
Statistical Inference for Stochastic Processes 6: 111–133, 2003.
c© 2003 Kluwer Academic Publishers. Printed in the Netherlands. 111

Seasonal Space–Time Models for Climate Systems

XU-FENG NIU1,∗, IAN W. MCKEAGUE1 and JAMES B. ELSNER2

1Department of Statistics, Florida State University, Tallahassee, FL 32306, U.S.A.
2Department of Geography, Florida State University, Tallahassee, FL 32306, U.S.A.

Abstract. A class of seasonal space–time models for general lattice systems is proposed. Covariance
properties of spatial first-order models are studied. Estimation approaches in time series analysis are
adopted and forecasting techniques using the seasonal space–time models are discussed. The models
are applied to 516 consecutive fields of monthly averaged 500 mb geopotential heights over a 10×10
lattice in the extra-tropical northern hemisphere for the purpose of understanding the underlying
statistical structure. It is found that space–time models with instantaneous spatial component give
the best fit compared to other models in terms of maximizing the conditional likelihood function.
The models are potentially useful for assessing the consistency of outputs from laboratory-based
numerical models with field observations. Forecasting ability of the seasonal space–time models is
also investigated.
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1. Introduction

Modeling and forecasting climate dynamical systems has a tremendous value to
humanity. In the last two decades, record high temperatures and drought conditions
in many regions around the world have prompted concern about the global green-
house warming projected by sophisticated dynamical climate models (Hansen et al.,
1988). Most recently, the frequency and severity of hurricanes and tornados in the
United States and other parts of the world have also received heightened atten-
tion. In order to monitor future climate changes and compare climate data with
laboratory-based model projections, an improved understanding of statistical struc-
tures of climate fields is urgently needed.

In this paper we propose a class of seasonal space–time models for describing
and forecasting a climatologically important flow field consisting of monthly av-
eraged geopotential heights. Geopotential heights of a constant pressure (isobaric)
surface indicate the underlying air density with horizontal gradients of the heights
approximating the horizontal momentum field through the geostrophic relationship
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(Byers, 1974). Configurations of an isobaric surface determine the geostrophic
vorticity, the advection of which is a crucial factor in middle latitude storm develop-
ment. The statistical models developed here are useful for assessing the structural
information of dynamical climate predictions. Although this study is motivated by
modeling and forecasting the geopotential height field, the methodological tech-
niques can be applied within other important disciplines such as geoscience, ocean-
ography, ecology, and environmental science.

We shall fit the proposed space–time models to monthly averaged 500 mb geo-
potential height fields over a 10 × 10 lattice for the period January 1946 to Decem-
ber 1988. The 10 × 10 lattice covers the region latitudes 20◦N–56◦N and longit-
udes 66◦W–120◦W. Data are monthly averaged (based on twice-daily analyses)
500 hPa geopotential heights for a portion of the northern hemisphere compiled
from the United States National Centers for Environmental Predictions (NCEP),
and made available on CD from the University of Washington. The data were trans-
formed from NCEP’s octagonal grid to a 4◦ latitude × 6◦ longitude lattice using a
cubic-spline interpolation for each time unit separately. The study region, shown in
Figure 1, covers a large portion of the contiguous United States, Canada, and
Mexico and represents a portion of the northern hemisphere for which reliable
data are abundant.

Figure 1. Region over which the space–time models are developed in this study. Lines of
latitude and longitude are given every 5◦ with 25◦N and 80◦W located at the southeast tip of
Florida. The 10 × 10 lattice is bounded by 20◦N and 56◦N latitude and by 66◦W and 120◦W
longitude.
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Space–time models suitable for describing the evolving random fields in cli-
mate and environmental systems have been developed by many researchers. For
example, Cliff et al. (1975) proposed space–time autoregressive moving average
(STARMA) models, which generalized both the ARMA time series models and the
simultaneously specified spatial models introduced by Whittle (1954). Tjøstheim
(1978, 1981, 1983) discussed unilateral causal (quadrant and half-space) models
for high dimensional lattice systems. Basu and Reinsel (1993, 1994) investigated
properties of spatial unilateral first-order ARMA models and regression models
with spatially correlated errors. For space–time autoregressive (STAR) models, Ali
(1979) developed a method to calculate the likelihood function for the parameters
and briefly discussed the prediction problem. Most recently, Niu and Tiao (1995)
developed a class of space–time regression models for the analysis of satellite data
on a fixed latitude and applied the models to the total ozone mapping spectrometer
(TOMS) data for trend assessment. Niu (1995) studied asymptotic properties of
maximum likelihood estimates of parameters in these models, and proved consis-
tency and asymptotic normality of the parameter estimates under mild conditions.
Although the models of Niu and Tiao are parsimonious, with very few structural
parameters, they do not allow latitudinal dependence – the proposed estimation
procedure was specifically designed for a circular spatial process at a fixed latitude
and does not apply to a general lattice system.

We now propose a class of seasonal space–time models on a rectangular lattice
system that allow for latitudinal dependence and that are appropriate for modeling
the geopotential height data, see Section 2. Various special cases of our models, de-
signed to give parsimonious descriptions of the data, are examined in Section 3. For
simplicity, we concentrate on submodels that have first-order spatial interactions in
the sense that the value of the random field at a given site is influenced directly
only by its nearest neighbors, and in a way that does not depend on the location of
the site. Procedures for fitting the proposed models and obtaining predictions from
them are presented in Section 4. The development of these procedures is based on
a detailed study of the covariance structure of the model.

The atmosphere displays a great deal of variability in time and space, and it is
hard to imagine that a single model for the whole climate system would be feasible.
Our application of the proposed models to the geopotential height data is restricted
to a relatively small region of the Earth’s surface (Figure 1). We believe that the
assumption of first-order spatial interactions holds up well over this region. The
application is presented in Section 5.

2. Seasonal Space–Time Models for Lattice Systems

Climate observations on a fixed latitude–longitude grid can be considered as a
lattice system. Climate lattice systems often show seasonal patterns in the tem-
poral direction. For example, monthly time series usually have a seasonal period
of 12 months. Consider a spatial and temporal process {Yij (t), i = 1, . . . , m;
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Figure 2. Labeling convention for lattice sites.

j = 1, . . . , n; t = 1, . . . , T } with sites (i, j) forming a two-dimensional regular
grid Lm×n and with a seasonal period of s in the temporal direction. Label site (i, j)
using i to index latitude and j to index longitude, see Figure 2; this is the reverse of
the conventional site labeling used in spatial statistics, but more convenient in the
present context. Specifically, for the 10 × 10 lattice shown in Figure 1, we define
that latitudes 1–10 correspond to latitude zones 20◦N, 24◦N, . . ., 56◦N.

Let B be the temporal backward shift operator such that BYij (t) = Yij (t − 1).
For a given site (i, j) in Lm×n, define Nij (r) = {(a, b) : (a, b) ∈ Lm×n; 0 <√
(a − i)2 + (b − j)2 � r} to be the order-r spatial neighborhood set centered at

the site. Consider the following seasonal space–time model {Yij (t)}:

(1 − Bs)D(1 − B)dYij (t) = ξij (t), (2.1)

and

ξij (t) =
p∑

k=0

∑
(a,b)∈Nij (r)

βabkξi−a,j−b(t − k) +

+
p∑

k=1

φijkξij (t − k) + εij (t) −
q∑
l=1

θijlεij (t − l). (2.2)

In model (2.1), the process {Yij (t)} is first differenced temporally to remove pos-
sible seasonal patterns and trends; d � 0 is the number of trend differences, s > 0
is the seasonal period of {Yij (t)}, and D� 0 is the degree of seasonal
differencing.

Model (2.2) gives the structure for the noise process {ξij (t)} in model (2.1)
after trend and seasonal differencing. In the spatial direction, both longitudinal
and latitudinal dependence are taking into account. In the temporal direction, (2.2)
reduces to an autoregressive moving-average (ARMA) model with order p for the
AR part and q for the MA part. The εij (t)’s are assumed to be independent N(0, σ 2)

random variables. The models in (2.1) and (2.2) will be called seasonal space–time
autoregressive and moving-average models.
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3. Covariance Properties of Space–Time Models

3.1. GENERAL COVARIANCE STRUCTURE

In this section, we obtain the reduced form representation of the space–time process
{ξξξ(t)} specified in (2.2) and use it to find the covariance structure. Throughout the
paper, we handle edge sites by equating unobserved border values to their respec-
tive means (see, e.g. Haining, 1978). Specifically, we set εij (t) ≡ 0 and ξij (t) ≡ 0
if site (i, j ) is outside the grid Lm×n. In fact, it will be shown in this section that
when the process {ξij (t), t = 1, 2, . . . , T } is temporally stationary, the mean value
of ξij (t) is zero.

For simplicity of presentation, only spatial first-order processes, that is, r = 1
in Nij (r), are considered. In this case, model (2.2) can be re-written in the form:

ξij (t) =
p∑

k=0

[βk1ξi−1,j (t − k) + βk2ξi+1,j (t − k) + αk1ξi,j−1(t − k) +

+ αk2ξi,j+1(t − k)] +
p∑

k=1

φijkξij (t − k) +

+ εij (t) −
q∑
l=1

θijlεij (t − l). (3.1)

Define

ξξξj (t) = [ξ1j (t), ξ2j (t), . . . , ξmj (t)]
′, ξξξ(t) = [ξξξ ′

1(t), ξξξ
′
2(t), . . . , ξξξ

′
n(t)]

′,
εεεj (t) = [ε1j (t), ε2j (t), . . . , εmj (t)]

′, εεε(t) = [εεε ′
1(t), εεε

′
2(t), . . . , εεε

′
n(t)]

′,

Uk =




0 1 0 . . . 0
0 0 1 . . . 0

· · · · · · · · · · · · · · ·
0 0 0 . . . 1
0 0 0 . . . 0



k×k

for k > 1,

#̃k = Diag(φ11k, . . . , φm1k, φ12k, . . . , φm2k, . . . , φmnk),

$̃l = Diag(θ11l, . . . , θm1l , θ12l, . . . , θm2l , . . . , θmnl),

A0 = Imn − In ⊗ [β01U
′
m + β02Um] − [α01U

′
n + α02Un] ⊗ Im,

Ak = #̃k + In ⊗ [βk1U
′
m + βk2Um] + [αk1U

′
n + αk2Un] ⊗ Im,

where Imn is the identity matrix with dimension mn and A ⊗ C = [aijC] denotes
the Kronecker product of the matrices A and C. Using above notation, model (3.1)
can be expressed as

A0ξξξ(t) =
p∑

k=1

Akξξξ(t − k) + εεε(t) −
q∑
l=1

$̃lεεε(t − l). (3.2)
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Model (3.2) is a structural vector ARMA(p, q) model, which is called a simul-
taneous equation model in econometrics (see, e.g. Judge et al., 1985, Chapters
14–15). If the structure matrix A0 is nonsingular, then model (3.2) can be written
in a reduced form.

First, we study the invertibility of the structure matrix A0. By Graybill (1983,
pp. 284–285), β01U

′
m + β02Um has distinct eigenvalues

µ0i = 2
√
β01β02 cos

(
iπ

m + 1

)
, i = 1, . . . , m,

and α01U
′
n + α02Un has distinct eigenvalues

ν0j = 2
√
α01α02 cos

(
jπ

n + 1

)
, j = 1, . . . , n.

Define

+01 = Diag(µ01, . . . , µ0m), +02 = Diag(ν01, . . . , ν0n).

Then there are nonsingular matrices Pm and Qn such that

+01 = P−1
m (β01U

′
m + β02Um)Pm, +02 = Q−1

n (α01U
′
n + α02Un)Qn.

It is easy to see that

(Q−1
n ⊗ P−1

m )A0(Qn ⊗ Pm) = Imn − In ⊗ +01 − +02 ⊗ Im,

where +0 = Imn − In ⊗ +01 − +02 ⊗ Im is a diagonal matrix. Therefore the
eigenvalues of A0 are

1 − µ0i − ν0j = 1 − 2
√
β01β02 cos

(
iπ

m + 1

)
− 2

√
α01α02 cos

(
jπ

n + 1

)
,

i = 1, . . . , m, j = 1, . . . , n.

When (1 −µ0i − ν0j ) �= 0 for 1 � i �m and 1 � j � n, the matrix A0 is invertible.
In particular, A0 is invertible if

√
β01β02 � 1/4 and

√
α01α02 � 1/4.

From now on, we assume that the structure matrix A0 is invertible. Then model
(3.1) can be written in the reduced form:

ξξξ(t) =
p∑

k=1

A−1
0 Akξξξ(t − k) + A−1

0 εεε(t) −
q∑
l=1

A−1
0 $̃lεεε(t − l). (3.3)

Note that this representation implies the existence of the space–time process spe-
cified by (2.2).

Let

#k = A−1
0 Ak, for 1 � k�p, #(z) = Imn −

p∑
k=1

#kz
k.
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By the theory of vector time series (Hannan, 1970, Chapter 1), if det(#(z)) �= 0
for all |z|� 1, then the process {ξξξ(t)} is temporally stationary and can be expressed
in the causal form:

ξξξ(t) =
∞∑
k=0

0kεεε(t − k), (3.4)

which implies that ξξξ(t) is independent of {εεε(t + 1), εεε(t + 2), . . .} and Eξξξ(t) = 0.
Define $0 = A−1

0 and $l = A−1
0 $̃l for 1 � l � q. Then the matrices {0k} can be

calculated recursively from the equations:

00 = $0, 0k =
k∑

i=1

#i0k−i − $k for k� 1, (3.5)

where #i = 0 for i > p and $k = 0 for k > q. By (3.4), the covariance matrix
function 1(h) = Cov(ξξξ(t), ξξξ (t + h)′) has the form:

1(h) = σ 2
∞∑
k=0

0k0
′
k+h for h = 0,±1,±2, . . . . (3.6)

In general, the process {ξξξ(t)} at a given time t is not spatially stationary since
elements of the covariance matrix 1(0) may depend on spatial location.

3.2. COVARIANCE STRUCTURES OF SPECIAL CASES

We now discuss some special cases of model (3.1) for which the covariance matrices
of {ξξξ(t)} can be expressed in more specialized forms. First, consider the following
spatial first-order model:

ξij (t) =
p∑

k=0

[βk1ξi−1,j (t − k) + βk2ξi+1,j (t − k) +

+ αk1ξi,j−1(t − k) + αk2ξi,j+1(t − k)] +

+
p∑

k=1

φkξij (t − k) + εij (t) −
q∑
l=1

θlεij (t − l). (3.7)

When βk1 = βk2 ≡ βk and αk1 = αk2 ≡ αk, model (3.7) is called a spatially
symmetric model. In this case, we have

A0 = Imn − In ⊗ β0[U ′
m + Um] − α0[U ′

n + Un] ⊗ Im,

Ak = φkImn + In ⊗ βk[U
′
m + Um] + αk[U

′
n + Un] ⊗ Im,

and $̃l = θlImn. It is easy to see that {Ak, k = 0, . . . , p} are symmetric matrices.
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For first-order spatially symmetric models, the inverse of the matrix A0 has an
explicit form. First, notice that the eigenvalues of the matrix U ′

n + Un are

λi = 2 cos

(
iπ

n+ 1

)
, i = 1, . . . , n.

When n is odd, λ(n+1)/2 = 0; when n is even, all the eigenvalues are not zero. For
λi �= 0, let δi and ωi be the two roots of the equation x2 − λix + 1 = 0, that is,

δi = cos

(
iπ

n + 1

)
+

√
cos2

(
iπ

n+ 1

)
− 1,

ωi = cos

(
iπ

n + 1

)
−

√
cos2

(
iπ

n+ 1

)
− 1.

Define cki = (δki − ωk
i )/(δi − ωi) for 1 � k� n. Then corresponding orthonormal

eigenvectors of the λi’s are given in the following theorem explicitly. The proof of
this theorem is sketched in Appendix A.

THEOREM 3.1. A normalized eigenvector corresponding to λi = 0 is

pppi =
[√

2

n + 1
, 0,−

√
2

n+ 1
, 0,

√
2

n + 1
, 0, . . . , 0, (−1)(n−1)/2

√
2

n + 1

]′
,

where n is an odd integer. A normalized eigenvector corresponding to λi �= 0 is

pppi =

c1i

√√√√ n∑
k=1

c2
ki, c2i

√√√√ n∑
k=1

c2
ki, . . . , cni

√√√√ n∑
k=1

c2
ki




′

.

Let Pn = [ppp1,ppp2, . . . ,pppn]. Then we have P ′
n(U

′
n + Un)Pn = Diag(λ1, . . . , λn).

Let Pm be an orthogonal matrix that diagonalize the matrix (U ′
m + Um) and let

R = Pn ⊗ Pm. Then R is an orthogonal matrix and R′A0R = +0, where +0 is a
diagonal matrix with elements:

λ0(i, j) = 1 − µ0i − ν0j = 1 − 2β0 cos

(
iπ

m + 1

)
− 2α0 cos

(
jπ

n + 1

)
,

i = 1, . . . , m, j = 1, . . . , n.

We assume that
∏m

i=1

∏n
j=1(1 − µ0i − ν0j ) �= 0, which implies that the matrix

A0 is invertible and the inverse is A−1
0 = R+−1

0 R′. Similarly, it is easy to see that
Ak = R+kR

′, where +k is a diagonal matrix with the elements:

λk(i, j) = φk − µki − νkj = φk − 2βk cos

(
iπ

m + 1

)
− 2αk cos

(
jπ

n + 1

)
,

i = 1, . . . , m, j = 1, . . . , n.
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For the case p = 1 and q = 0, we have

ξξξ(t) = A−1
0 A1ξξξ(t − 1) + A−1

0 εεε(t). (3.8)

It is easy to see that 0k = [#1]kA−1
0 = [A−1

0 A1]kA−1
0 . Therefore

1(h) = σ 2
∞∑
k=0

0k0k+h = R[+(h)]R′ for h = 0,±1,±2, . . . , (3.9)

where +(h) is a diagonal matrix with the elements:

λ(i, j) =
∞∑
k=0

λ0(i, j)
−2k−h−2λ1(i, j)

2k+h = λ1(i, j)
hλ0(i, j)

−2−h

1 − [λ1(i, j)/λ0(i, j)]2

for i = 1, . . . , m, j = 1, . . . , n,

provided |λ1(i, j)/λ0(i, j)| < 1.

4. Prediction and Estimation

In this section, we assume that the process {ξξξ(t)} in (3.3) is temporally station-
ary and invertible. Forecasting techniques by using model (3.3) are discussed and
estimation procedures for the parameters in the model are given. First, using the
notation in Section 3.1, we can rewrite model (3.3) in the form:

ξξξ(t) =
p∑

k=1

#kξξξ(t − k) + $0εεε(t) −
q∑
l=1

$lεεε(t − l). (4.1)

For any given time t, let ξ̂ξξ t (h) be the h-step ahead prediction defined by

ξ̂ξξ t (h) = E[ξξξ(t + h)|ξξξ(t), ξξξ(t − 1), . . . , ξξξ(1)] for h� 1.

Then ξ̂ξξ t (h) is the best mean square predictor of ξξξ(t + h) given {ξξξ(t), . . . , ξξξ(1)}.
Since we assume normality of the process {ξξξ(t)}, ξ̂ξξ t (h) coincides with the best
linear predictor of ξξξ(t + h) given {ξξξ(t), . . . , ξξξ(1)}.

Suppose that the process {ξξξ(t)} can be expressed in the causal form in (3.4). Let

ε̂εεt (j) = E[εεε(t + j)|ξξξ(t), ξξξ(t − 1), . . . , ξξξ(1)] for j � − q.

Then ε̂εεt (j) = 0 for j � 1. By model (4.1), the h-step ahead predictor ξ̂ξξ t (h) is

ξ̂ξξ t (h) =
p∑

k=1

#̂kξ̂ξξ t (h− k) −
q∑
l=1

$̂lε̂εεt (h − l) for t > M and h� 1, (4.2)

where #̂k and $̂l are estimates of #k and $l , M = max(p, q), ξ̂ξξ t (h − k) =
ξξξ(t + h− k) for (h− k)� 0, and ε̂εεt (j) can be estimated by [ξξξ(t + j)− ξ̂ξξ t+j−1(1)]
for −q � j � 0.
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Let Vt be the one-step ahead prediction error covariance matrix, that is,

Vt = E[ξξξ(t + 1) − ξ̂ξξ t (1)][ξξξ (t + 1) − ξ̂ξξ t (1)]
′.

Algorithms for computing ε̂εεt (·), ξ̂ξξ t (h) and Vt have been developed in the time
series literature (see, e.g. Brockwell and Davis, 1991, Chapter 11). In particular, for
model (3.3) and large t , Vt can be estimated by σ 2(A0A

′
0)

−1. If A0 is nearly singu-
lar, then forecasts using space–time models with instantaneous spatial component
will be unstable.

When observations ξξξ = [ξξξ ′(1), . . . , ξξξ ′(T )]′ are available, the parameters in
the space–time model can be estimated using the maximum likelihood method.
Specifically, let

βββ = {βabk, (a, b) ∈ Nij (h); 0 � k�p},
φφφ = {φijk, 1 � i �m; 1 � j � n; 1 � k�p},
θθθ = {θijk, 1 � i �m; 1 � j � n; 1 � k�p}.

Then the exact log-likelihood function of the parameters is

le(βββ,φφφ,θθθ, σ
2) = −mnT

2
log(2π) − 1

2

T∑
t=1

log(|Vt−1|) − 1

2
ST (ξξξ), (4.3)

where

Se(ξξξ) =
T∑
t=1

[ξξξ(t) − ξ̂ξξ t (1)]
′V −1

t−1[ξξξ(t) − ξ̂ξξ t (1)].

Finding the maximum likelihood estimates of the parameters involves heavy com-
putation. In practice, many approximations to the exact log-likelihood function
are used to estimate the parameters. For example, using techniques similar to Niu
and Tiao (1995), we can show that the conditional log-likelihood function given
εεε(p|ξξξ) = · · · = εεε(p + 1 − q|ξξξ ) = 0 is

lc(βββ,φφφ,θθθ, σ
2) ∝ −(mnT − p) log σ 2 + (T − p) log |A0|2 − Sc(ξξξ), (4.4)

where

Sc(ξξξ) = 1

σ 2

T∑
t=p+1

[εεε ′(t|ξξξ)εεε(t|ξξξ)],

εεε(t|ξξξ ) = A0ξξξ(t) −
p∑

k=1

Akξξξ(t − k) +
q∑
l=1

$̃lεεε(t − l|ξξξ).

Compared with the exact log-likelihood function given in (4.3), the conditional log-
likelihood function lc(βββ,φφφ,θθθ, σ

2) given in (4.4) is much easier to compute. For
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large T , the difference between the two likelihood functions is negligible. From
now on, the conditional likelihood estimates of the parameters will be denoted by
β̂ββ, φ̂φφ, θ̂θθ and σ̂ 2, respectively.

5. Applications of the Seasonal Space–Time Models

At a given pressure level, the geopotential height fields over a time period form
a space–time system, and spatial and temporal dependence of the data set should
be examined for the purpose of understanding the statistical structure of this dy-
namical system. In this section, the seasonal space–time models are applied to 516
monthly averaged 500 mb geopotential height fields for the period January 1946
to December 1988 over the 10 × 10 lattice (Figure 1). Forecasting performance
of different models will also be evaluated. Specifically, univariate time series and
seasonal space–time models are built using the first 504 geopotential height fields,
and the last 12 fields are used to compare the forecasting ability of different models.

Understanding statistical structures of midtropospheric geopotential height
fields and improving the prediction accuracy of these fields are very important for
medium-range (from 6 days to about 2 weeks) and long-range (monthly or seasonal
outlooks) climate forecasting. Currently, medium- and long-range forecasts use
time-averaged midtropospheric geopotential height fields as their primary guidance
(see, e.g. Barnston and Livezey, 1987; Livezey and Schemm, 1988; Wagner, 1989).
For instance, medium-range predictions for a certain period are usually based on
a mean 500 mb height and anomaly field derived from a mix of output from two
different numerical models with some statistical modifications added. Because of
individual synoptic disturbances usually with a life cycle of about 3–7 days, the
details of the weather are not predictable beyond 1–2 weeks (Epstein, 1988). The
main concern of long-range forecasting is the general behavior of the larger scales
of atmospheric circulation. As time ranges increased, Wagner (1989) pointed out
that guidance for climate prediction increasingly relies on statistical techniques
using autocorrelation fields rather than numerical weather prediction.

A number of meteorological operational and research organizations are now
issuing seasonal to interannual climate outlooks based on significant improvements
in coupled ocean–atmospheric general circulation modeling. The coupled general
circulation model (GCM) is a dynamical system that mimics the dynamical system
of the climate using equations for the ocean and the atmosphere. Modeling field
observations of the climate system offers a method for validating the consistency
of GCMs. For instance, comparisons can be made between variables (such as
geopotential height) that are simulated from a GCM and field observations of
the same variables (see Wigley et al., 1998). The autocovariance function of the
observed variable should match the autocovariance of the GCM variable. If not, it
implies faulty or incomplete dynamics in the GCM. As a potential application of
the space–time models proposed in this study, we may fit the models to both field
observations and numerical model outputs of a dynamical system and compare
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the fitted models. Here we identify a way to go beyond using simply temporal
statistics for comparisons to include space–time coupling and suggest models for
better assessing the structural information of the next generation of GCMs.

5.1. UNIVARIATE TIME SERIES MODELS

Let {Yij (t), t = 1, . . . , 516} be the monthly averaged 500 mb geopotential heights
observed at site (i, j). As a preliminary analysis, a univariate time series model is
fitted to each of the 100 time series by using the well-known Box–Jenkins modeling
procedure (Box and Jenkins, 1976). Figure 3(a) plots the geopotential heights in
meters at site (1, 1) with latitude 20◦N and longitude 120◦W. The series shows a
clear seasonal pattern with period 12 months, and the geopotential heights in years
1961 and 1962 were slightly higher than those in other years. Figure 3(b) shows
the seasonally differenced series ξ11(t) = (1 −B12)Y11(t) = Y11(t)− Y11(t − 12).
Based on the Box–Jenkins modeling procedure, a univariate time series model with
AR order p = 1 and an MA lag-12 term is identified for the seasonally differenced

Figure 3. The geopotential height series at site (1, 1).
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series, which is expressed in (5.1). When only temporal structure of the time series
at site (1, 1) is concerned, diagnostic testings show that the fitted univariate model
is adequate.

The same modeling procedure is performed to identify univariate time series
models for geopotential heights at other sites. Almost all of the series follow the
same model as that for the heights at site (1, 1), that is, the seasonally differenced
series ξij (t) = Yij (t) − Yij (t − 12) can be modeled in the form:

ξij (t) = φij ξij (t − 1) + εij (t) − θij εij (t − 12). (5.1)

The estimated AR and MA coefficients in model (5.1) are plotted in Figure 4(a) and
(b), respectively, where latitudes 1–10 correspond to 20◦N–56◦N with a 4◦ latitude
interval. The 10 estimated AR coefficients for the height series on latitude 20◦N
have values around 0.5. When latitude increases from 20◦N to 44◦N, the estimated

Figure 4. (a) and (b) Boxplots of the estimated AR and MA coefficients in model (5.1) plot-
ted against latitude, where latitudes 1–10 corresponding to latitudes 20◦N–56◦N with a 4◦
interval.
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AR coefficients show a decreasing pattern. In fact, in roughly half of the series at
latitudes 36◦N, 40◦N and 44◦N, the estimated AR coefficients are not significantly
different from zero. The estimated MA coefficients range from 0.78 to 0.92, which
have higher values for height series near the equator and the north pole and lower
values for series on the mid-latitudes.

Notice from Figure 4(a) that the estimated AR coefficients {φ̂ij ,
j = 1, 2, . . . , 10} on latitude i have about the same value. The estimated MA coef-
ficients in Figure 4(b) show a similar pattern. Based on this observation, we may
consider the following longitudinally homogeneous model for the geopotential
height series:

ξij (t) = φiξij (t − 1) + εij (t) − θiεij (t − 12). (5.2)

Model (5.2) is actually a special case of the space–time model specified in (3.1).
This model is fitted to the data set by using the first 504 geopotential height fields
and parameters in the model are estimated by maximizing the conditional log-
likelihood function given in (4.4). The estimated AR and MA coefficients along
with their estimated standard errors are presented in Table I which shows that all the
coefficients are significantly positive. For example, the estimated AR coefficient
for latitude 45◦N is 0.0816 with a t-value about 8.33, and this coefficient is roughly
equal to the average of the estimated AR coefficients in model (5.1) for the 10 time
series on the same latitude. The estimated MA coefficients for mid-latitudes are
lower than those for latitudes near the equator and the north pole, which is similar
to the pattern shown in Figure 4(b).

5.2. SPACE–TIME MODELS

Before building space–time models for the data set, we first examine spatial inde-
pendence of the geopotential height fields. The univariate time series model in (5.1)

Table I. Parameter estimates in model (5.2)

Latitude AR(1) coefficient φ̂i Standard error MA coefficient θ̂i Standard error

20◦N 0.4749 0.0286 0.8317 0.0329

24◦N 0.3081 0.0230 0.8121 0.0254

28◦N 0.2328 0.0172 0.7916 0.0182

32◦N 0.1792 0.0132 0.7837 0.0138

36◦N 0.1190 0.0110 0.7858 0.0110

40◦N 0.0816 0.0098 0.7947 0.0098

44◦N 0.1001 0.0091 0.8182 0.0093

48◦N 0.1553 0.0083 0.8448 0.0085

52◦N 0.1929 0.0075 0.8614 0.0076

56◦N 0.1836 0.0067 0.8542 0.0069
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is fitted to the geopotential height series at each site, and the sample covariance
matrices {1̂ε(h) = [γ̂kl(h)], h = 0, 1, . . . , 10} are calculated based on the residuals
{ε̂ij (t), i, j = 1, . . . , 10; t = 1, . . . , 504}. The sample cross-correlations ρ̂kl(h)’s
corresponding to the process {εεε(t)} in model (5.1) are calculated by the formula
(see, e.g. Brockwell and Davis, 1991, p. 406):

ρ̂kl(h) = γ̂kl(h)√
γ̂kk(0)γ̂ll(0)

for h = 0,±1,±2, . . . .

In this study, sites (a, b) and (u, v) are said to be spatial neighbors of site (i, j)

with the same order if the two sites have the same lattice separation from site
(i, j). For a given h, the sample cross correlations ρ̂kl(h)’s can be grouped ac-
cording to different spatial orders. Figure 5(a) shows the sample instantaneous
spatial correlations of the process {εεεt} in model (5.1) up to spatial order 10. It
is clear from the plot that if the univariate time series model in (5.1) is fitted to
the height series at each site separately, the instantaneous spatial correlations of the
residuals are very strong. Figure 5(b) plots the lag-one spatial cross-correlations of
the residuals, which shows only the order-one and order-two spatial correlations at
temporal lag-one are slightly different from zero.

The strong instantaneous spatial dependence of the residuals from model (5.1)
suggests that space–time models are needed for the geopotential height fields. First,
we consider the following spatially symmetric first-order space–time model:

ξij (t) = β[ξi−1,j (t) + ξi+1,j (t)] + α[ξi,j−1(t) + ξi,j+1(t)] +
+ φiξij (t − 1) + εij (t) − θiεij (t − 12). (5.3)

Similar to model (5.2), the AR and MA coefficients in model (5.3) are assumed to
depend only on latitude.

It is climatologically reasonable to assume a zonal (east–west) symmetry in
the geopotential field under typical conditions of strong westerly flow (west–east)
resulting from colder (more dense) air to the north and warmer (less dense) air
to the south. North–south (meridional) symmetry occurs less often, but can occur
with blocking patterns resulting in large temperature anomalies.

Model (5.3) is fitted to the data set and the parameters in the model are estimated
by maximizing the conditional log-likelihood function in (4.4). The estimated spa-
tial parameters are β̂ = 0.271 and α̂ = 0.317, and both the estimated standard er-
rors are about 0.001. The sample instantaneous spatial correlations and the sample
lag-one cross correlations of the process {εεε(t)} in model (5.3) are calculated and
presented in Figure 5(c) and (d). The sample instantaneous spatial correlations
are apparently different from zero, which indicates that spatially nonsymmetric
or higher-order space–time models are needed for this data set.

Next the following spatially nonsymmetric first-order space–time model is fitted
to the series:

ξij (t) = β01ξi−1,j (t) + β02ξi+1,j (t) + α01ξi,j−1(t) + α02ξi,j+1(t) +
+ φiξij (t − 1) + εij (t) − θiεij (t − 12). (5.4)
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Figure 5. Sample spatial correlations at temporal lags h = 0 and h = 1 of the error process
εεε(t) in different models, with (a) and (b) for model (5.1), (c) and (d) for model (5.3), and (e)
and (f) for model (5.4).

The estimated spatial and temporal parameters in the above model are present-
ed in Table II. The two latitudinal parameter estimates are β̂01 = 0.3798, and
β̂02 = 0.2237, which indicates that a geopotential height series is more strongly
correlated with a series at a site to the south than one to the north. Similarly, the
two longitudinal parameter estimates indicate a stronger correlation with sites to
the west than with sites to the east.

The estimated AR(1) coefficients for different latitudes shown in Table II are
much smaller than those shown in Table I. For example, the estimated AR(1)
coefficient for latitude 20◦N based on model (5.4) is 0.1552 while the same coeffi-
cient based on model (5.2) is estimated to be 0.4749. This result indicates that the
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Table II. Parameter estimates in the space–time model (5.4) (with the instantaneous spatial
component)

Spatial coefficient estimates

Coefficient β̂01 = 0.3798 β̂02 = 0.2237 α̂01 = 0.3250 α̂02 = 0.2570

Standard error 0.0014 0.0010 0.0013 0.0012

Latitude AR(1) coefficient φ̂i Standard error MA coefficient θ̂i Standard error

Temporal coefficient estimates

20◦N 0.1552 0.0057 0.8371 0.0153

24◦N −0.0081 0.0044 0.7856 0.0229

28◦N −0.0070 0.0034 0.8460 0.0196

32◦N −0.0003 0.0026 0.8142 0.0165

36◦N −0.0010 0.0021 0.7925 0.0140

40◦N −0.0007 0.0018 0.8024 0.0125

44◦N 0.0028 0.0017 0.8209 0.0113

48◦N 0.0003 0.0016 0.8439 0.0100

52◦N −0.0042 0.0014 0.8522 0.0095

56◦N 0.0372 0.0013 0.8256 0.0053

temporal correlations of the geopotential height observations become weaker after
the instantaneous spatial dependence is taken into account. The estimated standard
errors of the AR(1) coefficients based on model (5.4) are also much smaller than
those based on model (5.2), which is mainly because the variance estimate σ̂ 2 of
εij (t) based on model (5.4) is much smaller than that based on model (5.2). On the
other hand, the estimated MA coefficients at lag 12 from model (5.4) are about the
same as those from model (5.2), which shows that including the instantaneous spa-
tial component into the space–time models has very little impact on the temporal
MA structure.

The sample spatial correlations of the process {εεε(t)} in model (5.4) are shown
in Figure 5(e) and (f). The sample instantaneous spatial correlations for different
spatial orders have medians around zero but with quite large ranges. Higher order
space–time models have also been tried with no significant improvement in terms
of reducing the instantaneous spatial correlations.

Two space–time models without instantaneous spatial component are also con-
sidered in this study. The first one is the following temporal lag-one and spatial
first-order model:

ξij (t) = β11ξi−1,j (t − 1) + β12ξi+1,j (t − 1) +
+ α11ξi,j−1(t − 1) + α12ξi,j+1(t − 1) +
+ φiξij (t − 1) + εij (t) − θiεij (t − 12). (5.5)
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In this model, the instantaneous component is replaced by the lag-one spatial com-
ponent. The second model is the temporal lag-one and spatial second-order model
which has the form:

ξij (t) = β11ξi−1,j (t − 1) + β12ξi+1,j (t − 1) +
+ α11ξi,j−1(t − 1) + α12ξi,j+1(t − 1) +
+ β13ξi−1,j−1(t − 1) + β14ξi+1,j−1(t − 1) + α13ξi−1,j+1(t − 1) +
+ α14ξi+1,j+1(t − 1) +
+ φiξij (t − 1) + εij (t) − θiεij (t − 12). (5.6)

Models (5.5) and (5.6) are fitted to the geopotential height fields. The estimated
parameters in model (5.6), along with their estimated standard errors, are presented
in Table III. The estimated first-order spatial coefficients are all negative, but the
estimated temporal AR(1) coefficients and their standard errors based on model
(5.6) are generally higher that those from model (5.2). For example, the estimated
AR(1) coefficient for latitude 20◦N based on model (5.6) is 0.6104 with an esti-
mated standard error of 0.0395 while the same coefficient based on model (5.2) is
estimated to be 0.4749 with an estimated standard error of 0.0286. The estimated
temporal MA coefficients in models (5.6) and (5.2) are almost identical. A likeli-
hood ratio test shows that model (5.6) is better than model (5.5). Several spatially
higher order models were also tried, but showed no significant improvement over
model (5.6) in terms of goodness-of-fit.

Values of the negative conditional log-likelihood function, −lc(βββ,ααα,φφφ,θθθ, σ
2)

are calculated at the estimated parameters for models (5.2)–(5.6). The values for
models (5.3) and (5.4) are 3,518,077 and 3,088,586, respectively, which are much
lower than the value of 84,609,229 for model (5.2). The likelihood ratio test shows
that model (5.4) fits the data much better than models (5.3) and (5.2). On the other
hand, the values for space–time models without instantaneous spatial component,
(5.5) and (5.6), are 84,119,683 and 84,068,873, respectively, which are lower than
the value 84,609,229 for model (5.2) but much higher than the values for models
(5.3) and (5.4). It should be pointed out that models (5.3) and (5.4) are not nested
in models (5.5) and (5.6). Based on these results, we conclude that the first-order
space–time model in (5.4) with instantaneous spatial component provides the best
fit for the 504 geopotential height fields in terms of maximizing the conditional
likelihood function. Other space–time models with higher spatial orders have also
been fitted to the data, but no significant improvements are shown by these models
over model (5.4).

5.3. FORECASTING RESULTS

Based on the fitted models (5.1), (5.2), (5.5), and (5.6), the last 12 fields of the
geopotential heights, {Yij (t), t = 505, . . . , 516} are forecasted. For a fixed h, the
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sum of squared h-step ahead forecast errors is calculated by

SSFE(h) =
10∑

i,j=1

[Yij (504 + h) − Ŷij (504 + h)]2 for 1 � h� 12.

The total sum of squared forecast errors for each fitted model is calculated by
TSSFE = ∑12

h=1 SSFE(h). For the fitted model in (5.2), the TSSFE value is
1,450,355, which is slightly higher than the value 1,448,271 for the fitted model in
(5.1). The TSSFE values for the fitted models in (5.5) and (5.6) are 1,420,981 and
1,417,860, respectively. Compared with models (5.1), (5.2), and (5.5), the temporal
lag-one and spatial second-order in (5.6) gives the most accurate forecasts in terms
of minimizing the TSSFE.

Proportions of the monthly variation in the last 12 geopotential height fields
explained by different fitted models are calculated by the formula

PV =
∑12

h=1

∑10
i,j=1[Ŷij (504 + h) − Ȳ )]2∑12

h=1

∑10
i,j=1[Yij (504 + h) − Ȳ )]2

,

where Ŷij (504 + h) is the forecast value of Yij (504 + h) from a given fitted model
and

Ȳ =
∑12

h=1

∑10
i,j=1 Yij (504 + h)

1200

is the average value of the last 12 geopotential height fields. The PV values ex-
plained by models (5.1) and (5.2) are about 90%. Forecasts from models (5.5)
and (5.6) explain about 92 and 93% of the monthly variation in the observation,
respectively.

It should be pointed out that the lag-one spatial dependence of the monthly
averaged 500 mb height fields is not very strong, which is shown by the rela-
tively small absolute values of the estimated spatial coefficients in model (5.6),
see Table III. The weak lag-one spatial dependence explains why the predictive
power of model (5.6) is only marginally better than that of the univariate time
series model (5.1), although the improvement of forecast ability is still statistically
significant. When daily or weekly observations are used instead of monthly data,
it is expected that the lag-one spatial and temporal dependence of geopotential
heights will be much stronger and substantial improvements in prediction can be
achieved by using space–time models.

When the fitted space–time models (5.3) and (5.4) are used to forecast the last
12 geopotential height fields, the inverse structure matrix A−1

0 in (3.3) needs to
be calculated. The minimum absolute eigenvalues of A0 in models (5.3) and (5.4)
are 0.0104 and 0.0233, respectively. These small minimum eigenvalues make the
matrix A−1

0 unstable. In fact, forecasts of the last 12 geopotential height fields based
on models (5.3) and (5.4), not presented in this paper, are worse than those from
the other four fitted models because of inverse problems.
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In Section 3.1, we pointed out that for the spatially nonsymmetric first-order
space–time model (3.1), a sufficient condition for the structure matrix A0 to be in-

vertible is
√
β01β02 � 1/4 and

√
α01α02 � 1/4. For model (5.4), we have

√
β̂01β̂02 =√

0.3798 × 0.2237 ≈ 0.29 and
√
α̂01α̂02 = √

0.3250 × 0.2570 ≈ 0.289, that
is, the sufficient condition does not hold empirically. In this case, the estimated
structure matrix A0 is nearly singular even though still invertible. Based on our
experience, unlike lagged spatial and temporal correlations, strong instantaneous
spatial dependence of a process is not particularly helpful for improving forecasting
ability in the temporal direction.

In this study, we find that the spatial–temporal dependence of the seasonally
differenced monthly averaged 500 mb geopotential height fields, over the 10 × 10
lattice for the period January 1946 to December 1988, can be described by the
space–time model given in (5.4). This result is valuable for extracting structural
information on climate lattice systems. If one is interested in specific features
concerning spatial and temporal data sets, such as long-term trends and seasonal
patterns, this type of model should be used. For instance, the space–time models
are potentially useful for comparing the structural information of variables from
field observations and from outputs of GCMs.

We also find that some space–time models with instantaneous spatial compo-
nent, such as models (5.3) and (5.4) in this study, may perform poorly in forecasting
due to inverse problems. Compared with other models, seasonal space–time model
(5.6) without instantaneous spatial component provides more accurate forecasts
for the monthly averaged 500 mb geopotential height fields. Techniques developed
in this study can be applied to model and forecast geopotential heights at dif-
ferent pressure levels. Then the predicted height fields can serve as guidance for
improving long-range climate forecasting.

Appendix A. Proof of Theorem 3.1

Proof of Theorem 3.1. A normalized eigenvector pppi = [pi1, . . . , pin]′ correspond-
ing to the eigenvalue λi satisfies the following conditions:

(U ′
n + Un)pppi = λipppi,

n∑
k=1

p2
ik = 1. (A.1)

Let pi0 = 0, then Equation (A.1) can be written as

pik − λipi,k−1 + pi,k−2 = 0 for 2 � k� n,

n∑
k=1

p2
ik = 1. (A.2)

For n odd and λi = 0, it is easy to see that pi2 = pi4 = · · · = pi,n−1 = 0 and
pik = (−1)(k−1)/2pi1 for k odd. Therefore we have [(n + 1)/2]p2

i1 = 1. Choose
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pi1 = √
2/(n + 1). Then

pppi =
[√

2

n + 1
, 0,−

√
2

n+ 1
, 0,

√
2

n + 1
, 0, . . . , 0, (−1)(n−1)/2

√
2

n + 1

]′

is a normalized eigenvector for λi = 0.
For λi �= 0, notice that δi +ωi = λi and δiωi = 1. The equation pik−λipi,k−1 +

pi,k−2 = 0 can be written in the form

pik − δipi,k−1 = ωi(pi,k−1 − δipi,k−2),

which implies that pik − δipi,k−1 = ωk−2
i (pi2 − δipi1). Since pi2 = λipi1, we have

pik − δipi,k−1 = ωk−2
i (λi − δi)pi1 = ωk−1

i pi1. (A.3)

Similarly we have

pik − ωipi,k−1 = δk−2
i (λi − ωi)pi1 = δk−1

i pi1. (A.4)

[δi × (A.4) − ωi × (A.3)] gives us

pik = δki − ωk
i

δi − ωi

pi1 = cikpi1. (A.5)

Notice that

(δki − ωk
i ) − λi(δ

k−1
i − ωk−1

i ) = (δki − ωk
i ) − (δi + ωi)(δ

k−1
i − ωk−1

i )

= δiω
k−1
i − ωiδ

k−1
i = −(δk−2

i − ωk−2
i ),

which follows that the coefficients cik satisfy the recursive equation cik = λici,k−1−
ci,k−2 for k� 3. Since ci1 = 1 and ci2 = λi , the coefficients cik are all real numbers.

Finally, the pik’s satisfy the normalization equation

n∑
k=1

p2
ik = p2

i1

n∑
k=1

c2
ik = 1.

Choosing pi1 =
√

1/
∑n

k=1 c
2
ik , then we have

pppi =
[
c1i

√√√√ n∑
k=1

c2
ki , c2i

√√√√ n∑
k=1

c2
ki , . . . , cni

√√√√ n∑
k=1

c2
ki

]′
.
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