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Abstract

Studies show an increasing tendency for tornadoes in the United States to

occur in larger outbreaks. To shed light on the reason for this, the authors use

a regression model to quantify the relationship between convective environ-

mental variables and accumulated tornado power (ATP). They consider only

days with many tornadoes that occur as part of an outbreak. Results show an

average upward trend in ATP at 5% ([2.5%, 12%], 95% uncertainty interval) per

year. ATP increases by 125% for every 10 m�s−1 increase in bulk shear

(on average)and by 33% for every 1,000 J�kg−1 increase in convective available

potential energy holding the other variables constant. Changes in bulk shear,

which has the largest effect on ATP, might help explain the documented

changes in tornado activity.
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1 | INTRODUCTION

Tornadoes pose a significant risk to life and property in
the United States. The strongest tornadoes, producing the
majority of fatalities, occur in clusters (Galway, 1977;
Schneider et al., 2004; Mercer et al., 2009; Dean and
Schneider, 2012; Fuhrmann et al., 2014; Elsner et al.,
2015). In fact, three fourths of all fatalities occur on days
with at least 10 tornadoes. For example, the April
27, 2011 outbreak produced 199 tornadoes that resulted
in 316 fatalities and more than 2,700 injuries. Insured
losses exceeded $11 billion (Knupp et al., 2014).

Tornado clusters (“outbreaks”) occur generally east of
the Rocky Mountains and west of the Appalachian
Mountains (Dean, 2010) during the months of April,
May, and June (Galway, 1977; Dean, 2010; Tippett et al.,

2012; Dixon et al., 2014; Tippett et al., 2014; Trapp, 2014).
Outbreaks are largely confined to the Southeast during
the late fall and winter months (Dean, 2010). The per-
centage of all U.S. tornadoes occurring in clusters is on
the rise (Brooks et al., 2014; Fuhrmann et al., 2014;
Tippett et al., 2014; Elsner et al., 2015; Tippett et al., 2016;
Moore, 2017; Moore, 2018; Moore and DeBoer, 2019).
Tippett et al. (2016) attributed the upward trend in tor-
nado clusters to significant increases in storm relative
helicity. However, the rise of tornado clusters could be
related to changes in other environmental factors that
influence the amount and intensity of deep convection.

To shed light on the possible reasons for this change,
here we examine the relationships between collective tor-
nado activity within a cluster and the associated environ-
mental variables. Studies have identified environmental
factors (such as convective available potential energy
(CAPE), convective inhibition (CIN), bulk shear, andZoe Schroder wrote the code and drafted the paper.
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storm-relative helicity) important to the development of
tornadoes (Brooks et al., 1994; Brown, 2002; Craven et al.,
2002; Doswell III and Evans, 2003; Jackson and Brown,
2009; Gensini and Ashley, 2011; Dean and Schneider,
2012; Cheng et al., 2016; Anderson-Frey et al., 2018).
Missing from these studies is a quantification of the rela-
tionships between environmental factors and collective
tornado activity. For example, how much CAPE is
needed to produce a 10 % increase in accumulated tor-
nado power (ATP)?

The objective here is to quantify the extent to which
environmental factors influence ATP. We first identify
the biggest days in the largest clusters of tornadoes. To
quantify the relationships, we regress ATP onto CAPE,
CIN, storm-relative helicity, and bulk shear using torna-
does occurring on these big days. Values for the predictor
variables are extracted from reanalysis data. Finally, we
examine model residuals for goodness of fit. The paper is
outlined as follows. The method to define tornado clus-
ters and the selection criteria for determining the big
days within large clusters are described in Section 2. Tor-
nado power dissipation is defined and estimated in
Section 3. The environmental variables are described in
Section 4 and the statistical relationships between ATP
and the environmental variables are modelled and
described in Section 5. A summary of the paper and a list
of conclusions along with ways the study can be
improved are given in Section 6.

2 | TORNADO CLUSTERS

2.1 | Tornadoes

A tornado can occur in isolation or within a cluster with
other tornadoes. The American Meteorological Society
formally defines a tornado outbreak as “multiple tornado
occurrences associated with a particular synoptic-scale
system” (American Meteorological Society, 2018). Less
formally it is understood that an outbreak is a cluster of
several to dozens of tornadoes that occur within a rela-
tively short time scale and over a limited geographic
region (Elsner et al., 2015; Malamud et al., 2016; Tippett
et al., 2016; Anderson-Frey et al., 2018). We focus on tor-
nado clusters in this work rather than on individual tor-
nadoes because the larger spatial and temporal extents of
clusters better match the scale represented by the envi-
ronmental data. We refer to them as “clusters” rather
than “outbreaks” because we make no attempt to associ-
ate the clusters with a particular synoptic-scale system.

Further, in this paper we consider only tornadoes
occurring on convective days having at least 10 tornadoes
when those days are part of a cluster of at least

30 tornadoes. This requires a two-step approach. In step
one, each tornado is grouped in a cluster following the
method outlined below. For step two, all days with at
least 10 tornadoes are extracted from clusters of 30 or
more tornadoes. We obtain the tornado data from the
Storm Prediction Center's extensive tornado record
(https://www.spc.noaa.gov/wcm/#data). Date, time, and
location of each tornado are used to delineate groups of
tornadoes. The data are subset to include only contiguous
United States tornadoes that occur from 1994 to 2017,
inclusive. The start year marks the beginning of the
extensive use of the WSR-88D radar. There are 29,372
tornadoes in the available record over this period of time.

2.2 | Group tornadoes into clusters

First, we project the geographic coordinates of the tor-
nado locations using a Lambert conic conformal projec-
tion for the contiguous United States. The projection is
needed to ensure correct distance measures. The projec-
tion origin is situated in eastern Kansas (39�N latitude
and 96�W longitude). Then the Euclidean distance (dij)
between the genesis location of tornadoes i and j is com-
puted for all tornado pairs. Similarly, the time separating
each tornado pair (tij) is computed and added to a scaled
Euclidean distance to give a space-time difference (δk).
The equation is

δk=
dij

s+ tij
, ð1Þ

where s is a scaling factor and where k = n(n + 1)/2
indexes the unique tornado pairs where n is the number
of tornadoes. The scaling factor is set to 15 m�s−1 to
match the units of tij (seconds) and to approximately con-
form to the average speed of tornado-producing thunder-
storms (although there is wide variation in this speed).

Next, the k space-time differences (δk) are used to
group the individual tornadoes into clusters. If tornado
i is close to tornado j based on a small value of δk, then
the two tornadoes are considered to belong to the same
cluster. Clustering is done using the single-linkage
method whereby the two tornadoes with the smallest δk
are grouped first. Then the two tornadoes (or the first tor-
nado cluster and another tornado) with the next smallest
δk are grouped second. The procedure continues by
grouping tornado pairs, cluster–tornado pairs, and
cluster–cluster pairs until there is a single large cluster. A
cluster–tornado pair occurs when the shortest distance is
between the closest tornado in the cluster and a tornado
not in the cluster. For example, three tornadoes, each
100 km (�2 hr at 15 m�s−1) apart occurring at the same
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time, are considered a cluster. A fourth tornado is consid-
ered in the cluster if it is no more than 100 km from any
one of the other three tornadoes. The grouping is done
with the hclust function from the stats package in R.

Our interest centres on clusters that are not too small
(e.g., a family of tornadoes from a single supercell) and
not too large (e.g., all tornadoes during a week). So we
stop grouping once there are no additional pairs within a
δk of 50K s (�14 hr). This results in 6,156 unique clusters
and 155 large (at least 30 tornadoes) clusters. The largest
cluster occurred from April 26 to 28, 2011. It contains
293 tornadoes. Duration of the clusters ranges from forty
six 1-day clusters to one 5-day cluster (Table 1). Multi-
day clusters account for 70.3% of all our clusters. The
cluster with the longest duration occurred from
September 4 to 8, 2004 and contained 103 tornadoes
(Figure 1). Our clusters match the outbreaks identified
subjectively by Forbes (2006) with an agreement rate
of 88%.

2.3 | Select tornadoes from large clusters
on days with at least 10 tornadoes

Our objective is to quantify the extent to which well-
known environmental factors statistically explain tor-
nado activity at an aggregate level as measured by the
ATP dissipation. Since some of the environmental factors
have large diurnal fluctuations that can confound a
multi-day analysis, we narrow our focus even more by
considering only the most prolific days in these largest
groups. We define the day as the 24-hr period starting at
6 a.m. local time (often referred to as the “convective”
day; Doswell et al., 2006). A big convective day (big day)
as part of a large cluster is defined as one with at least
10 tornadoes.

With this definition, we find 212 big days within our
large clusters. Note that there are sometimes more than
one big day in a single large cluster. Also, 10 or more
tornadoes can occur within smaller clusters, and our set
of big days accounts for only 28.6% of all days with at

least 10 tornadoes. The top two big days (April 26, 2011
and April 27, 2011) are associated with the largest tor-
nado cluster (Table 2). Note that this set of big days
identified and analysed in this paper is unchanged for
values of s (Equation 1) ranging between 8 and
20 m�s−1.

Figure 2 is an example of a big day in a large cluster.
There were 88 tornadoes on that day. The cluster is iden-
tified as the eighth most prolific by our method (and the
first most prolific by Forbes, 2006) and extended over a
two convective day period beginning on May 30th. This is
the seventh largest of our big days as defined by the num-
ber of tornadoes in any large cluster.

Most big days occur east of the Rockies and west of
the Appalachians depicted by the centroids (Figure 3). In
particular, there is a group of centroids that spans the
middle South extending northwestward toward the

TABLE 1 The total number of large groups and tornadoes by

duration

Duration (days)
Number of
large groups

Number of
tornadoes

1 46 2,024

2 83 4,461

3 22 1,620

4 3 197

5 1 103

N
0 100 200 300 400km

September
8th
7th
6th
5th
4th

FIGURE 1 A cluster of tornadoes in 2004 that occurred

between September 4th and September 8th. Each circle is a tornado

genesis location coloured by the day of occurrence. The black line

is the minimum convex polygon surrounding all the genesis

locations (convex hull)
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central Great Plains. There is also a tendency for days
having the most tornadoes to occur farther to the east.
The overall pattern of cluster centroids is similar to the
pattern shown in Anderson-Frey et al. (2018), who used
kernel density to define the clusters.

3 | ACCUMULATED TORNADO
POWER

We use tornado counts to define clusters and big days but
our interest is on the accumulated power dissipated over
all tornadoes occurring during a big day. The standard
indicator of tornado strength is the Enhanced Fujita scale
(Malamud and Turcotte, 2012), but path length and
width are sometimes used to compute other intensity
metrics (Brooks et al., 2003; Malamud and Turcotte,
2012; Fuhrmann et al., 2014). Over a cluster of tornadoes,
the Destructive Potential Index (DPI) has been used as a
measure of the potential for damage and casualties
(Thompson and Vescio, 1998). The adjusted Fujita mile is
a collective measure that uses the highest Enhanced
Fujita (EF) rating multiplied by the tornado track length
(Fuhrmann et al., 2014).

Here we follow the work of Fricker et al. (2017) in
defining the power dissipation (E) of a tornado as the
potential of the wind to inflict damage to objects on the
surface. It is calculated using damage path area (Ap), air
density (ρ), midpoint wind speed (vj) for each EF rating
( j = 0, � � �, J, where J is the maximum EF rating), and the
fraction of the damage path (wj) associated with each rat-
ing. E is strongly correlated to DPI but more useful here
because it is an extensive variable. As such we sum

TABLE 2 Top 10 big days in large tornado clusters with 30 or

more tornadoes

Big day in
large cluster

Number of
tornadoes

Number of
casualties

ATP
(TW)

April 27, 2011 173 3,069 221

April 26, 2011 104 97 46

January 21,
1999

99 171 12

June 24, 2003 94 12 3

May 5, 2007 90 24 8

May 25, 2011 90 23 9

May 30, 2004 88 46 2

May 4, 2003 86 384 31

February 5,
2008

85 482 39

April 14, 2012 84 79 32

N
0 100 200 300 400 500 600km

Time [CST]
6 to 12
12 to 18
18 to 24
0 to 6

FIGURE 2 Tornadoes on May 30, 2004 as part of a big day

within a large cluster. Each point represents a genesis location and

is coloured by the hour it occurred. The black triangle is the

geographic centre of the genesis locations. The black line is the

minimum convex polygon around the genesis locations

(convex hull)

N

0 200 400 600 800km

Count
10 to 50
50 to 100
100 to 150
150 to 200

FIGURE 3 Centroids of genesis locations occurring on big

days in large clusters. Triangles are coloured by the number of

tornadoes on that day
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E over all tornadoes occurring during a big day to get the
ATP. Mathematically, we express E and ATP as:

E=Apρ
XJ

j=0

w jv j

ATP=
Xn

i=1

Ei

ð2Þ

where n is the number of tornadoes occurring in the
big day.

ATP is calculated using pathwidth and the highest EF
rating of each tornado on the big day. Therefore, ATP is
considered a maximum estimate of power dissipation on
a given day. The reporting of pathwidth changed from an
“average” to the maximum in 1994. Our study starts with
1994 and so it is not impacted by this change. A list of
the top 10 big days in large clusters by ATP includes the
infamous days of April 27, 2011 and May 4, 2003
(Table 2).

The ATP on April 27, 2011 is nearly four times the
ATP on the next most powerful day (April 26, 2011). The
Spearman rank correlation between ATP and the number
of tornadoes is 0.63. Big days occurring as part of a large
cluster occur during April to June (Table 3). July and
August have the fewest big days. Monthly average ATP
peaks in April with the next highest months being March
and May. May and November have similar values of aver-
age ATP. There are fewer big tornado days during
November, but when they occur they tend to include

stronger tornadoes with longer paths leading to
more ATP.

4 | ENVIRONMENTAL VARIABLES

To quantify the relationship between ATP and envi-
ronmental factors on big days we obtain environmen-
tal variables from the National Center for
Environmental Prediction's North American Regional
Reanalysis (NARR). The data are available from the
National Center for Atmospheric Research (NCAR).
Variables from the NARR have been used previously
to analyse convective environments (Brooks et al.,
2003; Mesinger et al., 2006; Gensini and Ashley, 2011).
Tornado environments have been studied without
NARR using proximity soundings and weather stations
(Potvin et al., 2010). Here we are interested in aggre-
gate tornado activity occurring over a broad spatial
scale so the NARR variables are used rather than prox-
imity soundings.

We use the original NARR 3-hr files containing
environmental data for each convective day starting
with 1200 UTC in 3-hr increments. For each big day,
we choose the closest time before the occurrence of
the first tornado (Table 4). As an example, if the first
tornado in the cluster occurred at 1730Z, then 15Z
would be chosen because it is the closest 3-hr NARR
time prior to start of this event. This allows us to cap-
ture the environment before the occurrence of torna-
does. The majority of times selected are between 1200
UTC and 2100 UTC with the peak occurring at
1200 UTC.

Each NARR file contains 434 atmospheric variables.
We consider only a small subset of the variables rep-
resenting convective instability and wind shear including
the 180–0 hPa above ground level (AGL) CAPE and CIN
(layers 375 and 376), the 0–3,000 m AGL storm-relative
helicity (layer 323), and the 0–6,000 m AGL u and
v components of storm motion (layers 324 and 325).
Additionally, we download the u and v components of
wind for the 1,000 (layers 260 and 261) and 500 hPa
(layers 117 and 118) levels. We compute total storm
motion as the square root of the sum of the velocity com-
ponents squared. We compute the bulk shear as the
square root of the sum of the squared differences between
the u and v components of the wind at 1000 and 500 hPa
levels. We choose these variables because they are well
known to be associated with tornado development
(Brooks et al., 1994; Brown, 2002; Craven et al., 2002;
Doswell III and Evans, 2003; Jackson and Brown, 2009;
Dean and Schneider, 2012; Cheng et al., 2016; Anderson-
Frey et al., 2018).

TABLE 3 Seasonal variation in ATP, number of tornadoes,

and the number of big days by month

Month
Average
ATP (TW)

Number of
tornadoes

Number of
big days

January 4.72 416 11

February 7.20 333 10

March 12.60 444 11

April 13.10 2022 50

May 8.32 2,473 56

June 3.42 897 23

July 0.63 43 2

August 1.47 72 2

September 1.01 460 16

October 2.61 303 9

November 8.11 590 14

December 4.76 191 8

Note: The number of tornadoes and the number of big days are based on

tornadoes occurring during the period 1994–2017.
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Selected and computed NARR variables are available
in the form of a 277 by 349 rectangular raster. The
corresponding big day convex hull encompassing the tor-
nado genesis locations is used as a spatial mask, and the
raster values falling under the mask are reduced to a sin-
gle value. For the variables CAPE, bulk shear, and storm-
relative helicity, the reduction consists of taking the
highest value under the mask. For CIN, the reduction
consists of taking the smallest value under the mask
(Figure 4). In this way, every big day value of ATP is
associated with one value for each of the environmental

variables. The single highest (or lowest) value ensures
that the unstable air mass is represented. The use of a
maximum value and minimum value for each environ-
mental variable is less contaminated by other synoptic
and mesoscale processes leading to a more representative
tornado environment. To varying degrees this approach
distinguishes the environmental variables when consider-
ing extremes in ATP (Table 5). This ability to distinguish
extremes in ATP is particularly true for bulk shear and,
to a lesser extent, CAPE and foreshadows the regression
results presented next.

TABLE 4 Number of big days

associated with each UTC time
UTC time 12 15 18 21 00 03 06 09

Number of big days 71 40 56 38 6 1 0 0

Note: A big day is associated with the closest 3-hr NARR time prior to the occurrence of the first tornado in
the cluster.

CAPE [J kg−1]
0 100 200 300 400 500km

0 to 500
500 to 1,000
1,000 to 1,500
1,500 to 2,000
2,000 to 2,500
2,500 to 3,000
3,000 to 3,500
3,500 to 4,000

Helicity [m2s−2]
0 100 200 300 400 500km

0 to 50
50 to 100
100 to 150
150 to 200
200 to 250
250 to 300
300 to 350

CIN [J kg−1]
0 100 200 300 400 500km

−150 to −100
−100 to −50
−50 to 0

Bulk shear [m s−1]
0 100 200 300 400 500km

22 to 24
24 to 26
26 to 28
28 to 30
30 to 32
32 to 34

FIGURE 4 Environmental conditions at 1200 UTC on May 6, 2003. The black line is the spatial extent of the tornado genesis locations.

The first tornado in the cluster started at 1420 UTC. The black square indicates the locations of the highest value of CAPE (3,660 J�kg−1), the
lowest value of CIN (−149 J�kg−1), the highest value of storm-relative helicity (308 m2�s−2) and the highest value of bulk shear (33 m�s−1)
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5 | QUANTIFYING THE
RELATIONSHIP BETWEEN ATP
AND ENVIRONMENTAL FACTORS

We use our collated data representing 212 big days to
regress ATP onto the environmental variables whose
values are chosen within the area defined by the tornado
cluster as described above. The regression model quan-
tifies the effect of each environmental variable on ATP
while holding the other variables constant. Due to the
large seasonal variability in ATP (Table 3), the month of
the big day occurrence is included as a random effect
(an offset to the intercept term). Environmental variables
are considered fixed effects as is the year during which
the big day occurred. Year is included as a fixed effect
because ATP is increasing over time (Elsner et al., 2018).
If year is not included in the model, the increasing trend
could confound the influence of the other fixed effects.
The coefficient on year is the annual trend.

Values of ATP are skewed to the right with most big
days having less than 5 terawatts (TW) of ATP. However,
the top 10 days have more than 30 TW each of ATP with
the top day having 221 TW. The distribution of ATP on a
log scale is nearly symmetric about the mean value of 7.8
TW. The median value is 3.2 TW and the geometric mean
is 2.6 TW. So, the model uses the logarithm of ATP as the
response variable. Mathematically the model is given by

ln ATPið Þ=β0+βYearYeari+βCAPECAPEi

βShearSheari+βHelicityHelicityi+βCINCINi+

βMonth 1jMonthið Þ+ϵi,
ð3Þ

where the βYear, βCAPE, βShear, βHelicity, βCIN, and βMonth

are the model coefficients. Month is a random effect as
mentioned above so βMonth is a vector of coefficients with

one element for each month of the year. To make inter-
preting the coefficients easier, we divide the values of
CAPE by 1,000, storm-relative helicity and CIN by
100, and bulk shear by 10. The coefficients are deter-
mined via an interactive maximum likelihood approach
with the lmer function from the lme4 package for R
(Bates et al., 2015).

The regression model is best in the sense that it has
the lowest Akaike Information Criterion (AIC) score,
which measures the overall quality (goodness of fit and
simplicity) of the model. Due to a large correlation
between bulk shear and relative storm motion (0.55), we
retain only bulk shear in the model. We determined that
interactions between the environmental variables did not
improve the model fit based on higher AIC scores when
they were included. We also determined that using spa-
tially averaged values for the environmental variables in
place of the maximum values makes the fit worse. The
maximum (and minimum) values within the cluster area
provide a better representation of the environmental con-
ditions for the tornadoes on each big day because they
are less contaminated by synoptic and mesoscale
features.

The model has a log-additive structure indicating that
the logarithm of ATP is related to the fixed and random
effects in an additive way. So the interpretation of the
coefficients is given in terms of a percent change per unit
change in the effect. The coefficient on the year term
(βYear) indicates an upward trend in per big-day outbreak
ATP amounting to 5% ([2%, 8%], 95% uncertainty interval
[UI]) per year holding the environmental variables con-
stant (Table 6). Note that the percent increase is calcu-
lated using eβYear −1

� �
×100%. The upward trend is

consistent with the results of Elsner et al. (2018) using all
tornadoes.

TABLE 5 Single values for the environmental variables on big days

Big day
Maximum
CAPE (J�kg−1)

Minimum
CIN (J�kg−1)

Maximum
helicity (m2�s−2)

Maximum bulk
shear (m�s−1) ATP (TW)

Top three big days

April 27, 2011 2,010 −325 829 42 221

April 24, 2010 2,630 −291 540 39 64

April 26, 2011 4,050 −141 359 35 46

Bottom three big days

May 18, 2000 2,450 −190 321 35 0.04

April 25, 2003 1,100 −206 488 31 0.04

September 26, 2003 670 −22 297 19 0.01

Note: Big days are separated into top three and bottom three groups based on the value of ATP.
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Physically the model coefficients on the environmental
variables are reasonable and consistent with expectations
given present understanding of factors that influence tor-
nado activity. Specifically, an increase in ATP is statistically
explained by increasing values of CAPE, bulk shear, and
storm-relative helicity and by decreasing values of CIN.
Bulk shear has the largest influence on ATP as seen by its
corresponding t value. Quantitatively, the coefficient on the
CAPE term (βCAPE) indicates that ATP increases by 33%
([11%, 46%], 95% UI) for every 1,000 J�kg−1 increase in
CAPE, holding the other variables and year constant. The
coefficient on the bulk shear term (βShear) indicates that
ATP increases by 125% for every 10 m�s−1 increase in the
magnitude of bulk shear. The coefficient on the storm-
relative helicity term (βHelicity) indicates that ATP increases
by 12% for every 100 m2�s−2 increase in storm-relative
helicity and the coefficient on the CIN term (βCIN) indicates
that ATP decreases by 8% for every 100 J�kg−1 increase in
CIN, when the other variables are held constant.

The correlation between observed and modelled esti-
mated ATP is a modest 0.37. We compute the conditional

standardized residuals (Santos Nobre and da Motta
Singer, 2007) between the actual and estimated values of
ATP. A histogram of the residuals is adequately described
by a normal distribution, and a plot of the residuals as a
function of the model estimated values by month shows
no apparent pattern (Figure 5) both indicative of an ade-
quate model.

We illustrate the model by estimating ATP across a
range of CAPE and bulk shear values with CIN and
storm-relative helicity values set to their respective
means (−200 J�kg−1 and 40 m2�s−2), with year set 2017,
and with month set to April (Figure 6). Year is set to
2017 because it is the last year in the data used, and
month is set to April because it is the month during
which ATP is highest on average. Estimates show that
ATP increases with increasing values of CAPE and bulk
shear. With a CAPE of 250 J�kg−1 and a bulk shear of
25 m�s−1 the model estimates an ATP of 2.49 TW. In com-
parison, with a CAPE of 3,000 J�kg−1 and a bulk shear of
15 m�s−1 the model estimates an ATP of 2.40 TW. In con-
trast, with a CAPE of 4,000 J�kg−1 and a bulk shear of
40 m�s−1, the model estimates an ATP of 24.3 TW. We can
estimate values of ATP for other values of the predictors.

Figure 7 shows the actual versus estimated ATP for
the 212 big tornado days. Darker points, which tend to be
associated with higher values of ATP, indicate more casu-
alties (death plus direct injuries). Increases in CAPE and
bulk shear lead to more and stronger tornadoes with
increased potential for casualties. The points on the
graph tend to fall along a line from lower left to upper
right but with a slope less than one. Big tornado days that
have more ATP than what the model estimates are points
that fall below the diagonal. We note that April 27, 2011
and April 26, 2011 are examples of days with more ATP
than estimated by the model, and April 19, 2011 and
February 20, 2014 are examples of days with less ATP
than estimated by the model. We plot the convex hull of

FIGURE 5 Conditional

standardized residuals from the

linear regression model.

(a) Histogram and (b) residuals as a

function of modelled estimated

values of ATP [Colour figure can be

viewed at wileyonlinelibrary.com]

TABLE 6 Coefficients from a regression model of ATP onto

year, CAPE, bulk shear, CIN, and storm-relative helicity using data

from n = 212 big days in large clusters

Predictor
Coefficient
estimate Standard error t value

Intercept 25.066 0.569 44.092

Year 0.050 0.016 3.061

CAPE 0.283 0.089 3.161

Bulk shear 0.812 0.185 4.386

Helicity 0.109 0.063 1.720

CIN −0.080 0.101 −0.797

Note: The standard error of the estimate and its t value as the ratio of the
estimate to the standard error are also given.
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the tornado genesis locations on the days with the most
over- and underestimated ATP (Figure 8). There is no dis-
tinction in the size of the areas between these two cases
but cases of underestimation are noted across the central
Plains where there are no cases of overestimation.

The average number of tornadoes per unit area dur-
ing big days that are most underestimated is 2.4 per km2

compared to 1.7 per km2 during big days that are most
over-estimated. The average area of the underestimated
days is 49.4 km2 compared to 34.7 km2 for over-estimated
days. This implies that the model might be improved by
including environmental factors that explain the local-
ized efficiency of tornado production.

6 | SUMMARY AND
CONCLUSIONS

April 27, 2011 was the biggest day in the largest, costliest,
and one of the deadliest tornado outbreaks ever recorded
in the United States (Knox et al., 2013). The multi-day
event affected 21 states from Texas to New York. Recent
studies show an increasing tendency for a higher propor-
tion of tornadoes occurring in large outbreaks. To shed
light on why this might be happening, here we quantified
the relationship between convective environmental vari-
ables and ATP during days with many tornadoes that
occurred in large multi-day clusters.

First, using single-linkage clustering and filtering, we
identified all days over the period 1994–2017 having ten or
more tornadoes that occurred within multi-day clusters
having 30 or more tornadoes. Then, for each big day, we
computed ATP as the sum of the power dissipated over all
tornadoes occurring on that day (starting at 1200 UTC).
Next, we identified the extremes in CAPE, CIN, bulk shear,
and storm-relative helicity over the area defined by the tor-
nado genesis locations and by the time before the occur-
rence of the first tornado. Finally, for the set of 212 big
days, the logarithm of ATP was regressed onto the environ-
mental factors and year using a mixed effects model with
the month of the day as a random effect. Results show an
upward trend in ATP at a rate of 5% per year. They also
showed that, on average, ATP increases with additional
bulk shear, CAPE, and storm-relative helicity and
decreased with additional CIN. Model residuals were
analysed to determine the adequacy of the model and to
identify the largest underestimation and overestimation.

FIGURE 6 Model estimates of ATP across a range of CAPE

and bulk shear values holding CIN, and storm-relative helicity at

their average values and setting year to 2017 and month to April.

The estimates are from an application of the regression model

(Equation 3) with coefficients given in Table 6 [Colour figure can

be viewed at wileyonlinelibrary.com]

FIGURE 7 Actual versus estimated ATP on the big tornado days.

The colour shading from light to dark indicates an increasing number

of casualties [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Areas defining the boundary of tornadoes on big

days. Days selected are those when the regression model most

underestimated ATP (blue) and when the regression model most

overestimated ATP (red) [Colour figure can be viewed at

wileyonlinelibrary.com]
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The major conclusions are:

• An objective technique can reliably identify known
tornado clusters.

• ATP is a useful measure of cluster severity.
• On average cluster severity increases by 125% for every

10 m�s−1 increase in bulk shear holding the other vari-
ables constant.

• On average cluster severity increases by 33% for every
1,000 J�kg−1 increase in CAPE holding the other vari-
ables constant.

• The number of tornadoes per unit area is larger on
days when the model underestimates cluster severity.

Since bulk shear has the largest influence on ATP,
long-term changes to it might help explain the documented
changes in tornado activity. Our results are consistent with
Tippett et al. (2016) in that both highlight the importance
of shear on tornado activity. The correlation between ATP
and model estimated ATP is a modest 0.37, but this level of
correspondence indicates some practical value to the
approach (see Cohen et al., 2018). Results from this study
are limited by sample size (we only had 212 big days) and
by an exclusive focus on the last 20 years of a much longer
tornado record. They are also limited by the quality of the
NARR data, which tends to unrealistically favour environ-
ments for tornadoes in certain convective setups (Gensini
and Ashley, 2011; Gensini et al., 2014; Allen et al., 2015).
The study could be improved by considering more cases
from earlier years. The cost of including earlier data would
be greater uncertainty on the estimates of power dissipa-
tion. The model can almost certainly be improved by
including other environmental factors, especially ones that
are related to the convective mode and to the efficiency of
tornado production. Future work will examine the spatial
variation in the factors affecting cluster severity and will
quantify the relationship between cluster aggregated casu-
alties and the environmental factors controlling for how
many people were within the “outbreak” area.
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