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ABSTRACT

In a recent paper Mohan et al. presented a reanalysis of climatic data using concepts from the theory of
dynamical systems. The data is the oxygen isotope ratio '*Q/'%0 record of the V28-238 deep sea core covering
a period of a million years at a sampling time of 2 Kiloyears. This dataset was first analysed by Nicolis and
Nicolis who reported that the dynamics of the records may be explained by a low-dimensional dynamical
system. We take this opportunity to bring to the attention of the scientific community some major problems
involved with the reanalysis of the data hoping that this comment will serve as a reference for other analyses

of different datasets in the future.

1. Introduction

According to the theory of dynamical systems, the
best way to study the dynamics of a system is via the
state space. The state space is a coordinate system
whose coordinates are the variables that describe the
system. At each time step the state of the system can
be represented by a point in the state space. By con-
necting these points a trajectory that describes the evo-
lution of the system is defined. This trajectory con-
verges on the attractors, which describe the asymptotic
final state of the system. The attractors may be simple
topological structures such as a point, a limit cycle, or
a torus; or they can be nontopological submanifolds
characterized by fractal geometry (see for example
Tsonis and Elsner 1989).

If the mathematical description of a dynamical sys-
tem is given, the number of variables is known and the
generation of the state space and of the attractor is
straightforward.

If the mathematical formulation of a system is not
available, the state space can be replaced by the phase
space. The phase space may be produced using a single
record of some observable variable x(¢) from that sys-
tem (Packard et al. 1980; Reulle 1981; Takens 1981),
using x(2) and its successive shifts as the coordinates.
Thus, given an observable x(t), one can generate the
complete state vector X (¢) by using x(¢ + 7) as the
first coordinate, x(z + 27) as the second coordinate,
and x(t + n7) as the last coordinate. Here 7 is a suitable
delay parameter. This way we can define the coordi-
nates of the phase space, which should approximate
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the dynamics of the system from which the observable
x(t) was sampled (or in other words the unknown state
space). The parameter n is often referred to as the
embedding dimension. For an n-dimensional phase
space, a “cloud” or a set of points will be generated.
The Hausdorfl-Besicovitch dimension of this set can
be estimated by covering the set by n-dimensional
cubes of side length / and determining the number of
cubes N(/) needed to cover the set in the limit as / goes
to zero (Mandelbrot 1983). This is the box-counting
algorithm and if this number scales as

N(Dal™
1-0 (1)

then the scaling exponent 4 is an estimation of the
Hausdorff-Besicovitch dimension for that n. In a
logN(!) vs. log/ plot, the exponent d can be estimated
by the slope of a straight line (the scaling region ). Using
the state vector X (¢) we can test Eq. (1) for increasing
values of n. If the original time series is random, then
d = n for any n (a random process embedded in a n-
dimensional space always fills that space). If, however,
the value of d becomes independent of n (that is,
reaches a saturation value D;), it means that the system
represented by the time series has some structure and
should possess an attractor whose Hausdorff-Besico-
vitch dimension is equal to Dy. The above procedure
for estimating D, is a consequence of the fact that the
actual number of variables present in the evolution of
the system is not known and thus we do not know a
priori what 7 should be. We must, therefore, vary n
until we “tune” to a structure that becomes invariant
in higher embedding dimensions (an indication that
extra variables are not needed to explain the dynamics
of the system in question).

The above numerical approach to estimate the di-
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mension of an attractor from a time series is, however,
very limited. The reason for that is that an enormous
number of points on the attractor is required to make
sure that a given area in the phase space is indeed empty
and not simply visited rarely. It has been documented
(Froehling et al. 1981; Greenside et al. 1982) that a
box-counting approach is not feasible for phase space
dimensions greater than two.

An alternative approach, which is much more ap-
plicable, has been developed by Grassberger and Pro-
caccia (1983a, 1983b). This approach again generates
in an n-dimensional phase space a cloud of points. But
instead of covering the set with hypercubes, it finds the
number of pairs N(r, n) with distances less than a dis-
tance r. In this case, if for significantly small r, we find
that

N(r, n)ar®, (2)

The scaling exponent d is the correlation dimension
of the attractor for that n. We then test Eq. (2) for
increasing values of n and check, as previously done,
for a saturation value D,, which will be an estimation
of the correlation dimension of the attractor. It should
be mentioned at this point that 7 can be small, but
care should be taken not to include in the sums pairs
whose time separation is less than the correlation time.
The correlation dimension D, is less than the Haus-
dorfi-Besicovitch (or fractal) dimension D, and ac-
tually measures the spatial correlation of the points
that lie on the attractor. For a random time series there
will be no such spatial correlation in any embedding
dimension and thus no saturation will be observed in
the exponent d>. The above approach still requires a
large number of points (especially for high embedding
dimensions), but at least it is more feasible than the
box-counting method. Thus, most of the analyses up
to date [including the analysis of Mohan et al. (1990;
MRR )] have concentrated in calculating D,. It should
be mentioned here that one very important conse-
quence of knowing the Hausdorff~Besicovitch or any
other dimension of an attractor is that the dimen-
sionality of an attractor, whether fractal or not, indi-
cates the minimum number of variables present in the
evolution of the corresponding dynamical system (in
other words the attractor must be embedded in a state
space of at least its dimension ). Therefore, the deter-
mination of the Hausdorff-Besicovitch dimension (or
for that matter of any other generalized dimension ) of
an attractor sets a number of constraints that should
be satisfied by a model used to predict the evolution
of the system.

2. Critical embedding dimension

The problems begin when researchers use experi-
mental data to reconstruct the attractor, causing the
existence of the scaling region to depend greatly on the
amount of data. As we will try to argue next, given a
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certain amount of data there exists a critical embedding
dimension, #., beyond which the procedure for esti-
mating any dimension is invalidated and should not
be attempted.

Because of Eq. (2), the population of pairs of points
on smaller scales is smaller than the population of pairs
on longer scales. Thus, if for a fixed # the number of
points in the set becomes smaller, the population of
pairs over the scales for which Eq. (2) holds begins to
be depleted. As we continue to decrease the number
of points (for our fixed »n always) we will observe:

a) more and more depletion at smaller scales (since
less and less points will be found) and

b) large fluctuations of N(r, n) due to small pop-
ulations at larger scales.

The net result is that the scaling region may be com-
pletely masked. Any straight line fitting at this point
will result in a false correlation dimension for that 7.
Thus for an accurate estimation of the slope d> on a
logN(r, n) versus logr plot requires a minimum number
of points.

It should now be emphasized that by embedding the
dataset into continually higher dimensions we effec-
tively “distribute” the same number of points into
continually higher dimensional space. In effect we go
from a densely populated low-dimensional space to a
sparsely occupied high-dimensional space. The result
will be the same as before: for very small scales N(r,
n) goes to zero (depopulation) and for large scales
(scales close to the radius of the set) N(r, n) = N in-
dependently of r and n(saturation). Thus, at some
embedding dimension the scaling region will not be
clearly defined as it will be “lost” between depopulation
and saturation. The embedding dimension above
which the scaling region cannot be accurately defined
is called the critical embedding dimension n,. The
above points have been emphasized by Essex et al.
(1987), but unfortunately have not been seriously
considered in several reported climate and weather at-
tractor reconstructions including that of MRR.

We now wish to demonstrate the above by starting
with a time series of 500 white noise values. We know
that in this case for any embedding dimension @, = n
(as long as we use the necessary number of points for
each n). We started with embedding dimension # = 2
and found logN(r, n) as a function of logr and then
we calculated

slope = A logN(r, n)/A logr

as a function of logr. If there exists a clearly defined
scaling region in the logN(r, n) versus logr plots then
we should be able, on a slope versus logr plot, to observe
a plateau. This plateau will provide an estimation for
the exponent d, for a given n. Figure 1 shows slope
versus logr for n = 2 (triangles), n = 6 (squares), and
n=15(stars). Forn =2 we observe that slope is nearly
constant at about a value of two for a wide range of
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FIG. 1. A logN(r, n)/ A logr as a function of logr for embedding
dimension 2 (A), 6 ((J), and 15 (). Based on a record of 500 white
noise values. See text for details.

- scales. When the scales become too large, saturation
indicated by a gradual decrease of slope is seen. De-
population is not visible (at least within the scale range
of the figure). Therefore we may conclude that 500
points are adequate in defining the scaling region when
n = 2. For n = 6 we observe a very different picture.
We see depopulation manifesting itself as many zero
slope values over small scales, large fluctuations over
larger scales, and saturation over very large scales. A
scaling region can be suggested (indicated by the ar-
rows) but it is not as clearly defined or as wide as in
the case of n = 2. Nevertheless this small plateau is
found at about slope = 5.0, which is less than the true
value of 6.0. Thus an attempt here to define a scaling
region will at best result in an underestimation of the
true value of the exponent d5. Similar comments can
be made for n = 15; here the difference shows that
there is virtually no way one can define a scaling region.

" Figure 2a is similar to Fig. 1 but for n = 4. Similar
comments to those made in Fig. 1 for » greater or equal
to 6 can be made for Fig. 2a. A scaling region (indicated
by the arrows) may be identified but it will produce a
value of d, = 3.5 (which is less than the true value of
4.0). However, in Fig. 2b (with 5000 points), a well-
defined scaling region exists with a value of d, = 4.0.
It is important to note that the true scaling region here
is at smaller scales compared to the scaling region that
is identified when 500 points are used (where the true
scaling region is masked by large fluctuations).

The above figures clearly demonstrate what was dis-
cussed previously. We should be very careful not to
exceed the critical embedding dimension that is a
function of the data size. In fact with 500 data points
the scaling region is ill-defined and any estimated value
of the exponent d, is false for n greater that 3.0. There-
fore it should not be attempted nor reported.

We find no justification at all in MRR for going
from 512 points up to embedding dimension » = 15
and actually estimating a slope. As can be seen from
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Figs. 1 and 2, the scaling region is not found in a fixed
interval of scales. In general as n increases the logN(r,
n) versus logr plot is shifted towards higher  values. It
is shown that even if the scaling region exists for any
n, it does not exist over the same scale range for all
embedding dimensions. Thus it is not appropriate to
estimate d, by considering the points that fall within a
fixed interval in logr throughout a logN{r, n) versus
logr plot. The scaling region, and consequently the
slope, should be estimated using figures like our Fig. 1
or Fig. 2. Thus we believe that all the slope values re-
ported by MRR in Figs. 2 and 3, as well as the accom-
panied interpretations and conclusions, are in error.
Moreover, it is particularly confusing that MRR state
in section 3 and in their conclusions that it is not pos-
sible to embed the data in more than three dimensions
and obtain meaningful results; and yet they go ahead
and present results and conclusions by embedding the
data up to an embedding dimension n = 15. In the
initial analysis Nicolis and Nicolis (1984) went up to
embedding dimension six and used a random sample
to test the significance of their results.

3. Conclusions

Although MRR raise some interesting points their
reanalysis may confuse the scientific community about
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FiG. 2. a) As in Fig. 1 but for embedding dimension 4. b)
As in Fig. 2a but for a record of 5000 white noise values.
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the usefulness and the correct methods used in the
search for attractors in climatic and/or weather ob-
servables. The theory of dynamical systems and chaos
has provided us with new tools in analyzing observ-
ables. Whether or not low-dimensional attractors exist
in nature is still debatable. Thus it is very critical that
we apply these new theories with the utmost of care.
Otherwise we may damage a theory that right now
shows a great deal of promise.
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