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[1] Hurricanes are a serious social and economic threat to the United States.

Hurricane Katrina is a grim reminder of this fact. Recent advances allow skill-

ful forecasts of the U.S. hurricane threat at (or near) the start of the Atlantic

hurricane season. Skillful forecasts of hurricane landfalls at longer lead times

(forecast horizons) for the complete hurricane season would greatly benefit risk

managers and others interested in acting on these forecasts. Here we show a

model that provides a 6-month forecast horizon for annual hurricane counts

along the U.S. coastline during the June through November hurricane season

using the North Atlantic Oscillation (NAO) and Atlantic sea-surface tempera-

ture (SST) as predictors. Forecast skill exceeds that of climatology. The long-

lead skill is linked to the persistence of Atlantic SST and to teleconnections

between North Atlantic sea-level pressures and precipitation variability over

North America and Europe. The model is developed using Bayesian regres-

sion and therefore incorporates the full set of Atlantic hurricane data extending

back to 1851.
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1. Introduction

[2] Predictions of basin-wide Atlantic hurricane activity have been around since the middle 1980s

[Gray , 1984b]. Research focusing on climate factors that influence hurricane frequency region-

ally [Lehmiller et al., 1997; Bove et al., 1998; Maloney and Hartmann, 2000; Elsner et al., 2000;

Murnane et al., 2000; Jagger et al., 2001; Larson et al., 2005] is more recent. Insights into

regional hurricane activity are used to help predict landfall activity [Elsner and Jagger, 2006a;

Saunders and Lea, 2005; Lehmiller et al., 1997]. However, current landfall forecasts have short

lead times (less than 1 month) and rely on data spanning approximately the past half century.

In general, statistical models built from longer data records would be expected to perform with

greater precision. However, older data tend to be less reliable and more uncertain. Here we max-

imize the utility of available data by combining the relatively short, high quality time series of

observations with older, less precise time series using a Bayesian approach that does not require

data to have uniform precision [Elsner and Bossak, 2001; Elsner and Jagger, 2004]. In doing so

we offer for the first time a forecast model that can be used to predict the number of hurricane

landfalls along the U.S. coastline (U.S. hurricane activity) by February 1st (4 months prior to

the official start of the hurricane season and 6 months prior to the active portion of the season).

The work builds on Elsner and Jagger [2006b] who demonstrate a skillful prediction model for

U.S. hurricanes by July 1st.

2. Data

[3] A chronological list of all hurricanes that have affected the continental United States in the

period 1851–2004 is available from NOAA at http://www.aoml.noaa.gov/hrd/hurdat/

ushurrlist.htm. The list is dated February 2005. The approximate length of the U.S. coast line

affected by hurricanes from the Atlantic is 6000 km. We do not consider hurricanes affecting

Hawaii, Puerto Rico, or the Virgin Islands. Hurricane landfall occurs when all or part of the
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storm’s eye wall passes over the coast or adjacent barrier islands. A hurricane can make more

than one landfall as hurricane Andrew did in striking southeast Florida and Louisiana. Here we

consider only whether the cyclone made landfall the continental United States at least once at

hurricane intensity. Here it is assumed that the annual counts of U.S. hurricanes are certain back

to 1899, but less so in the interval 1851–1898. Justification for this cutoff is based partly on

U.S. legislation in July 1898 to create a hurricane warning system for the protection of military

and merchant ships in the Caribbean that led to the establishment of a Weather Bureau forecast

center at Kingston, Jamaica [Arsenault, 2005].

[4] We consider as predictors of U.S. hurricanes two oscillations shown previously to be

related to seasonal activity; Atlantic SST and the North Atlantic oscillation (NAO), represented

by a sea-level pressure difference between subtropical and polar latitudes [Hurrell et al., 2001].

Atlantic SST values are based on a blend of model values and interpolated observations, which

are used to compute anomalies north of the equator. The anomalies are computed by month

using the climatological time period 1951–2000 and are available back to 1871. Units are ◦C.

January SST values are obtained online from NOAA-CIRES Climate Diagnostics Center (CDC).

Whatever its cause, the low frequency variation in Atlantic SST is sometimes referred to as the

Atlantic Multidecadal oscillation (AMO) [Enfield et al., 2001; Goldenberg et al., 2001]. For

shorthand we use the acronym “AMO” for Atlantic SST. NAO index values are calculated from

sea level pressures at Gibraltar and at a station over southwest Iceland [Jones et al., 1997], and

are obtained from the Climatic Research Unit. The values used here are an average over the fall

and early winter months of October through January and are available back to 1851. Units are

standard deviations.

[5] We also consider the Southern Oscillation Index (SOI) as a predictor, but find no signifi-

cant relationship with U.S. hurricanes at this lead time (6 months). While not used directly in the

long-lead forecast model, the SOI helps explain the secular changes in model skill. SOI values
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are an indicator of ENSO. Although noisier than equatorial Pacific SSTs, values are available

back to 1866. The SOI is defined as the normalized sea-level pressure difference between Tahiti

and Darwin. The SOI is strongly anti-correlated with equatorial SSTs so that an El Niño warm-

ing event is associated with negative SOI values. Units are standard deviations. The relationship

between ENSO and hurricane activity is strongest during the hurricane season, so we use an

August–October average of the SOI as our predictor. The monthly SOI values [Ropelewski and

Jones, 1997] are obtained from the Climatic Research Unit.

[6] SST variability is determined by temperatures across the Atlantic basin with a warm ocean

resulting in high values for the AMO. NAO variability results from changes in the atmospheric

mass and pressure fields that change middle latitude storminess and the strength and geographic

position of the subtropical high pressure cell. A strong north-south pressure gradient results in

high values for the NAO. A warm tropical ocean provides fuel for tropical cyclones and the

subtropical high provides steering. Years coincident with a warm ocean and low NAO values

result in a significantly greater threat of U.S. hurricanes.

3. Bayesian Regression Model

[7] Time series of annual U.S. hurricane counts, fall to winter (October-January) averaged values

of an NAO index, and January values of Atlantic SST are shown in Fig. 1. The NAO shows

greater high frequency (year-to-year) variation while the AMO shows pronounced low frequency

variability. Only the NAO is available back to 1851. U.S. hurricane landfalls tend to be more

abundant when the NAO is low and when Atlantic SST are warm. The correlation (Pearson)

between the annual count and the NAO is −0.19 (P = 0.017) and between the annual count

and a linearly-detrended AMO is +0.20 (P = 0.021). We note that the NAO-U.S. hurricane

correlation changes to −0.27 (P = 0.006) when the years 1949–1997 are removed from the

analysis. Correlation analysis does not provide an equation for prediction nor does it consider
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missing predictor values or the fact that annual coastal hurricane counts are small non-negative

integers and likely uncertain before 1899. We account for these limitations using a Bayesian

regression model and forecast the number of hurricanes for each year conditional on values of

the NAO, Atlantic SST, and year. Remarkably, these predictors provide useful skill in forecasting

the hurricane threat 6 months in advance.

[8] The annual coastal hurricane count is assumed to follow a Poisson distribution. The

logarithm of the Poisson rate is logically linked to a summation of the predictors. Although

hurricane counts are available back to 1851, older counts are less precise. Therefore we include

an indicator variable given a value of 1 for years 1851–1898, and a value of 0 for years 1899–

2004. The model coefficient associated with this term is the logarithm of the probability that a

hurricane is recorded in the data base given that it occurred. In effect, the model allows for the

possibility that a hurricane occurred but was not recorded. The model is evaluated using Markov

chain Monte Carlo (MCMC) sampling [Gilks et al., 1994; Spiegelhalter et al., 1996]. Diagnostic

plots reveal good mixing of the samples. We generate 12K samples and discard the first 2K. The

modeling procedure is cross-validated in the spirit of Elsner and Schmertmann [1994]. Details

of the model and cross validation procedure are given in Elsner and Jagger [2004; 2006b].

4. Model Results and Discussion

[9] Analysis of the distribution of posterior samples of the regression coefficients (Fig. 2) shows

the significance of the predictors of hurricane landfall. The posterior mean of the NAO coefficient

(Table 1) is−0.166 with a 95% credible interval of (−0.303, −0.027) and a P = 0.0085 (only 85

out of 10K samples had a coefficient value greater than 0). The posterior mean of the Atlantic

SST coefficient is +0.455 with a 95% credible interval of (−0.193, +1.106) and a P = 0.085.

Correlation between the observed count and the predicted mean number of hurricanes is +0.24,

but increases to +0.29 when the years from 1949 through 1997 are removed.
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[10] The leading contender model for anticipating U.S. hurricane counts at this long lead time

is climatology. The model outperforms climatology in 56% (86/154) of all years and in 61%

(42/69) of years in which the number of U.S. hurricanes is zero or more than 2 (below and above

average years). These percentages are 55 and 59, respectively when the model is cross-validated.

Even for years in which the model under-performs climatology, the forecast probability of what

actually occurred is relatively high. Thus, the model anticipates the upcoming coastal hurricane

season 4–6 months in advance with an out-of-sample skill level that exceeds that of simply

predicting an average number each year. Skill levels are modest but useful especially for years

of heightened (three or more) and no hurricane landfalls. In comparison, the correlation over the

past 13 years (1992–2004) between observed and predicted basin-wide hurricane counts from

actual forecasts made by December [Gray et al., 1999; Gray and Klotzboch, 2004] is +0.08,

which compares with +0.35 from our cross-validated model predicting U.S. hurricane counts by

February. Our model also outperforms long-range forecasts of U.S. hurricane activity issued by

Benfield Hazard Research Centre [Saunders and Roberts, 2005], though the comparison is based

on a limited number of years (see Table 2).

[11] The model has skill because the Atlantic SST predicts how active the basin will be in

terms of the number of hurricanes and the NAO predicts the general path the hurricanes will

take when they form. Warm Atlantic ocean conditions in January generally persist into the

hurricane season. We quantify the relationship between a warm ocean and hurricane number by

modeling the total basin-wide hurricane count using the January AMO from 1943–2004 and find

a significant lead relationship (P = 0.0047).

[12] The relationship between October-January NAO and hurricane tracks is more complex.

A weak fall/winter NAO is associated with weaker middle latitude weather systems (and thus less

precipitation) over North America and Europe. The relatively dry fall/winter season continues

into spring and the dry conditions subsequently lead to a tendency for greater middle tropospheric
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ridging during the summer and fall. Ridging over the eastern and western sides of the North

Atlantic basin during the hurricane season displaces the middle tropospheric trough of lower

pressures to the north. The trough, which induces hurricane movement to the north and east,

is therefore unable to recurve hurricanes that are moving westward toward the United States

thus increasing the probability of landfalls along the Gulf and southeast coasts. Support for

this hypothesis comes from the positive correlation between monthly precipitation totals from

January through May at stations in a region extending from Ohio to Massachusetts and fall/winter

NAO values. In other words, weak fall/winter NAO conditions lead to less precipitation, more

ridging, less recurvature, and a higher probability of landfall.

[13] We consider 11 stations with monthly precipitation totals (from the U.S. Historical Cli-

matology Network dating back at least 100 years from Ohio to Massachusetts and compute the

fall/winter-averaged NAO coefficient for an ordinary linear regression model of monthly precip-

itation on NAO and year for each station and for each month from January through May. Of

the 55 coefficients (5 mo × 11 stations), 45 (82%) are positive (for each station at least 3 of the

5 months have a positive coefficient) indicating that fall/winter NAO tends to lead springtime

precipitation totals with a weak NAO associated with drier conditions over the Midwest into the

Northeast. We repeat the analysis with the January AMO used in place of the NAO and find that

only 31 (56%) of the coefficients are negative indicating the AMO explains less of the interannual

variation in spring precipitation over this region. These results are similar to Ogi et al. [2004]

showing a linkage between wintertime NAO and the following summertime high pressure over

the Sea of Okhotsk and it’s regulation of the Asian summer monsoon.

[14] The El Niño-Southern Oscillation (ENSO) cycle also plays a role in how active the hur-

ricane season will be [Gray, 1984a], and it thus modifies the probability of a U.S. strike through

changes in tropospheric wind shear [Goldenberg and Shapiro, 1996]. This effect is not included

in the long-lead model, but it explains why the model performs rather poorly over the period
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from 1949–1997. We show this by adding the August through October (main hurricane season)

averaged value of the SOI to the model. The term is significant (P = 0.0046) after accounting for

values of fall/winter NAO and January AMO. In-sample model skill over climatology increases

to 58% of all years and to 68% of years in which the number of U.S. hurricanes is zero or more

than 2. In particular, the mean value of the hurricane-season SOI over the period 1949–1997 for

the 7 years in which the fall/winter NAO is most negative (most favorable for U.S. hurricanes) is

−0.92 which compares to an average of −0.12 over the period 1867–2004. Thus in years over

the period 1949–1997 that portended favorable conditions for storms to track toward the U.S.

(negative NAO), ENSO was an inhibiting factor in hurricane development. This underscores

the value of accurate long-lead forecasts of ENSO. Interestingly, since the effect of the NAO is

accumulative (more pre-hurricane season months of negative NAO implying more drying) if we

also include a May through June averaged value for the NAO to the model (P = 0.0003), model

skill over climatology increases to 62% of all years and to 80% of years in which the number of

U.S. hurricanes is zero or more than 2.

5. Conclusion

[15] Seasonal prediction of hurricane landfalls is of potentially great value to business, govern-

ment, and society. Better forecasts provide a sound basis for assessing the likely losses asso-

ciated with a catastrophic reinsurance contract [Michaels et al., 1997], but forecasts will need

to be issued well before January 1, the start date of most reinsurance treaties, to be of greatest

value to reinsurers. It is worth noting that although forecasts of the mean hurricane count fluc-

tuate around 2, there can be a sizeable change in the forecast probability of a large number of

hurricane landfalls with a small change in the forecast mean, and changes in the tails of these

probability distributions are of practical importance to catastrophe reinsurers. Our model of hur-

ricane landfalls, which shows skill at lead times of at least 4 months before the hurricane season,
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begins to provide risk managers the advance information needed for action.
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Figure 1: Time series of the predictand and predictors used in the long lead forecast model

of U.S. hurricane activity. a. Annual U.S. hurricane count (predictand). b. October-January

averaged value of the North Atlantic Oscillation (NAO) (predictor) c. January averaged value

of the Atlantic SST (AMO) (predictor). The NAO explains less than 2% of the variation in

the AMO. For presentation purposes only, all series have been smoothed using a 3-year kernel

(Parzen) filter. Results from correlation analyzes and regression modeling reported in the text are

based on unfiltered values.

Figure 2: Posterior distributions of regression coefficients from a Bayesian model of U.S. hur-

ricane counts. a. Regression coefficient of fall/winter NAO. b. Regression coefficient of January

AMO. c. Regression coefficient of year. d. Time-series of observed annual number of U.S. hur-

ricanes and model-predicted mean hurricane rate for each year 1851–2004. The observed counts

are smoothed as in Fig. 1 to better match the smaller variability of the rate.
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Table 1: Bayesian regression results
Averaging Model Coefficient

Term Months Mean 95% CI P -value

NAO October-January −0.166 (−0.303, −0.027) 0.0085

AMO January +0.455 (−0.193, +1.106) 0.0850

Year – −0.003 (−0.006, −0.001) 0.0220

SOI August-October +0.177 (+0.047, +0.304) 0.0046

NAO May-June −0.202 (−0.327, −0.077) 0.0003

Posterior mean, 95% credible interval and P -value of the model coefficients. Only the first three

terms are used in the long-lead model. The SOI term is added to explain the long-lead model’s

poor performance over the period 1949–1997. The May-June NAO term improves the model’s

predictive capability, although it reduces the model’s usefulness as the lead time is shortened

considerably. The mean October-January NAO coefficient decreases by less than 1% and the

mean January AMO coefficient decreases by 14% with the addition of the SOI and May-June

NAO terms to the model.
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Table 2: Out-of-sample skill comparisons
Bayesian BHRC

Forecast Observed Regression Method

Year Number Predicted Mean Predicted Mean

2000 0 1.44 2.0

2001 0 1.46 1.8

2002 1 1.68 1.9

2003 2 1.73 1.8

2004 5 2.02 1.9

r — 0.98 −0.06

MSE — 2.72 3.54

Observed number of U.S. hurricanes during the most recent five-year period (2000–2004) ver-

sus predicted mean rates from our Bayesian regression model and from methods developed at

Benfield Hazard Research Centre (BHRC), University College London. Skill is measured by

the correlation (r) and mean squared error (MSE) between observed counts and mean rates. To

simulate actual forecast situations, predictions made with the Bayesian regression use hurricane

data only through the previous year and predictor data only through the forecast year. After each

prediction an additional year of data is added. Predictions made by the BHRC were issued in

early February for the 2002, 2003, and 2004 seasons, and in late November (previous year) for

the 2000 and 2001 seasons.
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