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1 Introduction

1.1 What does tropical cyclone activity mean?

Tropical cyclone activity refers to the number of cyclones in a given region over
a given time period. It can also refer to the number of cyclones exceeding a
threshold intensity level (e.g. 17 m s−1 for tropical storms and 33 m s−1 for
hurricanes/typhoons) or the percentage of all cyclones that strike land. Or it can
refer to a metric that captures several attributes at once, like the accumulated
cyclone energy.

1.2 What is a statistical model?

Statistics is a way to describe and predict tropical cyclone activity. Like people
all hurricanes are unique. A person’s behavior might be difficult to anticipate,
but the average behavior of a group of people is quite predictable. A particu-
lar hurricane may move eastward through the Caribbean Sea, but on average
hurricanes travel westward with some degree of regularity. Statistical models
quantify this regularity and assign a level of uncertainty to it. Indeed statistical
models provide a syntax for the language of uncertainty. Preference is given to
models that are simple, elegant, and explanatory.

1.3 Data

Much of what we know about tropical cyclone activity derives from data. Sta-
tistical models are built from data. Observational precision generally increases
over time leading to heterogeneous data sets, but a good strategy is to include
as much information as possible. One approach is to model the data directly
and include terms for the probability of missing reports and changing levels of
data precision. Another approach is to make adjustments to the data to reflect
the potential that a cyclone was not observed. In either case, models built on
a Bayesian framework are particularly flexible in this regard. The underlying
principle is the accumulation of evidence. Evidence can include historical or
geologic data that, by their very nature, are incomplete and fragmentary. This
is particularly important in climate change studies.
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1.4 Statistics and arithmetic

It might seem surprising but doing statistics is not the same as doing arithmetic.
For example, a strong hurricane hitting a region might be described as a 1-in-
100-year event. Doing arithmetic one might conclude that after a storm hits
there is plenty of time (100 − 1 = 99 years) before the next big one. This is
wrong. Doing statistics one can expect a storm of this magnitude or larger to
occur once in every 100 years on average, but it could occur next year with a
probability of 1 %. Moreover, storms only a bit weaker will be more frequent
and perhaps a lot more so.

1.5 Statistical models and empirical methods

A statistical model is an example of an empirical method. Empirical meth-
ods include the principal component techniques taught as part of a statistical
methodology course in meteorology, oceanography and geology. But a principal
component analysis is not a statistical model in the sense we mean here because
it lacks an estimate of uncertainty. It is not our intention to pit statistical mod-
els against alternative approaches and argue for supremacy; the best approach
will invariably depend on the application and the choice should be based on the
substance of the problem. Moreover the search for a universally best method is
quixotic.

1.6 Use R

Foundational pillars of science include transparency and reproducibility. The
powerful R language for statistical modeling makes developing, maintaining and
documenting code easy. It contains a number of built-in mechanisms for orga-
nizing, graphing, and modeling data. Directions for obtaining R, accompanying
packages and other sources of documentation are provided at http://www.r-

project.org/. Anyone serious about statistical modeling should learn R. We
provide some code here to help you get started.

2 Modeling tropical cyclone counts

2.1 Poisson distribution

As mentioned tropical cyclone activity typically refers to the number of storms
occurring within a region over a given time period. The data set UShur1851-
2010.txt contains a list of tropical cyclone counts by year making land fall in
the United States (excluding Hawaii) at hurricane intensity. To read the data
into R and save them as a data object type:

> landfall = read.table("UShur1851-2010.txt", header = T)

To examine the first six lines of the data object, type:
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> head(landfall)

Year US MUS G FL E

1 1851 1 1 0 1 0

2 1852 3 1 1 2 0

3 1853 0 0 0 0 0

4 1854 2 1 1 0 1

5 1855 1 1 1 0 0

6 1856 2 1 1 1 0

The columns include year, number of U.S. hurricanes, number of major U.S.
hurricanes, number of U.S. Gulf coast hurricanes, number of Florida hurricanes,
and number of East coast hurricanes in order. To make the individual columns
available by column name, type:

> attach(landfall)

The total number of years in the record is obtained and saved in n and the
average number of U.S. hurricanes is saved in rate using the following two lines
of code.

> n = length(US)

> rate = mean(US)

By typing the names of the saved objects, the values are printed.

> n

[1] 160

> rate

[1] 1.69375

Thus the 160 years of counts indicate a mean number of U.S. hurricanes equal
to 1.7.

The number of years with a particular hurricane count provides a histogram.
The shape of the histogram suggests that a Poisson distribution might be a
good model for hurricane counts. The Poisson distribution has the interesting
property that its variance is equal to its mean. The density function of the
Poisson distribution shows the probability of obtaining a count x when the
mean count is λ is given by

p(x) =
e−λλx

x!
. (1)

Thus the probability no events is p(0) = e−λ.
With λ = 1.7 hurricanes per year, the probability of no hurricanes in a

random year is

> exp(-1.7)
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[1] 0.1826835

Of course, this implies that the probability of at least one hurricane is 1 − .18
or 82 %.

You can do this for any number of hurricanes using the dpois function. For
example, to determine the probability of observing exactly one hurricane when
the rate is 1.7 hurricanes per year, type:

> dpois(x = 1, lambda = rate)

[1] 0.3113602

Or the probability of five hurricanes expressed in percent is

> dpois(5, rate) * 100

[1] 2.135399

Note that you can leave off the argument names in the function if the argu-
ment values are placed in the default order. The argument order can be found
by placing a question mark in front of the function name and leaving off the
parentheses. This brings up the function’s help page.

To answer the question, what is the probability of one or fewer hurricanes,
we use the cumulative probability function ppois as follows

> ppois(q = 1, lambda = rate)

[1] 0.495189

And to answer the question, what is the probability of more than one hurricane,
we add the argument lower.tail=FALSE.

> ppois(q = 1, lambda = rate, lower.tail = FALSE)

[1] 0.504811

You can simulate another sample of hurricane counts over this many seasons
with an annual rate of 1.7 hurricanes per year. You saved the number of years
and the rate, so to generate 160 random values from a Poisson distribution,
type:

> hu = rpois(n = n, lambda = rate)

For comparison, we plot the time series and histogram of the actual counts
above the same time series and histogram of the simulated counts in Fig. 1.
The counts vary from year to year and the values for a particular year do not
match values for those years from the actual sample, but the distribution is
quite similar with the most active year having seven strikes and about 30 of the
years having no hurricanes. This demonstrates one important use of statistical
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Figure 1: Time series and distribution of hurricane counts. The counts are
the annual number of U.S. land falling hurricanes. The top two panels show
the actual counts and the bottom two show a single realization from a random
Poisson model with a rate equal to the actual long-term land fall rate.
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models; to simulate random samples with the same statistical characteristics as
the observations.

This can be useful at the next level of analysis. An example is the use of
hurricane counts over time as input to a deterministic model of coastal sedi-
ment transport. Summary characteristics of a 100 years of tropical cyclones at
the location of interest may be of little value, but running a coastal sediment
transport model with a large number of 100-year cyclone samples may give a
realistic assessment of the uncertainty in hurricane-induced transport caused by
natural variation in activity.

As mentioned, tropical cyclone activity sometimes refers to a metric that cap-
tures several characteristics at once. Different metrics have been suggested with
the two most common being Accumulated Cyclone Energy (ACE) and Power
Dissipation Index (PDI). Empirical distributions of the PDI and ACE suggest
asymmetric probability density functions (specifically, a positive skewness) so a
useful model for the PDI might be a gamma or a Weibull distribution.

The components of these metrics including cyclone frequency, intensity, and
duration are controlled by different environmental factors and each has a dif-
ferent statistical distribution, so it would be possible to combine separate (not
necessarily independent) models for each component. A statistical model of
aggregated hurricane wind losses uses this approach where the number of loss
events is modeled as a Poisson distribution with the amount of loss given an
event modeled as an independent log-normal distribution.

2.2 Regression models

We saw in the previous section that the parameter of interest in a Poisson model
for hurricane counts is the rate. Given the rate, we can generate a probability
distribution corresponding to the possibility of having any number of hurricanes.
But what if the rate of hurricanes depends on climate variables or is trending?
Note how the question is worded. Focus is on the rate of hurricanes. Given the
rate, the counts follow a Poisson distribution.

If interest is on the relationship between climate variables and hurricane
frequency then a regression model that specifies that the logarithm of the annual
rate is used. The logarithm of the rate is linearly related to the predictors,
expressed statistically as:

log(λ) = β0 + β1x1 + . . . + βpxp + ε. (2)

Here there are p predictors indicated by the xi’s and p + 1 coefficients (βi’s).
The vector ε is a set of independent and identically distributed residuals. The
assumption of independence can be checked by examining whether there is tem-
poral correlation or other patterns in the residual values.

Note the above Poisson regression model uses the logarithm of the rate as
the response variable. This is different than a regression on the logarithm of
counts. Poisson regression is nonlinear in the regression function, but linear in
regression structure and the model coefficients are determined by the method of
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maximum likelihoods rather than the method of least squares used in ordinary
regression.

As a side note, the word “predictor” is the generic term for an explanatory
variable in a statistical model. A further distinction is sometimes made between
covariates, which are continuous-valued predictors and factors, which can take
on only a few values that may or may not be ordered.

The Poisson regression model in equation 2, in which the logarithm of the
rate of occurrence is a linear function of predictors, is a generalized linear model
(GLM). It can be extended by considering smooth functions for terms on the
right-hand side. This is known as a generalized additive model (GAM) and the
functions can be parametric or non-parametric. This allows a covariate to have
a nonlinear relationship with the rate function.

2.3 Choosing predictors

Statistical modeling usually refers to choosing a set of variables that can be used
to predict the response. A particular set defines a candidate model. A problem
arises when there are a large number of candidate models. How do you choose?
There are some strategies.

To help decide whether to include a variable in a model, it is important to
have a statistic that accounts for a better model fit (reduced bias) and the loss
of a degree of freedom (increased variance). The degrees of freedom are the
sample size minus the number of model parameters. Adding a variable to the
statistical model reduces the bias but increases the variance. This is known
as the bias-variance trade-off. A commonly used statistic that preforms this
trade-off calculation is called the Akaike Information Criterion (AIC) given by

AIC = 2(p + 1) + n[log(SSE/n)], (3)

where p is the number of predictors and SSE is the residual sum of squares. We
can compare the AIC values when each predictor is added or removed from a
given model. For example, if after adding a predictor, the AIC value for the
model increases then the trade-off is in favor of the extra degree of freedom and
against retaining the predictor.

Stepwise regression is a procedure (not a model) for automating model se-
lection. It is useful for finding the best model from a large set of candidate
models under the condition that the models depend linearly on their unknown
parameters (models are nested).

Another issue to consider is the correlation among predictors (collinearity).
Correlation between predictors (r > .6) can result in an unstable model be-
cause the standard errors on the predictor coefficients are not estimated with
enough precision. This means that it might be hard to tell whether the re-
sponse increases or decreases for a given change in the predictor even if there
exists strong correlation between the response and the predictor variable. An
informative prior understanding of the partial correlation may help argue in fa-
vor of retaining two highly-correlated predictors, but in the usual case of a vague

7



Model Number

1 4 7 12 19 28 39 52 67 84 105 133 165 202 244 291 344 405

ssn.May
ssn.Jun
ssn.Jul

ssn.Aug
ssn.Sep
ssn.Oct
soi.May
soi.Jun
soi.Jul

soi.Aug
soi.Sep
soi.Oct

nao.May
nao.Jun
nao.Jul

nao.Aug
nao.Sep
nao.Oct
sst.May
sst.Jun
sst.Jul

sst.Aug
sst.Sep
sst.Oct

C
ov

ar
ia

te

Figure 2: Model covariates versus model number. The covariates are individual
monthly (May through October) averages of North Atlantic sea-surface temper-
ature (sst), the North Atlantic oscillation (nao), the Southern Oscillation Index
(soi), and sun spot numbers (ssn). If a covariate with a positive (negative)
relationship with U.S. hurricanes is included in the model it is indicated by a
red (blue) bar. The bar height is constant and the bar width is proportional to
the probability of the model given the data. Model probabilities decrease with
increasing model number.

prior it is better to eliminate the predictor whose relationship with the response
variable is harder to explain physically or that has the smaller correlation with
the response variable.

2.4 Using a consensus model

A consensus model is an attractive alternative to choosing a single best model.
Using Bayes’ rule, which states that the posterior probability is proportional
to a prior distribution times the likelihood function, a probability is computed
for a set of candidate models given the data. As an example, Fig. 2 shows 24
predictors (vertical axis) of U.S. hurricane frequency versus model number.

A predictor is colored red or blue if it is included in the model. Predictor
inclusion is based on selection criterion similar to the AIC. The models are
ordered from left to right by decreasing probability. The predictor candidates
are listed on the vertical axis. The bar color corresponds to the parameter sign
(red for positive and blue for negative). The signs indicate the chance of a U.S.
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hurricane increases with July SST, July SOI, and June SSN and decreases with
September SSN. The width of the bar is proportional to the model’s probability
so the bars become narrower with increasing model number.

Predictions are made using each model and then averaged. The average
is weighted by the model’s probability. The assumption is that each model
explains the data to some degree or another. By using many models the uncer-
tainty associated with model selection is automatically included in the prediction
variance.

2.5 Cross validation

If the statistical model will be used to make forecasts, a cross validation is
needed. Cross validation is a procedure to assess how well a prediction algo-
rithm (whether or not it involves model selection) will do in forecasting the
unknown future. In the case of independent hurricane seasons, the cross vali-
dation typically involves withholding a season’s worth of data, developing the
algorithm on the remaining data, then using the algorithm to predict data from
the withheld season. The result is an estimate of out-of-sample error that will
more precisely capture actual forecast errors when the model is used to predict
the future.

3 Modeling tropical cyclone intensity

3.1 Parametric models

How strong a hurricane gets depends on a number of conditions including but
not limited to the amount of ocean heat, proximity to land, and wind shear.
One indicator of the accumulated effect of these conditions over the life of a
hurricane is its lifetime strongest wind speed. A more practical concern might
be the highest tropical cyclone wind speed over a limited area (a city) over a
given year.

A useful statistical model for wind speeds from tropical storms affecting
a given area is the Weibull distribution. Expressed in terms of a cumulative
distribution where Pr(W > v) is the probability of observing a wind speed from
a tropical cyclone exceeding some threshold wind speed value v, the survival
function of the Weibull distribution is

Pr(W > v) = exp
[

−
(v

b

)a]

(4)

where a is the shape parameter and b is the scale parameter.
For example, for the set of lifetime stongest wind speeds for all North Atlantic

tropical cyclones (over 17 m s−1) over the period 1981–2006, a is estimated
(using the method of maximum likelihoods) to be 2.64 and b is estimated to be
42.5 m s−1. Thus given the data and the statistical model, the probability that
a random tropical cyclone will have wind speeds stronger than 50 m s−1 is given
by
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> exp(-(50/42.5)^2.64)

[1] 0.2152839

or 21.5 %. A limitation of the Weibull model for these wind speeds is the data
have a lower bound. The bound is used to define the event as a tropical cyclone.

For the strongest wind speeds a generalized Pareto distribution (GPD) is a
better alternative. For example, the exceedances W − u (peaks over threshold)
are modeled as samples from a GPD, so that for a hurricane with wind speed
W ,

Pr(W > v|W > u) =

(

1 +
ξ

σ
[v − u]

)

−1/ξ

(5)

where σ > 0 and σ + ξ(v − u) ≥ 0.
In the Weibull and GPD cases, a Poisson model for the frequency of storms

above the threshold wind speed is needed to specify a return period or annual
probability for a given wind speed or stronger. The model parameters includ-
ing the shape and scale for the Weibull and ξ and σ for the generalized Pareto
distribution and the frequency rate λ can be adjusted or regressed to study how
climate variables influence wind speed return periods. The GPD model is par-
ticularly useful in the context of examining sediment records of storminess since
the marine signature is interpreted as a threshold event indicating a prehistoric
storm of this magnitude or greater.

3.2 Quantile regression

Quantile regression is an alternative approach for examining climate influences
on wind speed exceedances. Quantile regression extends ordinary regression to
quantiles of the response variable. Quantiles are points taken at regular intervals
from the cumulative distribution function of a random variable. Quantiles mark
a set of ordered data into equal-sized data subsets. To illustrate, suppose in a
sample of wind speeds 25 % of them are less than 20 m s−1, 50 % of them are
less than 35 m/s and 75 % are less than 45 m s−1. Thus we state there is an
equal number of wind speeds between 20 and 35 m s−1 as there is between 35
and 45 m s−1.

Ordinary regression is a model for the conditional mean, where the condi-
tioning is on the value of the explanatory variable. Likewise, quantile regression
is a model for the conditional quantiles. It can be considered a semi-parametric
technique because it relies on quantiles (non-parametric), but uses parameters
to assess the relationship between the quantile and the covariates. In general,
parametric models are more informative. A parametric model involves more
stringent assumptions, but it is a good strategy to start with stronger assump-
tions and back off toward weaker assumptions when necessary. However, para-
metric models are more sensitive to outlying data points and the parameters
may not be as easy to understanding physically.

Figure 3 shows the results of a quantile regression model using North At-
lantic lifetime maximum intensity as the response variable and Atlantic SST
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Figure 3: Quantile trends with respect to Atlantic SST controlling for ENSO.
For an increase in SST there are increases in hurricane intensity with increases
generally larger (above 10 m s−1 per ◦C) at higher hurricane intensities. Statisti-
cally significant trends are noted for quantile values above the median hurricane
intensity.

and Pacific SOI as the explanatory variables. The trend values are plotted for
percentile values of wind speed between 5 % and 95 % in intervals of 5 %. Trend
values for Atlantic SST range from near zero for weaker hurricanes (lowest quan-
tiles) to between 10 and 15 m s−1 per ◦C for stronger hurricanes. The trends
are statistically significant for hurricanes above the 60th percentile (on average,
above 52 m/s) as can be seen by the 90 % confidence band above the zero trend
line. The trend peaks at 16 m s−1 per ◦C at the 75th percentile with a 90 %
confidence interval of between 7 and 20 m s−1 per ◦C. The mean regression line
indicates a trend of about 5 m s−1 per ◦C which is statistically significant above
the zero trend line as indicated by the dashed lines (90 % confidence intervals).

3.3 Changes in frequency and intensity

There tends to be some confusion about the relationship between changes in the
intensity and changes in the frequency of tropical cyclones. Today on average
approximately 20 % of the strongest cyclones globally exceed 49 m s−1. Suppose
that with a 1 ◦C rise in ocean temperature, 20 % of the strongest cyclones
exceed 51 m s−1 in the future. This means that the 80th percentile intensity
increases by only 2 m s−1. However, in terms of frequency, today 17 cyclones
per year exceed 49 m s−1 and 13 exceed 51 m s−1. After a 1 ◦C warming 51
m s−1 is the new 80th percentile thus, without a change in the overall number
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of cyclones, 13 becomes 17. So although the theory relates warmer oceans to
stronger hurricanes, a future increase in the percentile intensity might mean
more strong hurricanes.

4 Modeling tropical cyclone activity spatially

Hurricane climate studies are hampered by the relatively short archive of storms.
The sample size can be increased by modeling hurricane activity spatially. Spa-
tial statistical models are widely used in epidemiology, but have yet to be em-
ployed in hurricane climatology. The key components are a method to spatially
aggregate storm data and models that make explicit use of the resulting spatial
autocorrelation.

A scaffolding is need to colocate track-relative attributes with climate data.
A tessellation of the tropical cyclone domain using hexagonal grids is one exam-
ple. Hexagons are more efficient than squares at covering storm tracks meaning
for equal area grids, it takes fewer hexagons than squares to cover the track.

Values obtained by aggregating observations within contiguous grids will, in
general, be self (auto) correlated. Neighboring grid values will tend to be more
similar than grid values farther away. Like temporal autocorrelation, spatial
autocorrelation is about this proximity, but it is more complex because of the
extra dimension.

Spatial statistical models incorporate spatial autocorrelation. This makes
the model parameters stable and statistical tests more reliable. For instance,
confidence intervals on a regression slope from a spatial regression model will
have the proper coverage probabilities and the prediction errors will be smaller
compared with the non-spatial alternative.

Spatial dependency can enter the regression model directly by adding a
lagged variable to the model or by adding a spatially correlated error term.
Spatial dependency can also enter the model by allowing the relationship be-
tween the response and the predictors to vary across the tiling. This is called
geographically-weighted regression and the model parameter values vary with
grid location.

This is accomplished by weighting the grid values near the grid of interest
more than the grid values farther away. For example, a regression of storm
intensity on SST is performed at a particular hexagon grid using the paired
intensity and SST values at each grid across the domain, with the paired values
inversely weighted by their distance to the particular grid. Geographically-
weighted regression is thus equivalent to local linear regression in the space of
predictor variables.

Interest may be storm intensity as a function of SST, but the highest storm
intensity within the grid will also depend on the number of observations. In
general a grid with a larger number of storm hours will have a higher intensity.
Thus the spatial model includes SST and storm hours as covariates in which
case the SST coefficient is the marginal effect on intensity after accounting for
storm hours.
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Figure 4 shows the results. The grids are colored according to the value
of the SST coefficient. Hexagons with positive coefficients indicating a direct
relationship between storm strength and ocean warmth in m s−1 per ◦C are
displayed in yellow to red colors and those with negative coefficients are shown
with blue hues. Grids with the largest positive coefficients (greater than 4 m s−1

per ◦C) are found over the Caribbean Sea extending into the southeast Gulf of
Mexico and east of the Lesser Antilles. Positive coefficients extend over much
of the Gulf of Mexico and northeastward up the eastern seaboard. A region of
negative coefficients (greater than −4 m s−1 per ◦C) is noted over the central
North Atlantic.

To assess model adequacy the residuals from the model are examined. A
residual is the difference between the intensity observed in the grid and inten-
sity predicted by the geographically-weighted regression model. Other spatial
regression models can be employed using this framework. For instance, if inter-
est is on cyclone counts or the presence/absence of cyclones then a Poisson or
logistic model is used.

5 Future work

Recent upward trends in hurricane activity have spurred a healthy debate on
the possible connection between hurricane activity and climate change. Much
of the contention derives from results using bi-variate analysis with basin-wide
data. Results from multivariate statistical models will clarify issues in this
debate. Models capable of handling data that are not all equally precise will
also help. In particular, the spatial modeling framework described here is quite
useful for combining numerical model output with observations. Output from a
global circulation model can be respecified from latitude/longitude coordinates
to equal-area hexagons providing a basis for comparing storm climatologies from
different models. Careful application of statistical models will lead to a better
understanding of the physical mechanisms underlying the relationship between
hurricanes and climate.
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Figure 4: Effect of SST on storm intensity (a) Trends in grid maximum intensity
as a function of SST holding storm count constant. A geographically-weighted
regression is used to borrow information from neighboring grids. The bandwidth
for the smoothing is 256.5 km. (b) The ratio of the trend to the standard error
of the trend as a measure of statistical significance. Values greater than an
absolute value of 2 are considered significant above a trend of zero and are
shaded using an inverted color transparency level.
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