��i�,

model 0: climatology, where �i � exp��0 � �i�,

model 1: NTC and SSTA, where �i � NTC � exp��0 � �1 � SSTA � �i�,

model 2: wind index, where �i � exp��0 � �1 � WIND � �i�,

model 3: NAO, where �i � exp��0 � �1 � NAO � �2 � EPOCH � �i�, and

�i 	 Normal�0, ��1�. �4�

In Eq. (4) WIND is the tropospheric height–averaged
wind anomoly and EPOCH is a term that accounts for
changes in the level of uncertainty in the hurricane rec-
ord over time (see below). The hurricane count data for
Florida are obtained from the National Hurricane Cen-
ter’s hurricane best-track file (Neumann et al. 1999). A
Florida hurricane is defined as a tropical cyclone that
makes at least one landfall in the state. Hurricane land-
fall occurs when all or part of the storm’s eyewall passes
directly over the coast or adjacent barrier islands. Since
the eyewall extends outward a radial distance of 50 km
or more from the hurricane center, landfall may occur
even in the case where the exact center of lowest pres-
sure remains offshore. Similarly, a U.S. hurricane is a
tropical cyclone that makes at least one landfall some-
where in the United States (excluding Hawaii).

In reformulating the various forecast methods, the
above models differ only in regression structure. For
example, a climatological forecast (model 0) excludes
predictors. Model 0 is available for predictions at any
time during the year. Model 1, which represents the
empirical method of the CSU team, has two predictors:
NTC and SSTA, where NTC is the predicted value for
the season and the SSTA is the current observed value
(1 August 2004 here). Given a value for the NTC, the
total number of Florida hurricanes is constrained (e.g.,
there cannot be more Florida hurricanes than total hur-
ricanes); thus, we treat the logarithm of NTC as an
offset. SSTAs represent those of the Atlantic multidec-
adal oscillation (AMO) for July. The AMO is charac-
terized by fluctuations in SSTs over the North Atlantic
Ocean driven largely by the thermohaline circulation
(Goldenberg et al. 2001). The Hadley model SST and

NOAA optimal interpolated SST data are used to com-
pute Atlantic SSTAs north of the equator (Enfield et
al. 2001). SSTAs are computed by month using the cli-
matological time period 1951–2000. Data are obtained
online from the NOAA–Cooperative Institute for Re-
search in the Environmental Sciences (CIRES) Climate
Diagnostics Center (CDC). Although not considered in
this study, hurricane activity along the southeast coast
of the United States has recently been correlated with
the dipole mode of tropical Atlantic Ocean SST (Xie et
al. 2005).

We note that for the present comparison, predicted
values for the NTC were not available to us. Instead, we
use the observed value of the number of hurricanes.
Because the number of hurricanes h is part of the cal-
culation of NTC, there is a correlation between NTC
and h. However, because we used the observed h rather
than a predicted h (except for 2004), model 1 is biased
toward greater skill than can be expected in actual fore-
cast situations. Assuming that a forecast of NTC can be
made and that SSTAs are slowly varying, model 1 is
available for predictions well in advance of the hurri-
cane season.

Model 2, which represents the statistical formulation
of Saunders and Lea (2005), uses a single predictor,
WIND, which is the tropospheric height-averaged wind
anomalies (wind index) over the North Atlantic, North
America, and eastern Pacific during July. However, in-
stead of forecasting normally transformed landfall
ACE along the U.S. coast, we reformulate the model to
forecast hurricane count probability over Florida. The
u- and �-component wind data over the period 1948–
2004 for the tropospheric levels 925–400 mb used to
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construct the index are from the National Centers for
Environmental Prediction–National Center for Atmo-
spheric Research (NCEP–NCAR) reanalysis project
(Kalnay et al. 1996) and are obtained online from CDC.
Model 2 is available for predictions by 1 August.

Model 3 represents the statistical formulation of Els-
ner (2003) and Elsner and Jagger (2004) without the
predicted value for the SOI. Here, we use preseason
values (May–June average) of the NAO index from the
period 1851–2004 (Jones et al. 1997) as the lone climate
predictor. NAO values are obtained online from the
Climatic Research Unit. The model also differs from
the Elsner (2003) specification in that it includes the
term EPOCH that effectively assigns greater uncer-
tainty to the counts prior to 1900. This is reasonable as
we are more uncertain about the actual annual count of
hurricanes over Florida prior to this time (Landsea et
al. 2004). Herein lies a distinct advantage of a Bayesian
approach to seasonal landfall modeling. The models
can quite naturally incorporate older, less reliable, data
by specifying values as less precise. Model 3 is available
for predictions by 1 July.

In summary, we reformulate four forecast methods
into separate Bayesian models that use Gibbs sampling
to determine the probability of hurricanes over Florida
during 2004. The idea is straightforward. If we are
transported back in time to the end of July 2004 and
asked to forecast the probability of hurricane activity
for Florida during the upcoming season, what scientific
understanding do we have at our disposal and what
forecasts would we make? It should be reiterated that
we are not providing a comprehensive comparison of
the available methods. This would require data that are
not available to us (e.g., predicted NTC) and it would
require a way to judge forecast skill across different
predictands (landfall probability, ACE, probability of
H number of hurricanes). Instead we opt for a limited
comparison that has the advantage of making a com-
parable set of probability forecasts across the methods.
The focus on the 2004 season is instructive, as a strict
empirical climatological forecast would have put the
probability at 0 of observing four Florida hurricanes, as
there is no precedence for this event in the historical
record. While it has been suggested that the event was
simply random, we feel that this position is scientifically
unsatisfying.

6. Hindcasts of hurricane activity for 2004

Posterior predictive probabilities for h Florida hurri-
canes, where h � 1, 2, 3, and 4 are generated for each
of the above models using the free BUGS software
developed at the Medical Research Council in the

United Kingdom (Gilks et al. 1994; Spiegelhalter and
Thomas 1998). All models are estimated using Win-
BUGS, version 1.4. The startup cost of Bayesian mod-
eling is minimized by BUGS by eliminating the need to
program in a high-level language like FORTRAN or
Splus. It also chooses an appropriate MCMC sampling
algorithm based on the model structure. The Win-
BUGS code for model 3 is given in the appendix.

As a diagnostic check on each of the four models, we
graphically and statistically check successive sample
values. Figures 1a and 1b show 5000 samples of �1 for
model 3 using two different sets of initial conditions.
Samples from the posterior distribution of �1 indicate
quick settling (convergence) as both sets of initial con-
ditions result in samples that fluctuate around a fixed
median value. Convergence is important as it implies
that the model is not sensitive to the prior specifica-
tions. Also, small autocorrelation values for lags greater
than four samples (Figs. 1c and 1d) indicate that the
successive samples are reasonably effective at moving
through the posterior distribution (mixing) rather than
getting stuck in one part of the distribution or another.
Posterior densities (Figs. 1e and 1f) estimated from
samples 2001–5000 are smooth and the expected value
of �1 is �0.1864 over these later 3000 samples, regard-
less of initial conditions. Other models show similar
convergence and mixing properties so we are comfort-
able with the robustness of the procedure.

We compare model hindcasts of the exceedence
probability (probability that Florida will be hit by at
least k hurricanes) in 2004 by generating 105 samples
and counting the proportion of times h2004 equals or
exceeds k number of hurricanes after ignoring the first
2000 samples as “burn-in.” Burn-in is the descriptive
term used in the Bayesian literature that refers to the
first set of samples that may contain information about
the initial conditions and therefore are discarded from
the analysis. The simplest model (model 0) took 132 s to
generate all samples and the most complex model
(model 3) took 549 s on a XeonTM 3.4-GHz processor.
The expected value of the posterior density for �1 is
�0.1376 in model 1, �0.1193 in model 2, and �0.1997 in
model 3. The probability that �1 is greater than 0 in
model 1 is 0.3109 (SSTA term), the probability that it is
less than 0 in model 2 is 0.0005 (WIND term), and the
probability that it is greater than 0 in model 3 is 0.0308
(NAO term). Hindcast results are shown in Table 1.

Examining the first row of values, the models predict
varying probabilities of at least one Florida hurricane in
the 2004 season. Model 0 forecasts the lowest probabil-
ity at 37% and model 3 forecasts the highest probability
at 47%. Examining other rows, model 2 predicts the
highest probability, 3.6%, of observing at least three
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hurricanes, which compares with 2.1% for model 0,
2.7% for model 1, and 3.1% for model 3. Model 2 also
predicts the highest probability of any of the models for
what actually occurred (four or more). Note that mod-
els 1–3 indicate an increased risk (over climatology) of
a Florida hurricane in 2004. As previously noted a naïve
empirical probability forecast would have given Florida
a 0% chance of having four hurricanes. Another com-
parison is made in Fig. 2, which shows bar graphs of the
2004 forecast probabilities from each of the models.
Models 1–3 show an improvement over climatology
with model 2 portending the greatest risk of an extreme

season (h � 4), albeit with probabilities only near 1%.
The results clearly show that although the models indi-
cated an above average probability of a Florida hurri-
cane, they all fell short in anticipating the extremely
active year that ensued.

For comparison, we reran each of the models this
time predicting the probability of hurricanes along the
entire U.S. coast. There were six U.S. hurricanes in
2004. Similar to the Florida results we find all three of
the models predicting higher than climatologically av-
eraged probabilities (Fig. 3). In this case, model 2 out-
performs both models 1 and 3, predicting a 13.4%
chance of four or more U.S. hurricanes compared with
9.5% for model 1 and 10.1% for model 3. Similar to the
results from Florida, the models indicated an increased
likelihood of an above normal U.S. hurricane season,
but they fell short in anticipating the extremely active
year that ensued.

7. Discussion and conclusions

As early as May of 2004, there were indications that
Florida might be in for an active hurricane season. The
May–June-averaged NAO index value was �0.52 stan-
dard deviations, putting it in the second quartile of the
distribution (1851–2003). While not extreme, it did in-

TABLE 1. Model comparisons. Listed are the hindcast ex-
ceedence probabilities of hurricane activity over FL for the 2004
season. Model 0 is Bayesian climatology, model 1 is a reformula-
tion of the CSU team, model 2 is a reformulation of Saunders and
Lea (2005), and model 3 is a reformulation of Elsner (2003).

Exceedance
probability

Model
0

Model
1

Model
2

Model
3

Empirical
climatology

Pr(h � 1) 0.3656 0.3889 0.4421 0.4698 0.3750

Pr(h � 2) 0.0941 0.1071 0.1359 0.1399 0.1250

Pr(h � 3) 0.0216 0.0266 0.0360 0.0309 0.0178

Pr(h � 4) 0.0061 0.0075 0.0102 0.0055 0.0000

FIG. 1. Diagnostic plots of the �1 parameter for model 3. Successive sample values starting
with (a) �1 � 0 and (b) �1 � 2. (c), (d) Corresponding autocorrelation functions of the sample
history. (e), (f) Corresponding kernel density estimates of the posterior distributions of �1 for
the two different sets of initial conditions.
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dicate a heightened probability of Florida hurricanes.
Model 3, available for predictions by 1 July, would have
predicted a 47% chance of at least one hurricane strike
to Florida. This compares with a 37% chance based on
climatology (1948–2003) alone. Moreover, the model
predicted a 14% chance of two or more Florida hurri-
canes. This is 5% above climatology. Signals suggesting
an active Florida season continued into July. By 1 Au-
gust, models 1 and 2 would have predicted an above
normal season. Model 1, combining a prediction of
above average hurricane activity (forecast of seven hur-
ricanes made on 6 August 2004) with observed warmer
than normal Atlantic SSTs (AMO), would have pre-
dicted an 11% chance of two or more Florida hurri-
canes in 2004. Similarly, model 2, using a July wind
index, would have predicted a 13% chance of two or
more hurricanes.

Understanding regional hurricane variation requires
not only understanding hurricane origin and develop-
ment mechanisms, but also what influences where they
will track. In this regard, the NAO and the position of
the subtropical high are the leading candidates. The
July wind index developed in Saunders and Lea (2005)
captures, to some extent, the strength and position of
the subtropical Bermuda high pressure. Tropical cy-
clones that form and remain equatorward of the sub-
tropical high tend to intensify at low latitudes en route
to Florida. Other factors that are likely relevant to sea-

sonal forecasts of regional hurricane risk include the
ENSO (also captured in the wind index to some extent)
and Atlantic SSTs.

The physical relationship between the springtime
NAO and summer/autumn hurricanes is the subject of
ongoing research. We speculate that it might be related
to how the NAO is related to the summer climate over
the continents of Europe and North America. A weak
NAO during May–June is associated with weaker mid-
latitude weather systems (and thus less rainfall) over
Europe during spring. This creates a feedback (perhaps
through soil moisture) with a tendency for greater
summer/autumn middle-tropospheric ridging and an
enhancement of the dry conditions. Ridging over the
eastern and western sides of the North Atlantic basin
during the hurricanes season tends to keep the middle-
tropospheric trough, responsible for hurricane recurva-
ture, farther to the north.

Evidence in support of this hypothesis comes from
examining the correlation between the May–June NAO
index and 500-hPa heights over western Europe (35°–
45°N, 20°W–0°) averaged over August–October for the
period 1948–2004. Using NCEP–NCAR reanalysis data
(Kalnay et al. 1996), we find a linear correlation of
�0.37, indicating a significant relationship whereby
ridging (high heights) occurs with low values of the
NAO. The ridging is associated with weaker upper-
level winds and less vertical wind shear. Additional evi-

FIG. 2. Forecast probabilities for hurricane activity over Florida during 2004 by model type:
Probability of (a) no hurricanes, (b) at least one hurricane, (c) exactly one hurricane, (d)
exactly two hurricanes, (e) exactly three hurricanes, and (f) four or more hurricanes.
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dence comes from a composite difference map of mean
August–October precipitation rates for the five lowest
and five highest (lowest minus highest) May–June
NAO years (Fig. 4). Here, we see a teleconnection be-
tween a wet southeastern United States and dry condi-
tions over both western Europe and over the mid-
Atlantic extending to New England. Based on the feed-
backs involved in maintaining the ridging, we suggest
that it might be possible to find a longer lead relation-

ship between the NAO and U.S. hurricanes. Moreover,
the dry conditions northeast of the Greater Antilles are
consistent with a persistence of a southwesterly dis-
placed subtropical high. As a postscript, we note that,
like in 2004, the 2005 value of the NAO was negative
(�0.56 standard deviations) indicating an increased
likelihood of Florida hurricane activity.

Forecast models of landfall activity will likely im-
prove by taking into account relevant spatial informa-
tion. A step in this direction is taken in Jagger et al.
(2002). The model is a statistical space–time specifica-
tion based on a truncated Poisson count process that
includes neighborhood response values (hurricane
counts in adjacent grid boxes), local offsets, and climate
variables as predictors. The climate variables include a
factor for the state of ENSO; rainfall over Dakar, Sene-
gal; and sea level pressures (SLPs) over the Azores and
over Iceland. The SLP variables indicate the state of the
NAO. Although this model has yet to be implemented
operationally, the aim is to have it predict the most
likely near-coastal paths of hurricanes prior to the start
of the season. Toward this end, it should be possible to
reformulate the Jagger model using a Bayesian ap-
proach.

Seasonal landfall forecasting is relatively new. More
work is needed to understand the physical mechanisms

FIG. 4. Composite difference in August–October precipitation
rates for the five years of lowest (and highest) May–June NAO
values (low minus high). Data period is 1948–2004. Data are cour-
tesy of CDC.

FIG. 3. Forecast probabilities for hurricane activity along the entire U.S. coast during 2004
by model type: Probability of (a) no hurricanes, (b) exactly one hurricane, (c) exactly two
hurricanes, (d) exactly three hurricanes, (e) exactly four hurricanes, and (f) five or more
hurricanes.

190 W E A T H E R A N D F O R E C A S T I N G VOLUME 21

Fig 4 live 4/C



responsible for the frequency of particular storm tracks.
Here, we have summarized and compared the relevant
studies identifying the climate factors important for
seasonal forecasts of regional hurricane activity. In do-
ing so, we have described a methodology for building
useful seasonal forecast models. The topic is relevant to
business, government, and society. In fact, risk model-
ing companies are beginning to offer products that
make use of the science and technology of landfall fore-
casting.
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APPENDIX

WinBUGS Code for Model 3

#Model
model; {
for(i in 1: N) {
h[i] ∼ dpois(lambda[i]) #Hurricane
counts as Poisson

log(lambda[i]) <− beta0 + beta1 *
NAO[i] + beta2 * epoch[i] + eta[i]
#Likelihood

tau1[i]<−tau[ind[i] + 1] #Precision on
the counts

eta[i] ∼ dnorm(0, tau1[i]) #Random
effect

}
tau[1] ∼ dgamma(0.001, 0.001)
tau[2] ∼ dgamma(0.001, 0.001)
beta0 ∼ dnorm(0.0, 1.0E−6) #Fixed effect
beta1 ∼ dnorm(0.0, 1.0E−6) #Coefficient
beta2<−log(p)
p ∼ dunif(lower, upper) # Probability of

observing a hurricane, used when
epoch=1

prob1<−step(h[N]−1) # probability of
at least 1 hurricane

prob2<−step(h[N]−2) # probability of
at least 2 hurricanes

prob3<−step(h[N]−3) # probability of
at least 3 hurricanes

prob4<−step(h[N]−4) # probability of
at least 4 hurricanes

}

# Initial Conditions
list(beta0=0, beta1=0, tau=c(0.1, 0.1),

p=0.9)
# Data
list(N=154, lower=0.80, upper=0.95,
# Florida hurricanes by season, the NA

(not available) is for the 2004 season
h=c(1, 2, . . . , 0, 0, 0, NA)
# NAO index values averaged over the

preseason months of May–June
NAO=c(−1.575, 0.170, . . . , −0.710,

0.425, 0.155, −0.525),
# Epoch variable for reliable (0) versus

less reliable records (1)
epoch=c(1, 1, . . . , 0, 0, 0, 0)
)
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