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Abstract
Despite the improving techniques for seasonal prediction of tropical storm frequency, attention
seems focused on accuracy rather than on forecast interpretation. This study aims to show how
seasonal predictions from a hybrid model, i.e. statistical/dynamical model, can be interpreted with
probability distributions. The tropical storm frequency in the western North Pacific is modeled
with environmental predictors through multiple linear regression. For a demonstration of the
probabilistic structure of the prediction result, the forty-two member ensemble predictions from
the Glosea5 model for June–July–August in 2020 are used as the dynamical input. Rather than
dealing with the expected frequency, this study introduces the predictive probability for a single
value of the frequency. From as many probability distributions, a marginal probability distribution
is obtained as the final predictive probability distribution. The probability distribution is then
compared to the climatological reference by terciles. Additionally, predictive probability
distributions made with the individual predictors provide helpful information on how each
contributes to the final prediction. This probabilistic interpretation procedure is expected to be
effectively used for improving any hybrid approach.

1. Introduction

As one of the most destructive natural disasters in
the world, tropical storms have made people live in
fear of their occurrences in the tropics (Mendelsohn
et al 2012). Here the term tropical storm refers to
a tropical cyclone whose maximum sustained wind
speed exceeds 17 m s−1 (WorldMeterological Organ-
ization 2017). Tropical storms are most frequent over
the western North Pacific accounting for one-third
of the global count and they are often the most
intense (Supplementary information of Kang andEls-
ner (2015)). Intensity enhancement by global warm-
ing is also increasing public concerns over the poten-
tial damages (Kang and Elsner 2018). As residents
potentially affected by these storms take an increas-
ingly keen interest in next season’s storm frequency,
forecast agencies and research centers in the region
have been developing various prediction models.

Decades ago, pioneering seasonal predictions of
tropical storm frequency was done with statistical
models in the Australian region (Nicholls 1979,
Nicholls 1984), and the Atlantic basin (Gray 1984a,

Gray 1984b, Elsner and Schmertmann 1993). Owing
to the high-power computer resources, dynamical
models with a finer resolution are now available to
detect tropical storms more realistically for seasonal
predictions (Vitart et al 2007, Alessandri et al 2011,
Vitart et al 2014). A hybrid method, combining the
above two approaches, is a relatively new and increas-
ingly popular approach to seasonal tropical cyclone
prediction. A hybrid model is a so-called statistical/-
dynamical model, where the statistical model is used
to relate the dynamically produced environmental
factors to the tropical storm frequency. The technique
has been introduced to the western North Pacific
(Kim et al 2013, Li et al 2013), and most operational
agenciesmake use of the hybridmodeling framework.
The hybrid modeling technique has been further
improved to utilize multi-model ensembles of the
dynamical models (Kim et al 2017). Klotzbach et al
(2019) describes up-to-date modeling approaches for
the seasonal prediction of the storm frequency in the
12 agencies around the world. Four among the five
forecast agencies in thewesternNorth Pacific produce
seasonal predictions by running hybrid models.
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Despite continuous improvement in prediction
techniques, attention seems focused mostly on accur-
acy rather than on the interpretation of the predic-
tions. This study aims to show how the prediction
results of the hybrid model can be interpreted with
probability distributions. Differing from the conven-
tional analysis dealing with the expectation of the fre-
quency, here we take special note of the predictive
probability for a single value of the frequency. Then
the quantitative interpretation of the future frequency
is available by assigning the probability densities to
‘below-normal’, ‘normal’, and ‘above-normal’ ranges
referenced by climatological terciles. For a demon-
stration of the probabilistic structure of the result,
this study utilizes the environmental prediction of the
Glosea5 for June–July–August (JJA) in 2020, opera-
tionally run by the Korea Meteorological Adminis-
tration (KMA). Glosea5 is the Global Seasonal fore-
cast system designed by the UK Met Office, where
the ocean-atmosphere-land systems are fully coupled
(MacLachlan et al 2015, Williams et al 2015). Here,
the ensemble outputs from the Glosea5 model are
used as the dynamical input to a statistical module.
The statistical module employs the empirical rela-
tionship between the environment and the tropical
storm frequency. Among the environmental factors,
El Niño Southern Oscillation (ENSO) and the global
ocean warmth are suggested to effectively explain
the variability of tropical storm activity in the west-
ern North Pacific (Kang and Elsner 2015, Kang and
Elsner 2016). Near orthogonality between the two
large-scale variables over a long period provides con-
fidence in quantitatively comparing the major con-
tributions of the internal variability and external for-
cing to the seasonal predictions. Section 2 describes
the data, and section 3 reviews the environmental
connection to tropical storm frequency and demon-
strates the predictive probability of the future fre-
quency. Section 4 introduces the interpretation of
the probability distributions, and section 5 provides
a summary of the results and a discussion. Statist-
ics and figures are made using the R programming
language (www.r-project.org) and available online
(https://rpubs.com/Namyoung/P2020b).

2. Data

The annual frequency of western North Pacific trop-
ical storms comes from the best-track data provide
by the U.S. Joint typhoon warning center. In the
statistical module, the tropical storm frequency is
explained by the two primary environmental factors,
ENSO and global ocean warmth. ENSO is indicated
by the southern oscillation index (SOI) from the
National Oceanic and Atmospheric Administration
(NOAA)/Climate Prediction Center, and the global
ocean warmth is diagnosed by area-weighted global
mean sea surface temperature (SST) of the NOAA/N-
ational Centers for Environmental Prediction

(NCEP) reanalysis (https://psl.noaa.gov/cgi-
bin/data/timeseries/timeseries1.pl). El Niño is rep-
resented by the negative sign of SOI. Only for a
naming purpose in this paper, the negative sign of
SOI and global mean SST are denoted as NSOI and
GMSST, respectively. The two variables are averaged
over JJA for the 30-year period of 1986–2015. The
year range is set consistent with supporting earlier
work (Yang et al 2018, Kang et al 2019). For the pre-
dictors in the statistical module, the SOI and GMSST
are obtained by the Glosea5 predictions on the envir-
onmental variables, run by KMA in operation. Pre-
dicted SOI is calculated by standardizing the pressure
difference between spatially interpolated values at the
two locations of Darwin (130.8◦E,12.5◦S) and Tahiti
(201.8◦E,17.6◦S), and predicted GMSST is globally
averaged with the weights on the latitude. For this, a
trigonometric function, cosϕ, is applied for weight-
ing the area by its latitude (ϕ). Model predictions are
scaled to have realistic magnitude by comparing the
hindcast simulations of Glosea5 with the observed
climatology over the 20-year period (1991–2010).
For a demonstration of the probabilistic structure of
the seasonal prediction, this study utilizes a case of
the environmental prediction made by KMA in late
May for JJA of 2020. Then, 42 ensemble pairs of NSOI
and GMSST are available for the dynamical input to
the statistical module as the predictors. Data can be
available through the data management office at the
agency.

The best-track data for the tropical storm
frequency in the western North Pacific are
available from the Regional Specialized Met-
eorological Center (RSMC) Tokyo (www.
jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/
trackarchives.html). SOI from NOAA/CPC (http://
cpc.ncep.noaa.gov/data/indices/soi), and SST
from NOAA/NCEP (https://psl.noaa.gov/data/
gridded).

3. Model structure

3.1. Predictors of the tropical storm frequency
For a statistical module in a hybrid model, this
study utilizes two primary environmental predict-
ors of ENSO and global ocean warmth based on
the previous works on their connection to the inter-
annual tropical storm activity. Here, El Niño status
and global ocean warmth are indicated by NSOI and
GMSST, respectively. Since SOI is less likely to reflect
the localized global warming pattern likeNiño indices
do, it better represents an internal variability show-
ing no forced trend (Kang et al 2019). GMSST implies
more than a temperature value. It indicates the status
of the forced environment made up of all collinear
physical factors for global ocean warming. Here, ‘col-
linear’ means ‘concurrent’ from a linear perspective.
The forced trend of GMSST becomes more apparent
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on longer timescales, which makes the two predict-
ors only weakly correlated (Yang et al 2018). NSOI
and GMSST during the 30-year period (1986–2015)
bears little relationship (r = −0.19; [−0.51, 0.18],
95% confidence interval (CI)), which provides more
stable statistical framework of the model.

A statistical relationship between the environ-
ment and tropical storm frequency is shown in
figure 1 for the same 30-year period. PC1 and PC2
are the two principal components derived from a
principal component analysis of NSOI and GMSST.
PC1 (PC2) implies the in-phase (out-of-phase) mode
between the variations of NSOI and GMSST. Colored
inner ring shows the correlation of each directional
variability with storm frequency. Only positive values
are represented, and the significant correlation coef-
ficients are colored in red. NSOI indicates a warm
phase of ENSO, which is El Niño. A significant correl-
ation (r =+0.43; [0.08, 0.68], 95% CI) at NSOI con-
firms that El Niño (La Niña) increases (decreases) the
storm frequency (Wang and Chan 2002, Chan 2005).
On the other hand, the frequency is negatively correl-
ated with GMSST (r = −0.55; [−0.76, −0.24], 95%
CI), meaning that frequency is significantly decreased
by a globally warmer environment. Then, the highest
correlation (r =+0.64; [0.37, 0.82], 95% CI) appears
along the PC2 direction. The PC2 represents the out-
of-phase relationship between NSOI and GMSST.
This means that PC2 represents variations where a
higher tropical cyclone frequency is likely to occur
in a relatively colder El Niño year, while a lower fre-
quency is likely to occur in a relatively warmer La
Niña year (Kang and Elsner 2016). It is also noted
that PC1 is only weakly correlated with the frequency,
implying that the contribution of NSOI is offset by
that of GMSST, and vice versa. Though the essen-
tial characteristics of the variables may not be con-
tinuous normal, this study assumes the normality
of the variables for linear interpretation of the res-
ults. In this paper, the frequency of tropical storms is
denoted as FRQ. Values of FRQ, NSOI, and GMSST
are adequately described by normal distributions as
verified by a Shapiro–Wilk test (Royston 1982). A
multiple regression is used to quantify the linear per-
spective as follows:

FR̂Q= β0 +β1 ·NSOI+β2 ·GMSST, (1)

where β0, β1 and β2 are the intercept and the two
regression coefficients, respectively. FR̂Q is the mean
response corresponding to a particular pair of values
of the predictor variables, i.e. NSOI and GMSST.

A generalized linear model of FRQ by assuming
another probability density form such as a Poisson
distribution could be an alternative for modeling the
non-negative discrete frequency values. But a nor-
mal distribution is an adequate approximation to the
Poisson distribution when the annual rate exceeds 20
even without a continuity correction. Moreover, this

paper places emphasis on describing the probabilistic
structure represented in figure 1. Between any two
standardized variables, a correlation coefficient is the
regression coefficient of the OLS model, and at the
same time the projection length in a geometric vari-
ability space (Supplementary information of Kang
and Elsner (2015)). The correlation ring in figure 1 is
again understood as the projection length of each dir-
ectional variability onto FRQ. Then, equation (1) is
the mathematical expression of the biggest projection
length, 0.64, which implies the correlation coefficient
of FRQ with FR̂Q made by OLS regression.

3.2. Probability distribution of the prediction on
the climatological predictors
Figure 2(a) shows a bivariate normal distribution
of NSOI and GMSST over the 30-year period
(1986–2015). The values are plotted in standardized
forms. Thirty pairs of NSOI and GMSST are dot-
ted in gray, and the theoretical normal probability
densities are contoured circles. Having no informa-
tion on the future environment, the prediction would
be the climatological mean (green dot). By construc-
tion, the predicted value, FR̂Q is an expectation over
possible FRQs. The probability density of FR̂Q can be
obtained from a t-distribution. The t-statistic can be
expressed as

tα/2 =
FR̂Q−µ

FR̂Q

s.e.(FR̂Q)
, (2)

whereα is the significance level, and µ
FR̂Q

is themean

of FR̂Q. The spread of the distribution depends on
the standard error (s.e.) of FR̂Q. ‘Confidence interval’
refers to a certain probability density range, i.e. 95%,
of the expectation. The degrees of freedom in a mul-
tiple regression equals N-k-1, where N and k are the
numbers of observations and variables, respectively.
Thus, the t-distribution is determined by 27 degrees
of freedom where N = 30 and k= 2. The probability
density distribution is shown as a thin green line in
figure 2(b). It is found that FR̂Q presents a sharper
peak than FRQ. This implies that there should be
a significant loss of uncertainty information, which
might have made a CI-based probabilistic approach
to seasonal prediction less successful so far. Since
the probability is about the expectation (FR̂Q), and
not about the individual FRQ, its spread is narrower
than what the probability of FRQ might show. The
probability of FRQ rather than FR̂Q would provide
more practical information on the future FRQ. Now,
we want to find the probability of the t-statistic for
FRQ. The t-statistic for a single value of FRQ can be
expressed as

tα/2 =
D−µD

s.e.(D)
, (3)

where

D= FRQ− FR̂Q. (4)
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Figure 1. Correlation screen of the tropical storm frequency in the western North Pacific (modified from Kang and Elsner
(2016)). PC1 and PC2 represent the principal components by the two primary environmental variables of NSOI and GSST.
The inner and outer gray circles indicate 0.5 and 1.0 correlation coefficients, respectively. Significant correlation coefficients
(α≤ 0.05) are shown in red line with a dot for the highest value.

Figure 2. Climatological predictors and probability distribution of tropical storm frequency. (a) Bivariate normal distribution of
the predictors, and (b) probability distributions of the prediction results. For (a), circles represent the lines with each equal
density in a bivariate normal distribution of the standardized NSOI and GMSST. Gray dots indicate the pairs of observed NSOI
and GMSST for the 30-year period (1986–2015), while their mean is shown by a green dot. The two green lines in (b) show the
probability distribution of the prediction result on the climatological mean (green dot in figure 2(a)). The thin and thick green
lines represent the probabilities for FR̂Q and FRQ, respectively. The marginal probability distribution of FRQ on the bivariate
normal predictors is shown by the thick black line.

D denotes the difference of FRQ from its predicted
value. Since in the mean FRQ equals FR̂Q, µD is by
definition zero. The probability distribution of FRQ
is shown in a thick green line, whose spread is con-
firmed wider than that of FR̂Q. ‘Prediction interval’
for a certain probability range refers to this probab-
ility distribution. Then, the probability distribution
is summarized as the predictive probability of FRQ
on the two climatological mean values of NSOI and
GMSST.

However, the pair of climatological means is only
the case with the highest density among all possible
future environments. Every grid point in the dens-
ity plane of the bivariate normal distribution (see
figure 2(a)) is a candidate pair of the predictor values.
The grid points are at 0.1 standard deviation (s.d.)
intervals from−3.0 to 3.0 for each predictor, and then
61× 61 pairs of the predictor values are applied to the
model. The predictive probability, shown as a thick
black line in figure 2(b), is the marginal distribution
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Figure 3. Dynamical predictors and probability distribution of the tropical storm frequency. (a) Forty-two pairs of NSOI and
GMSST for the dynamical input, and (b) probability distributions of the prediction results. For (a), the time series of the
standardized NSOI (blue) and GMSST (orange) for the 30-year period (1986–2015) are shown with the scaled dynamical inputs
(blue and orange dots). Each mean is indicated by a green dot, compared to observation (black dot). In (b), the probability
distributions of FRQ on the 42 dynamical ensemble predictors are shown in thin gray lines, while that on the mean predictors
(green dot) in a thick green line. The thick red line represents the predictive distribution of FRQ, which is the marginal
distribution by the 42 pairs of the predictors. The statistical module predicts 6.0 (reversed green open triangle) by the mean
dynamical inputs, while it suggests 10.2 (reversed red open triangle) for the observed GMSST and NSOI. The reversed red and
black closed triangles represent the deterministic prediction (14.8) of Glosea5 and the observed number (8), respectively.

of the tropical storm frequency, where each distribu-
tion on a pair of the predictor values is weighted by its
density value. Since the uncertainties of the predict-
ors are considered, the density distribution is found
to have a bit larger spread than that of the prediction
on the climatological means.

3.3. Probability distribution of the prediction on
the dynamical predictors
Finally we have the information on the future
environment from a dynamical model, Glosea5.
Figure 3(a) shows the time series of NSOI (blue) and
GMSST (orange) over JJA during the 30-year period
(1986–2015). NSOI shows little correlation with time
as expected from an internal variability (r = −0.07;
[−0.42, 0.29], 95% CI). On the other hand, GMSST
is seen to be significantly increasing over time with
some fluctuations (r = +0.75; [0.53, 0.87], 95% CI).
Forty-two pairs of the predictors from Glosea5 are
plotted in circles for each variable. They are the val-
ues scaled to observation using the Glosea5 hindcast
simulations for the past 20 years (1991–2010). The
means of the predictor values are shown in green dots.
The dynamical model predicts the highest level of
global ocean warmth, but near-neutral ENSO status.
A qualitative interpretation might be that the future
frequency will be smaller than average considering
the influence of the warmest environment. This inter-
pretation can be quantitatively examined by the prob-
ability distributions. The green curve in figure 3(b)
represents the probability distribution for only the
pair of the means (green dots in figure 3(a)). How-
ever, this does not fully involve the spread of the
ensemble members. The probability distributions for
ensemble pairs of the predictors are shown in thin
gray lines. The predictive probability distribution can

be obtained by the marginal distribution of the 42
ensemble members (red). This predictive probabil-
ity quantifies how the dynamical model foresees the
tropical storm frequency in JJA of 2020, which can
be compared to the above theoretical reference (black
line in figure 2(b)).

Here, the dynamical error structure can be quant-
itatively estimated by observed environmental pre-
dictors. As long as the environmental connection
to the tropical storm frequency remains the same
for the season, the prediction error can be under-
stood by examining the difference between the pre-
dictors and the observed values. Each black dot in
figure 3(a) represents observed GMSST (upper) and
NSOI (lower), showing each large difference from the
Glosea5 prediction. In the statistical module, the pos-
itive GMSST and the negative NSOI lead to the smal-
ler FRQ at the same time. It is concluded that both
the warm-biased GMSST and La Niña-biased ENSO
status in this case excessively shifted the probability
distribution to the smaller numbers. The combined
contribution of the dynamical errors is captured
as the gap between the reversed green open tri-
angle (6.0) and the reversed open red triangle (10.2)
in figure 3(b). The two triangles indicate the pre-
dicted values for the mean dynamical inputs and the
observed predictors, respectively. In the same way,
this interpretative framework can be used for under-
standing the potential prediction error and its ori-
gin before the observation is made. This interpretat-
ive framework also helps people infer a modification
of the probability distribution. If someone believes
there would be no warm bias of GMSST, the person
may consider more frequency than presented by the
model. This functional analysis could also apply to
the validation of hybrid predictions after the season.
Observation reveals that the eventual reduction of the
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Figure 4. Portioning the predictive densities of the tropical storm frequency by climatological terciles. (a) Comparison of the
terciles in the theoretical climatology and the histogram, and (b) division of the predictive densities divided by the theoretical
terciles. Terciles are 0.33 and 0.66 quantiles. For (a), histogram bars in dark gray represents the empirical ‘normal’. In (b), the
predictive densities of FRQ are compared with the ranges defined by the theoretical terciles. In this example case, 90.3%, 8.4%,
and 1.3% are assigned to ‘below-normal’, ‘normal’, and ‘above-normal’, respectively. Areas shaded in blue and yellow shows the
predictive probability distributions where respectively NSOI and GMSST ensemble predictors are exclusively applied, providing
helpful information on their individual role in the prediction. The reversed red and black closed triangles represent the
deterministic prediction (14.8) of Glosea5 and the observed number (8), respectively.

tropical stormnumbermight have been influenced by
the NSOI anomaly rather than the normal GMSST.
The statistical module itself is also a source of predic-
tion errors. The best inference, however, relies on the
most confident statistical module at the time the pre-
diction is made.

4. Interpretation

Quantitative interpretation of the prediction can be
made by climatological terciles, classifying the fre-
quency portions into ‘below-normal’, ‘normal’ and
‘above-normal’ categories. Figure 4(a) shows the his-
togram of the empirical distribution of the tropical
storm frequency. A conventional way of defining the
terciles is to find quantiles at .33 and .66 probabil-
ity levels in the observed 30 frequency samples. Since
the frequency is a non-negative discrete number in
nature, someone may roughly regard the ‘normal’
range as 10 to 12 (dark gray bars). This can be com-
pared with the terciles (vertical lines) induced by the
theoretical climatology (black line, the same as in
figure 2(b)). Since all possible cases of the predictors

are theoretically taken into account, the marginal
probability is considered as a theoretical climatology
of the tropical storm frequency. Here, ‘theoretical’
means the normal form of the bivariate distribu-
tion of the predictors. The theoretical approach gives
a more complete and realistic form of the uncer-
tainty distribution than the conventional approach
of simply accumulating the observations, i.e. histo-
gram. Having the same form of the predictive prob-
ability (see figure 2(b)), this probability distribu-
tion can be used as a practical climatological refer-
ence to any predictive probability that a model pro-
duces. With a simple but less rigorous form of the
distribution, the histogram-based empirical terciles
are considered less effective to be used as a clima-
tological reference for interpreting the model res-
ults. As the theoretical distribution depicts a predict-
ive density distribution in a normal form of con-
tinuous values, its terciles are symmetrically distrib-
uted around the mean (10.9), while the empirical ter-
ciles are not. The predictive probability of the hybrid
model can be divided by the terciles (figure 4(b)).
The ‘normal’ range is from 9.6 to 12.2, inclusive.
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In comparison, model prediction in figure 4(b) (red
line) is seen more distributed on ‘below-normal’ of
the frequency values, while less on ‘above-normal’.
This can be quantitatively described as 90.3%, 8.4%,
and 1.3%, respectively for ‘below-normal’, ‘normal’,
and ‘above-normal’ ranges. Below-normal number
of tropical storms (8) were eventually observed in
JJA 2020. The motivation of the current research is
amplified by the unrealistic value of the determin-
istic prediction (14.8), which is the average of the
last five ensemble simulations among the 42 mem-
bers. The number for each member is determined by
a detection algorithm considering the wind speed and
the warm core temperature anomaly relative to the
surrounding environment. It is also noted that only
the detected number of tropical storms simulated by
Glosea5 does not provide an explicit rationale behind
the predicted values.

The two shaded distributions show the different
influences NSOI and GMSST have on the prediction
result. An area shaded in blue shows the predictive
probability where only the NSOI ensemble predict-
ors are applied. For each ensemble member of NSOI,
the normal GMSSTs at 0.1 s.d. from −3.0 to 3.0,
i.e. 61 samples are used for the pairs of predictor
values. Then, the marginal distribution comes from
the 42× 61 predictive probability distributions. The
marginal predictive probability for ENSO status of the
42NSOI ensemblemembers, describes 47.8%, 33.1%,
and 19.1% probability densities for ‘below-normal’,
‘normal’, and ‘above-normal’, respectively. The same
procedure is applied to the ensemble members of
GMSST (area shaded in yellow). Here, it is assumed
that only GMSST is informative but not NSOI. For
each ensemblemember of GMSST, the normal NSOIs
at 0.1 s.d. intervals from −3.0 to 3.0, are used for
the pairs of predictor values. The marginal predictive
probability by the warmest level of GMSST ensembles
shows 75.2%, 17.9%, and 7.0% probability densit-
ies for ‘below-normal’, ‘normal’, and ‘above-normal’,
respectively. Though the final predictive probabil-
ity (red line) cannot be divided into the two addit-
ive distributions for NSOI and GMSST, each shaded
distribution provides helpful information on how
the final is brought about. In this case, the pre-
diction results are interpreted as both the environ-
mental conditions accompanying the ENSO and the
warmest global ocean are likely to allow tropical cyc-
lone frequency to occur in the ‘below-normal’ range
overall.

5. Summary and discussion

Forecast agencies and research centers have been
developing various models for seasonal prediction of
tropical cyclones. A hybrid model has been available
by combining statistical and dynamical approaches
to the seasonal prediction of the western North

Pacific tropical storm frequency. However, attention
seems focused mostly on accuracy rather than on
the interpretation of the prediction results. This
study shows how the prediction results of the hybrid
model can be interpreted by probability distributions.
For a demonstration of the probabilistic structure
of the result, the environmental prediction of the
Glosea5 for JJA in 2020 is utilized. This interpretat-
ive approach may apply to any hybrid prediction. It
needs to be noted that the prediction skill of a specific
hybrid model is not within the scope of the current
study.

The modeling procedure and the relevant
interpretations are as follows. First, the statistical
module in the hybrid model utilizes two primary
environmental predictors which are ENSO and global
ocean warmth based on the previous works on their
connection to the interannual tropical storm activ-
ity (Kang and Elsner 2016, Yang et al 2018, Kang
et al 2019). Near-zero correlation between NSOI
and GMSST during the 30-year period (1986–2015)
provides a robust statistical framework for themodel.
The tropical storm frequency is modeled by the pre-
dictors through multiple linear regression. Second,
the distribution of the climatological frequency is
produced on a theoretical basis. Rather than deal-
ing with the expectation of the frequency, this study
introduces the predictive probability for a single
value of the frequency. By applying pairs of environ-
mental predictors in a bivariate normal distribution,
a better climatological reference than a conventional
histogram is obtained. Third, the predictors from a
dynamical module, Glosea5 are input to the statistical
module. The dynamical input consists of 42 ensemble
pairs of NSOI andGMSST, and then amarginal prob-
ability distribution is obtained by asmany probability
distributions. Lastly, the final predictive probability
is compared to the prepared climatological reference.
The quantitative interpretation of the model predic-
tion is available by assigning the probability densit-
ies to ‘below-normal’, ‘normal’, and ‘above-normal’
ranges referenced by climatological terciles. Auxili-
ary two probability distributions by separate NSOI
and GMSST, provide helpful information on how the
final prediction is affected by the predictors.

The merit of this interpretative seasonal
prediction lies in the fact that the uncertainties in the
statistical module as well as the dynamical module
are explicitly expressed. Here, the predictive prob-
ability distribution itself comes from the statistical
uncertainty, and the dynamical ensemble predictors
give rise to the spread of the predictive probability
distributions. Then, the final predictive probability
distribution of the marginal densities includes all
available uncertainties as it should be. Additional
strength is that the cause and effect of the model
prediction can be reviewed after the season. As long
as the environmental connection to the tropical storm
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frequency remains the same for the season, the pre-
diction error can be understood by examining the
difference of the predictors from observations.

A caveat of this model is that some negative
frequency range could be included in the probabil-
ity distribution. Despite the usefulness of the linear
assumption, the deficiency comes from the normal-
ity of the frequency. Its influence is not considered
significant for the three-month prediction (i.e. JJA),
but the caveat implies that the prediction for a longer
period such as six months (i.e. June to November) as
having a larger frequency value might be better for
the application of the current interpretation in oper-
ation. Another thing to consider is that the regression
in the statistical module relies on a linear relation-
ship between the tropical storm frequency and the
environment predictors. The western North Pacific is
a region with the strongest observed trends in various
metrics (Knutson et al 2019). The interpretation in
the current research should be effective asmuch as the
linearity captures the changing values of the metrics.

The interpretative framework in this study is
designed for the interannual variation of the trop-
ical storm frequency and deals with the overall fre-
quency in the western North Pacific. The influence
of ENSO on TC frequency varies in magnitude and
sign across thewesternNorth Pacific (Wang andChan
2002, Kang et al 2019). The sub-regional interpreta-
tion, including the number of landfalling storms (e.g.
around the South China Sea or Japan) is beyond the
scope of the current study but will be a future chal-
lenge when observations are sufficient to find some
reliable statistical relationship.

The validation of the hybridmodel could be avail-
able by a sufficient number of forecast events. This
study focuses on the interpretation of the results from
a hybrid model, rather than the techniques for its
accuracy. The accuracy of the model could be further
improved in various ways. An increasing number of
qualified observations may make a more reliable stat-
istical module. Better and more explanatory environ-
mental predictors can be found as well. The dynam-
ical ensemble model can even be replaced by a new
one. Each of the above options would be a research
topic for the more accurate seasonal prediction, while
the interpretative framework shown in this study will
be valid for any result.
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