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The weather attractor over very
short timescales

A. A. Tsonis & J. B. Elsner

Department of Geosciences, University of Wisconsin-Milwaukee,
Milwaukee, Wisconsin 53201, USA

Recent work has used ideas from the theory of dynamical systems
in the study of climate and weather over timescales ranging from
decades to hundreds of thousands of years'~>. In this study, similar
ideas are applied to weather observations over a time interval of
11 hours. The results suggest the existence of a low-dimensional
strange attractor.

According to the theory of dynamical systems®, the evolution
of a system can be described by trajectories in the state space.
The coordinates of the state space are defined by the variables
needed to completely describe the evolution of the system. Each
trajectory in the state space represents the evolution of the system
from some initial condition. If the system exhibits an attractor,
all trajectories initiated from different initial conditions will
eventually converge and stay on a submanifold of the total
available space. This submanifold ‘attracts’ the trajectories and
it is called an attractor. For systems that develop deterministi-
cally, their attractors are low-dimensional smooth topological
manifolds such as points, limit cycles and toruses. These attrac-
tors are, therefore, characterized by an integer dimension that
is equal to the topological dimension of the submanifold in the
state space. An important property of these attractors is that
trajectories converging on them do not diverge, and thus stay
at a constant distance from each other. This property guarantees
long-term predictability of this system. But the trajectories do
not have to stay on a smooth topological manifold. For many
dynamical systems it has been found that the trajectories stay
on an attracting submanifold that is not topological. These
submanifolds are called ‘fractal’ sets and are characterized by
a dimension that is not an integer’. The corresponding attractors
are called ‘strange’ attractors. An important property of these
attractors is the divergence of initially nearby trajectories. Such
an action imposes limits on prediction®. Thus, long-term pre-
dictability for these systems is not guaranteed. Such systems are
then deterministic only in the sense of being described by well
behaved differential equations, but they are not periodic or
quasi-periodic (even if they are not disturbed irregularly)®. Note
that the dimensionality of an attractor, whether fractal or not,
indicates the minimum number of variables present in the evol-
ution of a system. Therefore, the determination of the dimension
of an attractor sets a number of constraints that should be
satisfied by a model used to predict the evolution of a system.

In the case where the exact mathematical formulation of the
system is not available, the state space can be replaced by the
phase space which can be produced using a single record of
some observable variable from that system'®'". If this system is
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Fig. 1 a, The data used in this study represent 10-second averages
of the vertical wind velocity over 11 hours. The data were recorded
from 0630 to 1730 MST (Mountain Standard Time) on 26 Septem-
ber 1986 at Boulder, Colorado. At about 0630 the sun rises. The
air close to the ground is heated and rises, creating strong convec-
tion. Positive values indicate updrafts and negative values indicate
downdrafts. b, The autocorrelation function for the above data.
The inset graph is a magnification of the region close to the origin.
¢, The logarithm of the spectral density as a function of the
frequency for the above data. The spectra show various peaks on
a background of a continuous frequency spectrum. This suggests
that a strange attractor may be present.

the atmosphere, for instance, then the observable variable could
be the temperature or the pressure or the geopotential. Nicolis
and Nicolis' were the first to apply the above ideas in climatic
studies. Using single-variable values of the oxygen isotope
records of deep-sea cores spanning the past million years, they
reported a dimension for the climatic attractor equal to 3.1.
Fraedrich®® and Essex et al* have also analysed weather data
over timescales ranging from 15 to 40 years and reported a
dimension of the weather attractor between 6 and 7.

Given an observable, say x(t), if the attractor has finite
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Fig. 2 Plot of In N(r, n) against In r for embedding dimensions,
n=4,6,8, 10, 12. Note the convergence of slopes as n increases.

dimension the complete state vector X(¢) can be constructed
by the following process'®'': x(t+ 7) is used as the first coordin-
ate, x(t+27) as the second . . . and x(1+ n7) as the last, 7 being
the delay parameter. Thus, for an n-dimensional phase space,
a ‘cloud’ of points will be generated. From this ‘cloud’ the
number of pairs can be found, N{(r, n), with distances less than

a distance r. If for significantly small r we find that
N(r,myer (1)

we call d the (correlation) dimension of the attractor for that
n (ref. 12). We can then test equation (1) for increasing values
of n (the embedding dimension of the phase space). If the value
of d becomes independent of n (that is, it reaches a saturation
value, d,), this is evidence that the system represented by the
time series should possess an attractor with a dimension equal
to d;; otherwise the time series is random.

It is important to note that when determining the dimension
of the attractor (for any embedding dimension of the phase
space), only pairs that are separated by a time interval greater
than the decorrelation time should be considered. In addition,
one should be very cautious in using very few actual data points
or highly smoothed data: wrong conclusions can be drawn if
the above-mentioned points are not taken into consideration™”.

In this work, 10-second averages of the vertical wind velocity
recorded 10 metres above the ground over an 11-hour period
are analysed. Thus, the total number of points is 3,960. The data
are over a timescale much smaller than the previous analyses,
and were recorded from 0630 to 1730 MST (Mountain Standard
Time) on 26 September 1986 by the National Oceanic and
Atmospheric Administration in Boulder, Colorado. Figure 1
shows the data, their autocorrelation and spectral density func-
tion. The decorrelation time may be defined as the lag time at
which the autocorrelation falls below a threshold value. This
threshold value is not uniquely defined, and in general it depends
on the problem in hand and the assumptions about the data set.
In meteorology this threshold value is commonly defined as 1/ e,
especially if the autocorrelation function is nearly exponential >,
Figure 1b (inset) indicates that the autocorrelation function
decays nearly exponentially. But in view of the potential prob-
lems when correlated pairs are included in the calculations®?,
we decided to be more conservative. We thus used a decorrela-
tion time that is more ‘restrictive’ and at the same time allowed
us to work with a sufficiently large number of pairs. We adapted
a decorrelation time equal to 20 seconds. For time lags greater
than 20 seconds, the autocorrelation drops and remains below

squares to a random sample of the same size as the wind data.

Note the saturation of the scaling exponent observed for the wind

data, although there is no saturation for the random set. From this
figure we estimated d,=7.3.

a value of ~0.10. Figure 2 shows the logarithm of the number
of pairs plotted against the logarithm of r for 7 =10 seconds
for selected embedding dimensions. From this information for
each embedding dimension, the scaling region is determined
and its slope is calculated by fitting a straight line in that region.
The scaling region is usually observed in the region 3.0<
In N(r, n) <11.0. The slope of the straight line gives the scaling
exponent d in equation (1). An excellent discussion about the
scaling behaviour of a particular data set and the possible
problems associated with fitting a straight line to intervals of r
for which r is too large or too small is given by Essex et al®.
Figure 3 shows this scaling exponent as a function of the
embedding dimension, together with a plot representing our
time series as a random sample of the same size as our data set.
As can be seen in Fig. 3, as n increases, d » d;=7.3, but note
that no such saturation is observed for the random sample.
Therefore, we can conclude that the system represented by the
vertical wind velocity series possesses an attractor. The non-
integer dimensionality of the attractor indicates that the attract-
ing submanifold is a fractal set and that the attractor is ‘strange’.

In that case, the value of d; suggests that over very short
timescales the weather might be represented as a dynamical
system with at least eight degrees of freedom (eight differential
equations). We thus share the conviction of Nicolis and Nicolis"*
and Essex et al® that the atmosphere exhibits properties of a
low-dimensional attractor, even though our work refers to a
timescale smaller than theirs.

Our analysis was focused on daytime data. During the night
the forcing of the Sun is minimum and the wind data do not
fluctuate significantly above a mean value of about zero. Thus
during a 24-hour interval, the system switches back and forth
between dynamical regimes of low and intense activity. Thus,
if night-time data are included in the calculation of the correla-
tion dimension, a large number of data points will cluster around
one point in the phase space. The result will be an underestima-
tion of the correlation dimension. The above problems are
avoided when daytime data are used. The question then arises
whether or not the weather attractor over night is of the same
dimension as over day, and how the internal dynamics unravel
from the day-night cycle. Work in this area is in progress.

It is interesting to speculate on the results reported above. In
the early sixties, Lorenz'> demonstrated that a dynamical system
consisting of the three differential equations that give the
description of a horizontal fluid layer heated from below exhibits
a strange attractor. The warmer fluid formed at the bottom is
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lighter and it tends to rise, creating convection currents. This
phenomenon takes place in the Earth’s atmosphere, where the
air close to the ground is heated and rises. This monumental
work provided the first mathematically based explanation for
the unpredictability of weather. The data analysed here are
strongly connected with convection, and the results suggest that
in reality the dynamical svstem that will produce such data
should be described by at least eight differential equations, thus
being much more complicated and more unpredictable.

Our results support the existence of a low-dimensional attrac-
tor, but should be interpreted with caution. As shown in Osborne
et al'®, under certain circumstances a stochastic signal may be
simulated with a similar structure as some observed data which
(stochastic signal) may have a small, finite value for the correla-
tion dimension, even when no underlying attractor is present.
Even though this does not necessarily imply that the existence
of a small, finite dimension in some observed data is not due
to a strange attractor, we think that it is worth mentioning. We
hope that research in this area will be beneficial to the debate
about the possible existence of low-dimensional attractors in
weather and climate or in other systems.
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A guide to Phanerozoic cold polar
climates from high-latitude
ice-rafting in the Cretaceous

L. A. Frakes & J. E. Francis

Department of Geology and Geophysics, University of Adelaide,
GPO Box 498 Adelaide, South Australia, 5001

The high-latitude extent of warm-climate indicators at certain
times in Earth history has been considered as evidence that the
globe was ice-free for long intervals, despite theoretical consider-
ations and results from numerical modelling experiments'~
indicating that this was unlikely. One of the warmest periods, the
Cretaceous, displays faunal and floral evidence for ‘cool-
temperate’ to ‘sub-tropical’ conditions very near to the poles.
However, our studies of Lower Cretaceous mudstones of central
Australia that contain outsized exotic blocks have led to the
conclusion that the blocks were emplaced by ice-rafting, implying
that high-latitude ice was present at sea level. Strata of a similar
origin of mid-Jurassic to mid-Cretaceous age occur on other
continents that were positioned between 65° and 78° palaeolatitude.
Indeed, there is a record of high-latitude ice-rafting throughout
the Phanerozoic, suggesting that ice was present on Earth for
much of its history, and that ice-free conditions could have been
at most only episodic over the past 600 Myr.

During the early Cretaceous, central Australia was positioned
in mid to high latitudes® and was occupied by a large intra-
cratonic basin, the Eromanga Basin, in which marginal sand-
stones and marine mudstones (the Bulldog Shale) were
deposited. The Bulldog Shale of the southwestern Eromanga
Basin (Valanginian to Albian in age) is a dark bioturbated or
laminated shale with up to 10% sand in its matrix and occasional
sandy and silty laminae. It contains large, exotic clasts of mainly
Precambrian quartzite and volcanic rock up to 3-m diameter.
Clasts occur both as lonestones and as scatterings or concentra-
tions along bedding planes. They show a high degree of rounding
and were probably derived from river and/or shoreline environ-
ments.

The hydrodynamic paradox presented by the occurrence of
outsized boulders in these mudrocks can only be resolved if the
clasts were transported laterally into the basin by swift currents

or mass-movement processes such as mud flows, or dropped at
the depositional site from a fioating raft. But strong currents
competent to carry large clasts also scour the substrate and
deposit layers of sand and coarser material as turbidites, which
include erosional surfaces and widespread coarse layers exhibit-
ing graded bedding. Mudflows produce massive non-laminated
structures®. In contrast, rafted facies are ideally defined by
bedding penetrated by the fallen clast; this may only be apparent
on the millimetre scale and is often obscured by compaction of
mud around the clast. Another important feature of ice-rafted
detritus is the sand-sized component known to be present in
modern icebergs’.

Evidence of mass-movement in the form of turbidites or
mudflows in the Eromanga Basin is lacking however. Moreover,
penetration structures in the laminae below the clasts suggest
that the boulders are dropstones, in that they fell vertically from
rafts®, rather than being transported laterally by currents. From
sedimentary evidence within the Bulldog Shale, including the
presence of glendonites’® and quartz sand grains with surface
textures characteristic of glacial regimes, we conclude that ice
acted as the rafting mechanism that transported the boulders
out into the basin. Although fossil wood is present in the shale
and we have considered it as a rafting agent, the large size of
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Fig. 1 Distribution of late Mesozoic ice-rafted deposits by
palaeolatitude and age. Uncertainties in dating and palacomagnetic
measurements are included in the length of the line for each region.
Stippled area (~65-78°) represents full distribution of reported
ice-rafted deposits. Palaeolatitudes derived from ref. 26.
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