
tea˙244 Tellus.cls May 15, 2007 10:23

Tellus (2007) C© 2007 The Authors
Journal compilation C© 2007 Blackwell Munksgaard

Printed in Singapore. All rights reserved
T E L L U S

Granger causality and Atlantic hurricanes

By JAMES B. ELSNER ∗, Department of Geography, The Florida State University, Tallahassee, FL, 32306, USA

(Manuscript received 2 August 2006; in final form 1 March 2007)

ABSTRACT

Atlantic tropical cyclones have been getting stronger recently with a trend that is related to an increase in the late

summer/early fall sea-surface temperature over the North Atlantic. Some studies attribute the increasing ocean warmth

and hurricane intensity to a natural climate fluctuation, known as the Atlantic Multidecadal Oscillation; others suggest

that climate change related to anthropogenic greenhouse gases emissions is the cause. Noting that the only difference

between these two hypotheses is the causal connection between global mean near-surface air temperature (GT) and

Atlantic sea-surface temperature (SST), the author previously showed how to use statistical tests to examine this

hypothesis. Here the author expands on this research. In particular, a more comprehensive explanation of the techniques

and additional tests and checks against misspecification are provided. The earlier results are confirmed in showing that

preceding GT anomalies have a significant statistical relationship to current SST anomalies but not conversely so that

if causality exists between Atlantic SST and global temperature, the causal direction likely goes from GT to SST. The

result is robust against a small amount of noise added to the data. Identical tests applied to surrogate time series fail to

identify causality as expected. The work underscores the importance of using data models to understand relationships

between hurricanes and climate.

1. Introduction

A major concern about the consequences of climate change is the

potential increase in tropical cyclone activity. Indeed, in 2005 a

couple of research papers showed the power of Atlantic tropical

cyclones rising dramatically and correlated with an increase in

the late summer/early fall sea-surface temperature over the North

Atlantic (Emanuel, 2005; Webster et al., 2005). A debate ensued

with some studies attributing the increase in hurricane intensity

to a natural climate fluctuation, known as the Atlantic Multi-

decadal Oscillation (AMO) or mode (Goldenberg et al., 2001;

Pielke et al., 2005), and others suggesting climate change re-

lated in part to anthropogenic increases in radiative forcing from

greenhouse gases (Trenberth, 2005; Hoyos et al., 2006).

In 2006, I noted that the main difference between the two

competing theories is the causal connection between global mean

near-surface air temperature (hereafter GT) and Atlantic sea-

surface temperature (hereafter SST) (Elsner, 2006). That is, given

the large contemporaneous correlation between the GT and SST

records, the climate change theory implies that SST is warming

due to climate change while the AMO theory implies that GT is

warming, at least in part, from warming SST. Thus, I suggested

applying statistical tests of causality to see if some light could

be shed on this debate. Specifically, I applied tests of Granger
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causality which determines whether time-series values of one

variable can predict future values of another variable. In short,

I showed that lagged values of GT are useful in predicting SST

while lagged values of SST are not useful in predicting GT. Thus,

GT causes SST in the Granger sense, supporting the theory that

climate change influences hurricane intensity assuming changes

in GT are due to climate change rather than longer term climate

variability.

The space limitation of the Elsner (2006) paper precluded

all but the essential details of the analysis. The purpose of the

present paper is to include more explanation of the methodology

and to provide support for the results using additional checks and

tests. In particular, here I give a broader discussion of Granger

causality and provide some illustrations. Test for normality and

stationarity are described and a test using surrogate data is pro-

vided. A sensitivity test on the results using additive noise is also

performed. This research is important for moving the hurricane-

climate change debate away from simple trend analyses and to-

wards unravelling physical mechanisms that can better account

for the various observations.

In Section 2, I describe the data and sources used in Elsner

(2006) and reexamined in the present study. In Section 3, I

perform some preliminary analysis of the time series by check-

ing for normality and stationarity. I create stationary time se-

ries’ by using first differencing. The raw and transformed (first

differenced) data are plotted as time series and the distribu-

tions are plotted as histograms. In Section 4, I describe how

Granger causality tests can be used to examine the two competing
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hypotheses concerning hurricanes. I provide a general descrip-

tion of the method and include a brief summary of climate studies

that have applied it. In Section 5, I give more details including

how to choose the proper model order using a vector autogressive

model and the meaning of the F test. In Section 6, I present the

results of the Granger tests expanding on those presented in El-

sner (2006). In Section 7, I show results from additional checks

that lend support to the original conclusions. I summarize the

research in Section 8.

2. Data

As in Elsner (2006) my interest is in examining time series of

GT and SST relevant to hurricane activity over the entire North

Atlantic basin, which includes the Caribbean Sea and Gulf of

Mexico. Therefore, I obtain monthly GT anomalies (1961–

1990 base period) from the Intergovernmental Panel on Cli-

mate Change (IPCC) using the Climatic Research Unit (CRU)

(Folland et al., 2001). The anomalies in ◦C are accurate to ±0.05
◦C for the period since 1951. I obtain monthly values of SST

from the U.S. NOAA-CIRES Climate Diagnostic Center. The

data are a blend of the Hadley model SST values and interpolated

observed SST values from the U.S. National Oceanic and Atmo-

spheric Administration (NOAA). Values are given as anomalies

in ◦C from the climatology based period of 1951–2000 (Enfield

et al., 2001). The anomalies are spatially averaged over the entire

North Atlantic Ocean.

Also as in Elsner (2006), I derive a total power dissipation

index (PDI) using the HURricane DATa base (HURDAT or best-

track) maintained by the National Hurricane Center. HURDAT

is the official record of tropical storms and hurricanes for the

Atlantic Ocean, Gulf of Mexico and Caribbean Sea. HURDAT

consists of the 6-hourly position and intensity (maximum wind

speed at an altitude of 10 m) estimates of tropical cyclones back

to 1851 (Neumann et al., 1999). For storms in the period 1931–

1956, the 6-h positions and intensities were interpolated from

twice daily (00 and 12 UTC) observations. I compute the PDI

by cubing the maximum wind speed for each 6 h observation.

I consider only observations where the tropical cyclone is at

hurricane intensity (33 m s−1) or above and sum the cubed wind

speeds over the entire hurricane season for the years 1871–2004.

The vast majority of North Atlantic hurricanes occur from July to

October. Annual values of this total PDI depend on the duration,

frequency, and intensity of the strongest hurricanes.

Questions about the quality of the hurricane data are raised

in Pielke et al. (2005), Landsea (2005) and Klotzbach (2006),

but the concerns are largely about the potential under count of

storms and possible underestimate of intensities prior to aircraft

and satellite information. Here I am concerned with the inter-

annual variability of activity, so a possible low bias (in counts

and intensity) during the earlier part of the record is not a sub-

stantive issue. In fact, as will be seen, tests for Granger causal-

ity are applied on time series that have been differenced by

subtracting successive time values thereby reducing the influence

of a low frequency or trend variation due to nature or technol-

ogy. Moreover, the principal focus of this work is the potential

causal relationship between Atlantic SST and global tempera-

ture. Data representing these two variables do not contain the

kind of observational bias inherent in the hurricane data.

Additionally, I am interested in investigating whether El Niño-

Southern Oscillation (ENSO) can be used to causally explain

both GT and Atlantic SST. Thus, I obtain monthly Niño 3.4 SST

index values from the Climate Diagnostic Center. The values in
◦C represent an area average from 5◦S to 5◦N latitude and from

170◦W to 120◦W longitude (Rayner et al., 2003).

3. Preliminary analysis

Time-series plots and histograms of the GT, SST and PDI data

are shown in Fig. 1. The GT and SST anomalies are time aver-

aged over the main Atlantic hurricane season months of August–

October for n = 135 consecutive seasons from 1871 to 2005.

The time-series plots show similar and coincident low and high

frequency variation throughout the period. There is a marked

overall increase in temperatures but it is not uniform with rel-

atively larger increases noted since about 1920 and again since

about 1980. The PDI, which only goes through 2004, shows

larger interannal variations with a lower amplitude multidecadal

variation that coincides with the lower frequency variation in

both SST and GT.

The linear correlation between the two temperature series is

0.82. Warmer global temperatures are associated with warmer

Atlantic SST. However, the value of the correlation and its statis-

tical significance are influenced by trends and autocorrelation in

the time series. More importantly, causality cannot be assessed

from correlation analysis alone. Instead, tests of weak causality

can be made by determining whether one time series is useful in

predicting another. More specifically, causality in the Granger

sense (Granger, 1969; Kaufmann and Stern, 1997) can be tested

statistically by comparing two sets of models involving lagged

values of the predictor variable(s). However, because the tests

involve the use of regression models, it is important to first ex-

amine the data for stationarity and normality.

3.1. Normality

Classical regression models are applicable when the predictand is

normally distributed. The histogram of SST (see Fig. 1) indicates

values that are close to normally distributed. However, there is

a positive skewness in the GT values and more so in the PDI

values. That is, there tends to be more below normal temperature

anomalies with fewer but more intense above normal anomalies.

For the PDI record this characteristic is even more pronounced

and is a consequence of using the third power of the wind speed.

Non-normality of the predictand in a regression model may result

in heteroscedasticity (non-constant variance) and non-normality
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Fig. 1. Time series and histograms of GT

(a, b), SST (c, d) and PDI (e, f). Data sources

are given in the text. The GT and SST values

are averaged over the months of August–

October. The PDI values are totalled over the

entire corresponding Atlantic basin

hurricane season.

of the residuals (difference between the observed and predicted

values), which can bias the forecasts and confidence intervals

yielded by the statistical model.

To test for normality, I apply the well-known goodness-of-fit

Shapiro–Wilks test. The test statistic W, is computed as

W =
∑n

i=1

[
ai x(i)

]2∑n
i=1(xi − x̄)2

, (1)

where the x (i)’s are the ordered sample values [x(1) is the smallest]

and the ai ’s are constants generated from the means, variances

and covariances of the order statistics of a sample of size n from a

normal distribution. The value of W approximates the correlation

coefficient of the values in a normal quantile–quantile (QQ) plot.

Small values of W are evidence of departure from normality.

Figure 2 shows the normal QQ plots for the raw time series

where the quantiles of the data are plotted against corresponding

quantiles of a normal distribution. The straight line indicates a

perfect fit of the data to a normal distribution. For the SST data

the fit is quite good, but for the GT and PDI, the fit is less so.

Table 1 shows the results of the test which confirm rejecting the

hypothesis of normality for the GT and PDI values, but not for

the SST values. Next, I consider stationarity.

3.2. Stationarity

Tests of causal significance require stationary time series. Amul-

tivariate time series is covariance stationary and ergodic if all its

components are stationary and ergodic. Thus it is sufficient to

consider stationarity as limited to time invariant in the mean. The

trend and low frequency fluctuations noted in both the GT and

SST records suggest that this is not likely the case. The KPSS

test (Kwiatkowski et al., 1992) is commonly used to test for sta-

tionarity in time-series data. Details of the test are beyond the

scope of this paper, but are given in Zivot and Wang (2002). The

test statistic for a test of mean stationarity (stationarity about a

constant level) is compared to right-tailed quantiles of asymp-

totic distributions constructed from standard Brownian motion.

Large values of the statistic lead to a rejection of stationarity.

Table 2 shows the results of the test applied to the GT and SST

time series and indicate that I should reject the hypothesis of sta-

tionary for both series. Thus in order to proceed with examining

causal significance trend removal is needed.

A common trend removal technique is to apply a first-

difference operator to the series. Given a time series x t , a for-

ward first-difference operator can be defined as �x t ≡ x t+1 − x t .

I apply this operator to all three time series and plot them along

with the corresponding distributions in Fig. 3. Unlike the raw
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Fig. 2. Normal quantile plots of the raw and first differenced records of GT (a, d), SST (b, e) and PDI (c, f). The units of the sample quantile are ◦C

for the GT and SST records and m3s−3 for the PDI record.

Table 1. Goodness-of-fit test for normality. The Shapiro–Wilks test

statistic and corresponding p-value for the GT, SST and PDI records

and their first differences (�GT, �SST and �PDI). The value of the

test statistic W is computed from eq. (1) and approximates the

correlation between ranked quantiles of the data and ranked quantiles

of values from a normal distribution. The null hypothesis is that the

data come from a normal distribution, so a small p-value indicates a

rejection of this hypothesis

Time series W p-value Normal

GT 0.96 0.0005 No

SST 0.99 0.1765 Yes

PDI 0.91 <0.0001 No

�GT 0.99 0.4065 Yes

�SST 0.99 0.6644 Yes

�PDI 0.99 0.5333 Yes

time series, all of the differenced series appear to fluctuate about

a level mean. Moreover, the histograms indicate normally dis-

tributed values. Indeed, normality and stationarity are confirmed

for all three differenced series (see Tables 1 and 2) using the tests

described above.

4. Granger causality

Having transformed the time series to conform to the assump-

tions needed to test for causality, I focus on the problem of

determining which of the two hypotheses concerning Atlantic

hurricanes is more likely given the data and assumptions. Fig-

ure 4 illustrates the causality of the two candidate theories. The

climate change hypothesis asserts that changes in radiative forc-

Table 2. KPSS test for level stationarity. The test statistic and

corresponding p-value for the GT, SST and PDI time series and their

first differences (�GT, �SST and �PDI). The null hypothesis is that

the data are stationary about some constant level (mean), so a small

p-value indicates a rejection of this hypothesis

Time series Test statistic p-value Stationary

GT 3.44 <0.01 No

SST 1.85 <0.01 No

PDI 0.335 >0.1 Yes

�GT 0.049 >0.1 Yes

�SST 0.041 >0.1 Yes

�PDI 0.045 >0.1 Yes

ing resulting from increased greenhouse gas build up in the at-

mosphere increases GT and causes Atlantic SST to rise at least

during the hurricane season months of August–October. On the

other hand, the AMO hypothesis asserts that natural changes

in the deep water circulation of the Atlantic Ocean drive hur-

ricane season SST resulting in changes to hurricane activity.

Under both hypotheses local SST plays a direct role in helping

to power hurricanes by providing moist enthalpy and instability.

Thus the point of departure for the two competing hypotheses

is the causal connection between GT and Atlantic SST. The cli-

mate change hypothesis suggests the causality goes from GT to

Atlantic SST whereas the AMO hypothesis implies it is the other

way around. The implication that Atlantic SST is forcing GT is

a consequence of their large contemporaneous correlation noted

above.
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Fig. 3. Time series and histograms of the

first-differenced GT (a, b), SST (c, d) and

PDI (e, f) records.

Fig. 4. Two networks illustrating the competing hypothesis concerning

Atlantic hurricane activity and global temperature. In the first network

(a) global temperature (GT) predicts Atlantic sea-surface temperature

which in turn predicts hurricane activity. In the second network

(b) Atlantic sea-surface temperature (SST) predicts both hurricane

activity and GT.

One way to compare hypotheses is to consider whether there

is asymmetry in the predictive skill of statistical forecasts when

one time series is used to predict the other and vice versa. The

idea is that time’s arrow is unidirectional in that only the past can

cause the present. If lagged values of time series U are useful in

predicting future values of time series V , but not the other way

around, then U must come before V and is therefore a candidate

for causing V , whereas V is eliminated as a candidate for causing

U. Figure 5 illustrates the point graphically. The phase shift in

the two time series with series U leading series V indicates that

lagged values of U will be useful in predicting future values of

V , but lagged values of V will be useless in predicting future

values of U. It should be noted that this predictive causality

(called Granger causality after Granger, 1969), though helpful

to understand feedbacks and interactions in complex systems,

does not necessarily imply true causality.

Somewhat more formally, a variable U is said to Granger-

cause a variable V if it can be shown that time-series values of

U provide statistically significant information on future values

of V . The test works by first regressing U on lagged values of

V to determine the maximum lag for V (reduced model). Then

V is regressed on lagged values of V and lagged values of U
for lags out to the maximum lag (full model). The full model is

compared to the reduced model using an F-test to see if lagged

values of U statistically improve upon the reduced model. If there

is significant improvement with the full model by adding the U
variable, then we say that U Granger causes V . This predictive

definition of causality leaves open the possibility that causality

is found between U and V when in fact they are uncoupled. This

can be the case if they are both driven by a third variable, say

W. As noted in Mosedale et al. (2006), a predictive definition of

causality is quite relevant to climate science but it has not seen

widespread use.

Richards (1993) is an early application of Granger causality

tests to climate data showing that CO2 is a significant forcing

Tellus (2007)
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Fig. 5. A schematic showing two time series

U and V with series U leading series V . Note

that lagged values of U are useful in

predicting future values of V (e.g. time = t),
but not conversely (time = s).
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Fig. 6. Values of AIC (a), BIC (b) and HQ (c) as a function of model order (maximum lag) for the vector autoregressive model involving GT and

SST. The function minimum identifies the order (L) to use in a test for causality.

for global temperature with contributions from solar irradiance

and volcanic aerosol loading much smaller. Kaufmann and Stern

(1997) use the tests on hemispheric temperature records and

show that the Southern Hemisphere appears to lead the Northern

Hemisphere as would be expected from anthropogenic climate

change. Triacca (2001) provides a contrary opinion on the use of

Granger causality tests in these contexts. The problem is draw-

ing conclusions when more than two variables are involved in

the tests. More recently Wang et al. (2004) use Granger causal-

ity tests to examine the relationship between the North Atlantic

oscillation and Atlantic SST on the seasonal time scale. They

find that the Gulf Stream extension into the Atlantic has a causal

effect on the wintertime NAO. Mosedale et al. (2006) follow up

this study using daily data and find that the tripole pattern of

Atlantic SST Granger causes the NAO.

5. Methodology

The natural extension to a univariate autogression model is the

vector autoregression (VAR) model, which is a flexible approach

to the analysis of multivariate time series. The VAR model is es-

pecially useful for describing the dynamic behavior of economic

time series and for structural inference (Zivot and Wang, 2002)

as used here. Here I consider two time series, so I let Yt = (y1t ,

y2t )
′ denote the (2 × 1) vector of times-series variables. Then

the L-lag vector autoregressive [VAR(L)] model is given by

Yt = c + �1Yt−1 + �2Yt−2 + · · · + �L Yt−L + εt (2)

for t = 1, . . . , T , where �i are (2 × 2) coefficient matrices

and ε t is a (2 × 1) unobservable zero-mean white noise vector

process that is serially uncorrelated with time invariant covari-

ance matrix Σ, and c is an offset to allow for non-zero means.

My main focus is the bivariate time series consisting of the first-

differenced values of GT (y1t ) and Atlantic SST (y2t ). Since

both components of the bivariate VAR model have the same ex-

planatory variables, each equation can be estimated separately

by ordinary least squares without losing efficiency relative to

generalized least squares (Zivot and Wang, 2002).

The first step is to determine the maximum lag (order) of the

VAR model. This is done using a selection criteria with the value

of the maximum lag (L) chosen that minimizes some criteria.

Following Zivot and Wang (2002), let �(L) = T −1
∑T

t=1 ε̂t ε̂
′
t

be the residual covariance matrix, then the three most common

information criteria are the Akaike (AIC), Schwartz-Bayesian

(BIC) and Hannan-Quinn (HQ) given by

AIC(L) = ln |�(L)| + 2

T
Ln2 (3a)

BIC(L) = ln |�(L)| + ln T

T
Ln2 (3b)

HQ(L) = ln |�(L)| + 2 ln ln T

T
Ln2. (3c)

Values for the three criteria with maximum lags (L) 1–20 are

shown in Fig. 6. All three criteria indicate a low-order model

with the AIC and HQ suggesting order 3 and the BIC suggesting

order 1. According to Zivot and Wang (2002), the AIC criterion

asymptotically overestimates the order whereas the BIC and HQ

criteria provide a more consistent estimate under fairly general

conditions. Based on these results I consider Granger causality

tests using maximum lags L = 1–5 years.

Tellus (2007)
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In a bivariate VAR(L) model for Yt = (y1t , y2t )
′, y2 fails to

Granger cause y1 if all of the L VAR coefficient matrices �1, . . . ,

�L are lower triangular (Zivot and Wang, 2002). That is, all of

the coefficients on lagged values of y2 are zero in the equation

for y1 (reduced component model). Similarly, y1 fails to Granger

cause y2 if all of the coefficients on the lagged values of y1 are

zero in the equation for y2. To test whether the reduced model

is statistically different from the full model I use an F test for

nested models. Given T observations, where the full model has

k coefficients and the reduced model has k − L coefficients, the

F-test statistic is given as

F = (RSSreduced − RSSfull)/L

RSSfull/(T − k)
, (4)

where RSSreduced (RSSfull) is the residual sum of squares of the

reduced (full) component model. The number of predictors in

the full model is k, the number of coefficients set to zero in the

reduced model is L. The F statistic under the null hypothesis that

the reduced model is correct comes from an F distribution with

L and n − k degrees of freedom.

6. Results

I perform two separate tests with the results taken together pro-

viding clues about the direction of causality. The first involves

predicting SST from GT using time lagged values of SST and

GT as predictors. In this case, SST is the response variable.

The second involves predicting GT from SST (again using time

lagged values of SST and GT). In this case GT is the response

variable. Thus, for each test I entertain a set of two nested regres-

sion models. The full model contains lagged values of both the

response and the explanatory variables and the reduced model

contains lagged values of the response variable only. Table 3

shows the results of the Granger causality tests for a maxi-

mum lag L = 1 yr using the first differenced records of GT and

SST.

The table shows that with SST as the response variable (Test 1)

the reduced model with an extra degree of freedom (L = 1) is

rejected at a significance level of less than 0.05. Thus I conclude

that lagged values of GT improve the prediction of future val-

ues of SST. The Pr(>F) arises from evaluating the likelihood

of observing a value of F equal to or exceeding 7.072 from an

F distribution with 1 and 131 degrees of freedom. In sharp con-

trast, with GT as the response variable (Test 2), I fail to reject the

null hypothesis that the reduced model is adequate against

the alternative of the full model. So in the second case I con-

clude that lagged values of SST do not improve the prediction

of future values of GT.

These results taken together lead me to conclude that GT

causes SST in the Granger sense. This implies that, if actual

causality exists between Atlantic SST and global temperature,

the causal direction likely goes from GT to SST and not the

Table 3. Granger causality tests for GT and SST. The tests are

conducted using a maximum lag (model order) of L = 1 for the vector

autoregressive model. The full models contain lagged values of both

SST and GT whereas the reduced models contain only lagged values of

the response variable (SST in Test 1 and GT in Test 2). df. stands for

degrees of freedom and F is given in eq. (4). It is used to decide whether

the full model is better at prediction than the reduced model. The null

hypothesis is that the reduced model is correct. A value of Pr(>F) less

than 0.05 means I reject the reduced model in favor of the full model.

Model Residual df. df. F Pr(>F)

Test 1: SST as the response

Full 130

Reduced 131 1 7.072 0.0088

Test 2: GT as the response

Full 130

Reduced 131 1 0.910 0.3419

Table 4. Results from a series of Granger causality tests using GT and

SST. Lag refers to the maximum number of lags used in the models

(model order). F GTresponse (F SSTresponse ) is the value of the F statistic

when GT (SST) is the response variable. Pr(> F GTresponse ) [Pr(>

F SSTresponse )] is the probability of observing a value of F equal to or

exceeding this value from an F distribution with degrees of freedom

equal to lag and n minus lag.

Lag (L) F GTresponse Pr(> F GTresponse ) F SSTresponse Pr(> F SSTresponse )

1 0.9100 0.3419 7.0716 0.0088

2 0.1367 0.8724 3.5413 0.0319

3 0.5246 0.6662 2.0763 0.1068

4 0.4163 0.7966 1.7083 0.1525

5 0.5509 0.7373 2.9478 0.0152

other way around. I repeat the tests using values of L from 2 to

5 (Table 4) and find that the results do not change appreciably.

Models using maximum lagged values of SST (out to L = 5)

do not significantly improve predictions of GT whereas models

using lagged values of GT do improve predictions of SST and

significantly for maximum lags L = 1, 2 and 5. For compari-

son, I repeat the analysis using the raw (undifferenced) temper-

ature time series and find similar results with lagged values of

Atlantic SST providing no improvement (p-value = 0.757, L =
3) in predicting GT over a model using only lagged values of

GT, and lagged values of GT providing a significant improve-

ment (p-value = 0.005, L = 3) in predicting SST over a model

using only lagged values of SST.

7. Additional checks

I perform additional checks to substantiate the above results.

The first I call a sanity check where I run the tests on a rela-

tionship that I know is causal. The role of SST in modulating
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Table 5. Same as Table 4 except SST and PDI. The numbers in parantheses are for the same tests

using the shorter period of data (1950–2004)

Lag (L) F PDIresponse Pr(> F PDIresponse ) F SSTresponse Pr(> F SSTresponse )

1 4.5232 (1.8698) 0.0353 (0.1776) 1.2876 (3.0973) 0.2586 (0.0845)

2 3.9497 (1.0669) 0.0217 (0.3523) 0.7377 (0.8796) 0.4803 (0.4217)

3 3.3975 (1.9387) 0.0200 (0.1372) 0.7039 (0.9304) 0.5515 (0.4341)

4 4.2139 (3.6060) 0.0032 (0.0131) 1.1316 (0.6970) 0.3449 (0.5984)

5 4.1608 (4.2011) 0.0016 (0.0039) 0.8719 (0.5630) 0.5023 (0.7277)
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Fig. 7. Surrogate time series and histograms

for the �GT (a, b) and �SST (c, d) series

shown in Fig. 3.

hurricane activity is well established physically and statistically

(Shapiro and Goldenberg, 1998; Elsner et al., 1999; DeMaria

et al., 2001). The warm ocean provides the heat and moisture

to sustain hurricane-force winds against friction. Thus, I expect

that Atlantic SST causes greater hurricane activity rather than the

other way around and I expect such causality to be detectable

in the Granger sense at least on the annual time scale and using

long enough time series’.

I examine this using the same test procedure as outlined above

where I use PDI as a measure of Atlantic hurricane activity to

account for intensity and duration of the hurricanes. Although

there is no significant trend in PDI since 1871, there has been a

notable increase over the past 30 yr or so (Emanuel, 2005). The

same selection criteria for choosing the vector autoregressive

model order is used and I find that the AIC suggests a maximum

lag of 5 yr, with the BIC and HQ both suggesting a maximum

lag of 2 yr. Results of the causality tests with SST and PDI using

L = 1–5 are given in Table 5. They verify that indeed Atlantic

SST Granger causes hurricane power as defined by the total PDI

over the entire season. Results are somewhat ambiguous using

the shorter period of record (1950–2004) for maximum lags 1–3,

but for maximum lags 4 and 5 they are consistent with the results

from the larger data set showing the causality arrow points from

SST to hurricanes (see Table 5).

Another check involves repeating the Granger causality tests

on surrogate time series. The surrogate time series retains the

autocorrelation structure from the original time series but it re-

moves the specific temporal ordering. On average Granger tests

on such surrogate series should not detect causality in either

direction. To generate the surrogate series I use the method of

Theiler et al. (1992) whereby the phases from the series’ Fourier

spectrum are randomized. I do this separately for both the GT

and SST differenced series. The surrogate time series (Fig. 7) has

interannual variability that is indistinguishable from the original

series.

As expected since the autocorrelation is preserved in each

series, the vector autoregressive model order of the bivariate

surrogate series is the same as that of the original bivariate se-

ries. However, the Granger tests show different results (Table 6).

Here the tests fail to detect causality in either direction for L =
1. Results support the contention that the causality detected in

the observed series here and in Elsner (2006) is due to the unique

temporal ordering of the GT and SST anomalies and not a con-

sequence of autocorrelation.

I also examine the likelihood that another variable is respon-

sible for the causal link detected between GT and Atlantic SST.

A leading candidate for this ‘hidden’ variable is the ENSO as it

is known to influence both the Atlantic SST and GT. As with the

Tellus (2007)
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Table 6. Same as Table 3 except with surrogate time series. Similar

results are found using models with L = 2–5 and other surrogate series

Model Residual df. df. F Pr(>F)

Test 1: SST surrogate as the response

Full 130

Reduced 131 1 0.0708 0.7905

Test 2: GT surrogate as the response

Full 130

Reduced 131 1 0.0033 0.9595

Atlantic SST and GT data, I apply a difference filter to the Niño

3.4 temperatures. I first test the possibility of Granger causality

between ENSO and GT. The ENSO and GT differenced time

series are modeled using a vector autoregressive model as be-

fore. The AIC suggests a maximum lag of 5 yr and the BIC and

HQ suggest a maximum lag of 4 yr. The Granger test shows a

significant model using lagged values of ENSO to predict GT

(p-value = 0.008, L = 4) but also a significant model using

lagged values of GT to predict ENSO (p-value = 0.004, L = 4),

thus I conclude that the test is ambiguous in revealing causality

with regard to ENSO and GT. I then apply a Granger test on the

relationship between ENSO and Atlantic SST and find similar

results.

Finally, I consider the influence of random data errors (additive

noise) on the ability of the method to detect Granger causality.

Here I return to the original test using GT and Atlantic SST first-

differenced values. The range (maximum minus minimum) of

first differences for the GT values is 0.71 ◦C and the range of

first differences for the Atlantic SST values is 0.96 ◦C. I multiply

these ranges by 5% to obtain an interval of (+0.036, −0.036) and

(+0.048, −0.048) for the GT and SST errors, respectively. I then

choose 134 random numbers from a uniform distribution in the

first interval and add the numbers to the GT differenced values

and I choose 134 different numbers from a uniform distribution

in the second interval and add the numbers to the SST differenced

values. I repeat the Granger tests on these additively perturbed

records. In 19 of the 20 (95%) tests I find a significant model for

the SST using lagged values of GT. I then increase the noise level

to 10% and find only 45% of the tests show a significant model.

I thus conclude the results are insensitive to random data errors

for errors amounting to less than 10% of the range in values.

8. Conclusions

The power of Atlantic tropical cyclones has recently trended up-

ward and the increases are correlated with increases in late sum-

mer/early fall SST over the North Atlantic. A debate concerns the

nature of these increases with some studies attributing them to a

natural climate fluctuation, known as the Atlantic Multidecadal

Oscillation (AMO), and others suggesting climate change related

to anthropogenic increases in radiative forcing from greenhouse-

gases. Statistical models using GT and Atlantic SST records

show that GT is useful in predicting Atlantic SST, but not the

other way around suggesting that the causality is more likely to

go from GT to SST (Elsner, 2006). Here I examined the data and

methodology used in Elsner (2006) in significantly greater detail

and demonstrated how statistical models can lead to insights into

climate relationships not available from empirical studies.

Results from the Granger causality tests are consistent with

the hypothesis that as climate change causes seas to warm, the

ocean stores more energy that is converted to hurricane wind. As

expected the tests fail to show causality when the temperature

values are reordered in time (although preserving the autocorre-

lation). Results are robust to additive random error amounting

to 5% of the range in temperature values (differenced), but de-

grade at a noise level of 10%. While the possibility is real that

a third variable is causing both GT and Altantic SST, evidence

for ENSO as that third variable is not strong.

While others argue that the warming of the oceans shows a

clear signature of external forcing (Barnett et al., 2005; Mann

and Emanuel, 2006; Trenberth and Shea, 2006), this work is

the first to directly relate a climate change variable to hurricane

activity. The results say nothing about the influence ocean circu-

lation have on SST only that climate change is also likely playing

a causative role. The results also say nothing about the magni-

tude of the effect that global warming has on SST. In fact, as

pointed out in Elsner (2006), the causality found for the North

Atlantic may not extend to other tropical cyclone regions where

ocean circulations during the tropical cyclone season may play

a greater role in warming and cooling the oceans and atmo-

sphere. Moreover, the method provides only a necessary, but not

sufficient, condition for a cause-and-effect relationship between

global temperatures and Atlantic hurricane activity.

Research along these lines is important to the field of hurricane

science for moving the debate away from simplistic trend anal-

yses and towards unravelling the physical mechanisms that can

account for the various observations. Statistical models provide

a useful tool for understanding and predicting climate variabil-

ity. Importantly, they provide a way to examine feedbacks in the

coupled climate system (Mosedale et al., 2006). Unfortunately,

statistical models are frequently overlooked in hurricane climate

analysis where emphasis is on descriptive approaches like cor-

relation, trend detection, and empirical orthogonal functions.
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