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Abstract:

Analysis of photographs of lightning indicates that lightning has a fractal geometry associated with a repro-
ducible fractal dimension of about 1.34. Following this analysis, a model is presented which generates struc-
tures that are qualitatively similar to lightning observed in the atmosphere and that exhibit a fractal dimension
of about 1.37. The results from the model indicate that its basic assumptions correctly represent the under-
lying major physical processes involved.

Zusammenfassung: Der fraktale Charakter des Blitzes und seine Simulation

Die Analyse von Blitzphotos zeigt, daf8 der Blitz eine fraktale Geometrie mit einer reproduzierbaren fraktalen
Dimension von etwa 1,34 besitzt. Im Lichte dieser Analyse wird ein Modell vorgestellt, das Strukturen er-
zeugt, die qualitativ denen von in der Atmosphire beobachteten Blitzen dhneln und die eine fraktale Dimen-
sion von etwa 1,37 aufweisen. Die Ergebnisse des Modells zeigen auch, dafl seine Grundannahmen die beim
Blitz wesentlichen physikalischen Prozesse in korrekter Weise enthalten.

Résumé: Caractérisation fractale et simulation d’éclair

L’analyse de photographies d’un éclair indique que celui-ci a une géométrie fractale associée a une dimension
fractale reproductible de I’ordre de 1,34. Suite a cette analyse, on présente un modéle qui engendre des
structures qualitativement similaires aux éclairs observés dans ’atmosphére et dont la dimension fractale est
de I'ordre de 1,37. Lesrésultats du modéle indiquent que ses hypothéses fondamentales représentent correcte-
ment I’essentiel des processus physiques sous-jacents.

1 Introduction

Lightning is the result of dielectric breakdown of gases which occurs when some region of the
atmosphere attains a sufficiently large electric charge. Basiscally, a strong concentration of negative
charge within the cloud base produces electric fields which cause some negative charge to be propelled
towards the ground. This cloud-to-ground discharge is called the stepped leader because it appears to
move downward in steps. When the stepped leader has lowered a high negative potential near the ground
the resulting high electric field at the ground is sufficient to cause an upward-moving discharge which
carries ground potential up the path previously forged by the stepped leader. By doing so the return
discharge illuminates and drains the branches formed by the stepped leader. This return discharge is
called the return-stroke. Both, therefore, the stepped leader and following return stroke are usually
strongly branched downward.

No two lightnings are alike. Lightning comes in an extraordinary variety of structures which appear
random (Figure 1). This is the main reason that lightning has defied any quantitative characterization.
Yet anybody can distinguish lightning from any other growth form.

Visual examination of lightning photographs reveals a striking presence of structure at many different
length scales. Every branch, for example, looks itself like a lightning and so does every branch of a
branch. It seemed, therefore, appropriate to attempt to examine the structure of lightning using the

Beitr. Phys. Atmosph. Vol. 60, No. 2, May 1987 187

0005-8173/87/02 0187—-06 $03.00/0 © 1987 Friedrich Vieweg & Sohn Verlagsgesellschaft mbH




e Figure 1l
Cloud-to-ground lightning.
Photograph by Arjen VerKait.
Used with permission. Note that
this photograph is a reproduc-
tion from a photograph and
some of the details are lost.

concept of fractals or self-similarity (MANDELBROT, 1983). A fractal (or a scale invariant structure) is
an object whose statistical properties are unchanged under a change of spatial length scale. In other
words, two pieces of a fractal, one of size A and the other of a size A’ (A’ < A), are statistically
equivalent over some wide range of intermediate lengths, as long as the smaller pieces is magnified by
a factor A/A’. In this paper we will present evidence for fractal properties of lightning by analyzing
photographs and by the study of a simple theoretical stochastic model of dielectric breakdown.

2 The Fractal Geometry of Lightning

For Euclidean structures the amount of mass, M, scales with some characteristic length, /, as:
M(l) = 14 (1)

where d is equal to the spatial or Euclidean dimension of the space in which the structure exists (3 for
a sphere, 2 for a plane, 1 for a straight line). For many non-Euclidean objects in nature (clouds, for
example) equation (1) is preserved but the exponent is no longer equal to the Euclidean dimension of
the space in which the object exists. In these cases M (/) < I® where D < d and need not be an integer.
These objects are called fractals and D is called the fractal dimension (MANDELBROT, 1983). For self-
similar structures the fractal dimension does not depend on / and it is the same for all the structures of
a common origin (such as clouds). This is an important result because it implies an order in structures
that appear random.

Accordingly, if a lightning is a fractal structure the relation between the total length, L, of all branches
inside a circle (or square) of radius (or half side) /, and [ itself should be a power law with noninteger
D (MANDELBROT, 1983):

L) =P (2)

In order to estimate the fractal dimension of lightning we have applied the above principle to twenty
photographs. Most of the photographs were taken from SALANAVE, 1980. The selected photographs
exhibit some degree of branching and in our analysis it was assumed that the thickness of the branches is
zero and that lightning exists on a plane. The photos were enlarged or reduced to a common size of
about 10x 10 cm. For each lightning we placed randomly on the photograph a square of a side
21=1cm (ie. /= 0.5 cm) and we measured the total length (using a steplength of 2 mm) of all branches
inside that square. The square was repositioned several times to obtain a mean estimated value for the
length, <L>>, for the above value of /. We then repeated the above procedure for a range of increasing
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I values up to 5 cm. We then plotted log <L > against log /. This procedure results in a graph which

for the above range of / values is almost linear with slope D. The quantity D is the fractal dimension of
the structure under examination (MORSE et al., 1985; NIEMEYER et al., 1984).

Our analysis indicated that D = 1.34 + 0.05. 1.34 is the mean of the twenty estimated fractal dimensions
and 0.05 is.the standard deviation. One other widely used technique to estimate the fractal dimension
of an object is the following: Take a big square of side set to 1 which includes the object. Then pave it
with subeddies of side r = 1/2, and find the number of squares, N, which intersect the object. Repeat
the above process with subsubeddies of side r*. Continue as far as feasible. The number N scales as a
function of r according to the relation N o r-D where D is an estimation of the fractal dimension of the
object (MANDELBROT, 1983). When we applied the above technique to the photos we obtained the same
result: D =1.34 £ 0.05. Therefore, lightning is a fractal with a reproducible fractal dimension of about
4/3. Such a result provides for the first time a quantitative characterization of lightning. Having such a
characterization, we can now present a nonequilibrium model which simulates fractal structures which
are quantitatively and qualitatively similar to lightning. A model is called a nonequilibrium one when
randomizing effects dominate stabilizing (deterministic) effects.

3 A Model for the Simulation of Lightning

The model employed here for simulating lightning is a modification of the nonequilibrium
model proposed by NIEMEYER et al. (1984) for the modeling of two-dimensional radial discharge
commonly referred as Lichtenberg Figures. The details of the model used here are as follows: the
simulation is a stepwise procedure carried out on a two-dimensional lattice (Figure 2) in which the
potential (¢) of the top and bottom row is fixed at a value of ¢ =0 and ¢ = 1 respectively. Periodic
boundary conditions are assumed at the sides of the lattice. Only the middle point of the top row (A;)
is capable of growth. Given these initial conditions the potential at every point of the lattice is ob-
tained by solving the Laplace equation V2 ¢ = 0.0. On a two-dimensional lattice this is obtained by
iterating the following equation using successive over relaxation (SOR):

1 ' .
$ij= 4 @iv it Oz it dijer T ij-1) (3)

All the immediate non-zero neighbors to point A; are then considered as possible candidates, one of
which will be added to the evolving discharge pattern. In Figure 2 the candidates are indicated by open
circles and the evolving pattern by black dots. In Step 1 there is only one possible candidate. Therefore
point A, will be added to the discharge pattern, which is considered equipotential (¢ = 0). In step 2
one solves again the Laplace equation taking into account that the boundary conditions should include
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Figure 2 Illustration of the model used to simulate lightning. The discharge pattern is indicated by the black dots,
connected with solid lines and it is considered equipotential.

The open circles indicate the possible growth sites. The probability of each one of these sites is proportional to the local
potential field (see text for details).
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the discharge pattern. The possible candidates in Step 2 are three and each one of them is assumed to
be associated with a probability P (commonly called “growth” probability) which is defined as:

N
P; = ¢? Z ¢i2 4)
i=1
where i =1, ..., N and N is equal to the number of the possible candidates. Apparently in Step 2 N = 3.
The growth probability depends, therefore, on the local field determined by the equipotential discharge
pattern. At each step a probability distribution is defined. Given this probability distribution a point is
randomly selected and added to the evolving pattern. The above procedure is then repeated until the
first point of the bottom row is added to the discharge pattern. Figures 3, 4 and 5 show three examples
of computer generated lightning. In order to obtain good convergence when iterating (3) we performed
50 interactions at each step. Early experimentation indicated that after 50 iterations the potential field
on each possible growth site changes by around 0.1 % per iteration which indicates very good con-
vergence. The problem, however, it that the program becomes very laborious and expensive. Each
lightning simulation (~ 700 points) takes on a UNIVAC 1100 computer about 3.5 hours in CPU time!
The above model reproduces very effectively the influence of a given discharge pattern on the growth
probability of each candidate. For example, the tip of the line (indicated by A in Figure 3) will have a
larger growth probability than points inside a cage (indicated by B in Figure 3). These are the well
known “tip effect” and ‘‘Faraday screening” which result from the solution of the field equation
(NIEMEYER et al., 1984) and it is obvious from the results that the model produces structures which
unquestionably look like lightnings.
Apart from the fact that the model produces structures qualitatively similar to lightning it is necessary
to verify whether or not these structures are also quantitatively similar to lightning. In order to do this
we have calculated the fractal dimension of the five computer generated lightnings. A widely used method
to determine the fractal dimension of computer simulated nonequilibrium growth structures is the
following. For each point of a given structure we determined the number, n(J), of all the other points
within a square of half side / (/ is now measured in lattice units) and its average < n(l)> over all the
points of that structure, for varying /. We then plotted log < n(/)> again logl. The structure is a fractal
if for a relatively wide range of scales the graph is approximately linear with a slope D. The quantity D
is called the correlation dimension (WITTEN and SANDER, 1981; HENTSCHEL and PROCACCIA, 1983;
LOVEJOY et al., 1986) and again it provides an estimation of the fractal dimension of that structure.

e Figure 3
An example of a computer generated
lightning. This structure is made up from
726 points.

o Figure 4
An example of a computer generated
lightning. This structure is made up from
592 points.

Figure 4 Figure 5 e Figure 5
An example of a computer generated
lightning. This structure is made up from
666 points.
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e Figure 6 For the structure in Figure 3, this graph shows the average
number of points < n (/) > within a square of increasing half side /. The
1%+?° function is shown for comparison. It can be observed that for the
range of I values between 2 and 50 the variation of < n(l) > with [ is
almost linear with a slope D = 1.36. Therefore, the estimated fractal

! o o0 dimension of the structure in Figure 3 is 1.36.

¢ (IN LATTICE UNITS )

Figure 6 shows log < n(/)> versus log! for the structure shown in Figure 3. It can be observed that

for a considerably wide range of / values (from 2 to about 50), log <n(/)> varies linearly

with logl. The I 3¢ function is also shown for comparison. One may, therefore estimate the fractal
dimension of the structure in Figure 3 as about 1.36. From the five simulations we obtained that
D = 1.37 £ 0.02. This is very close to the value of 1.34 + 0.06 derived from the photographs. The larger
standard deviation is probably due to the finite size and resolution of the photos which do not allow a
higher accuracy in determining D. In addition to the above described method there are other techniques
which are commonly used in order to estimate the fractal dimensionality of computer simulated non-
equilibrium growth structures (MEAKIN, 1986). For example, the mass (number of occupied lattice
sites) M(r) contained within the distance r measured from the initial growth site, scales with r according
to the relation M(r) < r® where D' is an estimation of the fractal dimension of the structure. Accord-
ing to this method we obtained that D' =1.35 % 0.02. In the asymptotic limit (where the range of
length scales becomes infinite) D and D' should converge to a common value.

The above results indicate that in addition to producing structures that are qualitatively similar to
lightning the employed model produces structures that are also quantitatively similar to lightning. It
should be mentioned at this point that the above model simulates the stepped leader process. The
photographs on the other hand most likely represent return strokes because only these are luminous
enough. The stepped leader takes some milliseconds to reach the ground whereas the return stroke pro-
pagates upward in a fraction of a millisecond. However, since the return stroke propagates upward on
the path previously forged by the stepped leader we expect the geometry of the stepped leader to be
identical to the geometry of the return stroke.

4 Some Additional Comments and Results from the Model

Since the model provides the probability of each candidate at each step one may calculate the
probability of the whole structure by multiplying the probabilities that all the selected candidates were
associated with. For the structure in Figure 3 this probability is 107! »075 (1) This indicates that to see
the same lightning is virtually impossible and explains the great variety in the patterns of lightning. In
a perfectly uniform atmosphere one would expect the breakdown to spread out in a straight line. As a
matter of fact according to the model a straight line lightning is the most probable one. However,
because there is always some noise in the system a growth instability will occur and irregularities will
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appear (NITTMANN and STANLEY, 1986). In our case this noise can be density or temperature or
humidity fluctuations, for example. This noise is reproduced in the proposed model via the random
selection procedure at each step. There is always a chance that a site with a very small probability will be
selected. Thus, the evolving structure soon becomes very irregular.

One may wonder about the choice of the exponent in (4). This exponent may vary from 0.0 to d, where
d is the Euclidean dimensionality of the space in which the growth process is embedded. It has been
demonstrated by NIEMEYER et al. (1984) that the fractal dimension of the generated structures depends
on that exponent. For larger values of the exponent the generated fractal structures tend to be more
“linear” and the fractal dimension is smaller. What justifies the choice of the exponent in this study is
the fact that for a value of the exponent equal to two we simulate structures that are qualitatively (look
like) and quantitatively (same D) similar to observed lightning.

One final note. In our simulations we have used a rectangular lattice. This is only a reflection of our
feeling that lightning takes place in a three dimensional space where the z direction is smaller compared
to the x or y direction. Prelimanary experimentation indicates that the consideration of a square
lattice or a different rectangular lattice will not significantly affect the results.

5 Conclusions

We have examined the fractal properties of lightning from photographs and have presented
results from a dielectric breakdown model that generates structures which are qualitatively and quanti-
tatively similar to lightning. The major conclusions from this study are two: 1) lightning is fractal with a
reproducible fractal dimension of about 1.37 and 2) lightning can be simulated assuming a growth
probability which depends on the local potential field which is determined by the equipotential dis-
charge pattern. Such an assumption naturally leads to fractal structures which are consistent with
photographs of observed lightning.

We already know that cloud-to-ground discharge pattern is a stepwise procedure. The assumptions of the
model suggest that at each step the evolving pattern modifies the potential field thus affecting the
possibilities of its evolution constantly. The success of the employed model may indicate that its basic
assumptions capture the essence and the principles behind the underlying processes that produce lightn-
ing in the atmosphere.
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