
Bayesian Updating of Track-Forecast Uncertainty for Tropical Cyclones

NAM-YOUNG KANG AND MYEONG-SOON LIM

National Typhoon Center, Korea Meteorological Administration, Jeju, South Korea

JAMES B. ELSNER

Department of Geography, Florida State University, Tallahassee, Florida

DONG-HYUN SHIN

National Typhoon Center, Korea Meteorological Administration, Jeju, South Korea

(Manuscript received 14 October 2015, in final form 29 December 2015)

ABSTRACT

The accuracy of track forecasts for tropical cyclones (TCs) is well studied, but less attention has been paid to

the representation of track-forecast uncertainty. Here, Bayesian updating is employed on the radius of the

70%probability circle using 72-h operational forecasts with comparisonsmade to the classical approach based

on the empirical cumulative density (ECD). Despite an intuitive and efficient way of treating track errors, the

ECD approach is statistically less informative than Bayesian updating. Built on a solid statistical foundation,

Bayesian updating is shown to be a useful technique that can serve as a substitute for the classical approach in

representing operational TC track-forecast uncertainty.

1. Introduction

Tropical cyclone (TC) activity is a major concern to a

large number of people worldwide where lives and

property are at risk (Mendelsohn et al. 2012; World

Bank 2010). A forecast of where a TCwill go is the single

most important piece of information for disaster pre-

paredness. Since forecasts are less than perfect, error

distances are computed between the operational track-

forecast position and the position observed as the best

estimate of the TC center location. Forecast accuracy is

evaluated from these error distances. Owing to im-

provements in numerical model guidance, the accuracy

of the operational track forecasts is getting better all the

time (Heming and Goerss 2010).

While forecast accuracy is well understood and stud-

ied, the representation of track-forecast uncertainty is

less understood and studied (Pole et al. 1999). The

tradition is to use a probability contour based on the

empirical cumulative density (ECD) function of

forecast-track error distances (Mannoji 2005; Kishimoto

2010). For example, a quantile value at a 0.7 probability

level (70th percentile) of the ECD provides a radial

error distance approximating the 70% probability circle

around a forecast TC position. While useful as a his-

torical benchmark, the ECD approach does not include

information about the current forecast track error.

The problem is how to estimate track uncertainty that

reflects the past statistics and current data (Elsner and

Bossak 2001; Elsner and Jagger 2004). Moreover, de-

spite the efficiency of the ECD approach, it is not clear if

the uncertainties are statistically calibratedwhen used as

forecasts. Said another way, given a forecast position

and a 70% probability circle, is it the case that 30% of

forecasts made under identical situations will result in a

position outside the circle? The objective of this study is

to demonstrate an alternative approach for representing

TC track-forecast uncertainty. The approach is rooted in

Bayesian inference, and the uncertainty estimates from

this approach are considered to be closer to a fore-

caster’s actual belief about the forecast spread. Com-

parisons are made with the classical ECD approach.
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The paper is organized as follows. Description of the

data used in this study is given in section 2. The procedure

of Bayesian updating is described in section 3, followed

by a presentation of the results in section 4. Interpretation

of the results and a discussion of the value of the Bayesian

approach are given in section 5. The paper is summarized

in section 6. All of the statistics and figures are created

using the software R (www.r-project.org) and are avail-

able online (rpubs.com/Namyoung/P2015b).

2. Data

Operational 72-h TC track forecasts and the associ-

ated observations over a 7-yr period (2008–14) are ob-

tained from the Korea Meteorological Administration

(KMA). The consecutive annual numbers of TCs whose

lifetimes exceeded 72h are 13, 17, 10, 14, 21, 21, and 17.

The error distances between the forecast and observed

TC positions are averaged per cyclone and used as a

sample dataset to show the Bayesian approach to esti-

mating track-forecast uncertainty.

Figure 1 displays the 113 error values as a time series.

Consecutive locations of the first TC in each year are la-

beled with the corresponding year number. Each value is

assumed to be independent. The period-average track error

is 316.2km (horizontal line). Linear regression by ordi-

nary least squares on the errors shows a decreasing trend of

22.86 0.44 (standard error) kmper cyclone (dashed line).

3. Bayesian updating

a. Gamma distribution for the error distances

Error distances x are assumed to be adequately de-

scribed by a gamma distribution as the values are con-

tinuous, nonnegative, and skewed. Mathematically, the

distribution is expressed as

f (x;a,b)5
baxa21e2bx

G(a)
, for all x. 0, (1)

where a and b are the shape and rate (inverse scale)

parameters, respectively. In addition, G is the gamma

function defined as G(a)5
Ð ‘
0
xa21e2x dx. In this way the

probability distribution of error distance is completely

described by the two parameters.

b. Prior specification

The procedure for estimating the distribution of fu-

ture error distances f (x0) is outlined as a flowchart

(Fig. 2). The approach starts with a method for assessing

the initial uncertainty on two statistics that are related to

the gamma parameters [here represented as a vector
~u5 (mx, s

2
x)]. First, a gamma distribution is fit to the first

30 error distances. Then, 1000 samples, each containing 30

error distances, are drawn from the distribution and pairs

of the mean and the variance are computed from each.

To avoid complications arising from using a fully hi-

erarchical model and a Monte Carlo Markov chain

simulation, the parameter space of ~u is discretized. We

approximate the two-dimensional density surface by

configuring a grid of equally spaced values for mx and s2
x.

The spacing is 2 km from 330 to 630km for mx and

1000km2 intervals from 11 000 to 62 000 km2 for s2
x, re-

sulting in a 151 3 151 grid.

The prior density is estimated with a two-dimensional

Gaussian kernel smoother over the grid. The band-

widths are set at 9 km and 3480km2 as a compromise

between removing insignificant bumps and retaining the

real peaks (Venables and Ripley 1999). The prior den-

sity gives the relative weight of x with fixed gamma

FIG. 1. Time series of the track error distances for 72-h forecasts

over 7 yr (2008–14). Each value represents the average per cyclone.

One-hundred and thirteen values are plotted sequentially. The solid

horizontal line indicates the average over the whole period. Linear

regression on the values shows a decreasing trend (dashed line).
FIG. 2. Schematic flowchart of the Bayesian updating method.

Given an observation x, the posterior is used as a new prior and the

whole process is repeated. Predictive density is calculated for fu-

ture values x0 based on the posterior.
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parameters. Using the method of moments, the two

values composing ~u are translated into the parameters

a and b for a gamma distribution by the relationships

(Husak et al. 2007)

a5
m2
x

s2
x

(2)

and

b5
m
x

s2
x

. (3)

Finally, to test the robustness of the Bayesian updating

approach for estimating track-forecast uncertainty, a

noninformative prior is also specified. The noninformative

prior is prepared by a specifying a uniform distribution of

values on the same grid that sum to unity.

c. Likelihood and posterior

The likelihood function f (x j ~u) is estimated using a

newly computed error distance x conditional on ~u. The

likelihood has the same form as Eq. (1), but mx and s2
x

are used as the conditional parameters. Then, the pos-

terior of ~u is proportional to the joint probability dis-

tribution of the likelihood and the prior as

f (~u j x)} f (x j ~u)f (~u) , (4)

which is summed to one. Each update uses the posterior

as a new prior. The process is repeated to find a new

posterior given the next computed error distance (Fig. 2).

d. Prediction from the posterior

Given the latest posterior, the marginal distribution of

x0 is computed by

f (x0)5
ð
~u

f (x0 j ~u)f (~u) d~u , (5)

which is a weighted convolution of multiple (151 3 151

in this experiment) gamma distributions (Di Salvo

2008), where the weights come from the posterior f (~u).

Through the systematic use of past and recent error-

distance values, the method updates the uncertainty

closer to the forecaster’s subjective belief in the forecast

spread. A similar approach is taken to model the pre-

dicted time it takes for an article to get published in

an American Meteorological Society journal (Hodges

et al. 2012).

The 70th-percentile error distance of the posterior

distribution is the radius of the 70%probability circle. In

this study, we approximate the exact value by the 70th

percentile among the error distances from 0 to 1000km

in 1-km intervals, assuming the density of the error

distances beyond 1000km is negligible.

4. Results

Radial distances of the 70th-percentile circle are

plotted as a time series in Fig. 3. Curves are shown for

the ECD method, a gamma fit, and for two Bayesian

update methods (informative and noninformative

FIG. 3. Time series of the 70th-percentile probability circle radius (km). Black and green lines

show the values from up-to-date ECD and theoretical gamma distribution, respectively. The red

line represents the Bayesian result from an informative initial prior, which is the joint probability

distribution of the gamma parameters based on the first 30 error distances. For comparison, an

alternative experiment starting from a noninformative prior is shown with the blue line.
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prior). Curves are shown after the 30th case except for

the noninformative prior update method. As noted, the

radii of the probability circle for the updating methods

(blue and red lines) are estimated from the marginal

distribution of x0 based on the posterior of ~u.

The radial distances show a general decreasing func-

tion over time resulting from forecast improvements as

described by the raw data (Fig. 1). Case-to-case fluctu-

ations also tend to diminish over time. The stability of

the error distances is particularly evident with the up-

date methods. The influence of the priors is seen initially

but after a dozen cases or so there are only small dif-

ferences between the two updating methods. The

Bayesian updates show consistently larger radii likely

reflecting better-calibrated forecasts.

5. Interpretation

The difference between the empirical (black) and

Bayesian (red) forecast-track errors arises from the

difference between the empirical and cumulative den-

sities. For clarification, the 70th-percentile distances

from updated gamma distributions are plotted with a

green line in Fig. 3. Each value comes from a gamma

distribution fit to an updated set of error distances. In

this case the radii are closer to the Bayesian updates, but

still larger than the radii from the ECD approach.

The radii from the gamma fit are similar to the radii

from the Bayesian update since both are theoretical. As

an example, Fig. 4 shows how the empirical and the

theoretical cumulative densities can be different,

where a total of 113 error samples are used to fit the

theoretical density distributions. The reason for the

difference lies in the shape of the distributions. Densities

in both tails of a theoretical distribution are less likely to

be well represented in an empirical distribution with

small sample size. This makes the level of cumulative

densities different still.

Values of the Kolmogorov–Smirnov (KS) goodness-

of-fit test statistic for samples drawn from a gamma

density as a function of sample size show how different a

sample distribution can be from its parent distribution

(Fig. 4b). The test statistic uses the maximum difference

D between the ECD and the theoretical cumulative

density.

The medians (black thick solid line in the box plots)

connected by the blue curve show that the ECD from a

sample can be quite different from the theoretical pop-

ulation according to where the samples are drawn. The

red dot indicates the D of the two cumulative densities

seen from Fig. 4a, confirming how the 70th-percentile

value from a small number of samples can be different

from that of its theoretical distribution. This also implies

that ECD’s deficiency might be even more exaggerated

in longer lead-time forecasts such as those at 96 and

120 h with the possibility of fewer samples compared

with the 72-h lead time. Assuming the error distances

are described by a reasonable theoretical distribution

and assuming a reasonable (not extreme) quantile level

for estimating the probability of the TC position, the

FIG. 4. Comparison of cumulative density distributions. (a) Cumulative density distributions of 113 error

distances (black dot) and their fitted gamma distribution (green line), and (b) box plot of the KS test statistic

by comparing the gamma distribution and its bootstrapped samples. For (b), the test statistic D is calculated

100 times for each different sample size. Each boxplot shows the median (black thick solid line), interquartile

range (box range), and outliers (circles). Median values of theD samples are connected by the blue curve. The

red dot represents theD calculated from the observed errors and the gamma distribution at 113 error samples

(red line).
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ECD may not be the best approach for estimating the

forecast-track error.

An additional reason for the gap between the

error distances from the empirical and the Bayesian

approaches comes from the fact that the Bayesian ap-

proach combines two sources of uncertainty. Practi-

cally, it is the difference between the green line and the

red line in Fig. 3. Like the difference between a ‘‘pre-

diction interval’’ and a ‘‘confidence interval’’ in a linear

regression, the predictive distribution combines the

uncertainty of a particular radial distance given the

parameters and the uncertainty associated with

the values of the unknown ‘‘true’’ parameters. The

fitted gamma distribution uses fixed parameter values

and so by definition lacks this latter uncertainty. Thus,

by construction the Bayesian updating approach will

give a larger 70% probability circle than the ECD

approach.

Finally, it is noted that the ECD approach results in

greater variation across the error distances. This be-

havior is expected since the ranked error members are

sparse, and their relationship is not necessarily linear.

For example, the inclusion of a new track error distance

can push the quantile value to the next larger interval

between ranks, leading to a big shift. This ‘‘erratic’’

behavior is absent with the Bayesian update method.

Even the two results from informative and non-

informative priors converge to nearly the same level

after some time. Overall, these features of the Bayesian

response to observed errors imply the robustness of the

Bayesian approach.

6. Summary

Although typically portrayed as a cone of uncertainty

by extending across consecutive forecast horizons,

probability circles are widely used to represent the

uncertainty of forecast TC positions. The classical ap-

proach provides a probability estimate from an empiri-

cal cumulative density function. The 70th percentile is

comparable to the radius of the 70% probability circle

around a TC forecast position.

This study explores Bayesian updating as an alterna-

tive representation of forecast uncertainty. The Bayes-

ian approach has the advantage that output is in the

form of a predictive distribution. The method is de-

scribed and then compared with the classic ECD ap-

proach. Data for the comparison are error distances

from the operational 72-h TC track forecast issued by

KMA. The 70th-percentile error distances estimated

from the Bayesian updating scheme are larger than the

corresponding error distances from the ECD approach.

In spite of the intuitive and efficient way of treating the

errors, the ECD approach is shown to be statistically less

informative than the Bayesian updating method for the

following reasons:

d The ECD approach with a smaller sample size is

more likely to under- or overestimate the 70th

percentile of an assumed population following the

gamma distribution.
d Error distance samples from the ECD method are

assumed to be random samples from a theoretical

gamma distribution with fixed parameters, which

leads to a narrower uncertainty range than the Bayes-

ian updating approach considering the uncertainty of

the parameters.
d Because of the nonlinear nature of the ranked error

distances, the probability circle obtained by the ECD

approach is unstable with respect to newly added error

samples, while the Bayesian approach returns a stable

and robust result.

Consequently, it is confirmed that a smaller value of

the 70th-percentile radial distance from the ECD ap-

proach does not imply a better result. The gap between

the ECD and the Bayesian results reveals howmuch the

former lacks the uncertainty information. On a firm

statistical basis the Bayesian approach is considered to

be a useful and statistically more consistent technique

that can replace the classical ECD approach in the

representation of the operational TC track-forecast

uncertainty.
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