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Abstract
Tornado reports are locally rare, often clustered, and of variable quality making it difficult to

use them directly to describe regional tornado climatology. Here a statistical model is demon-

strated that overcomes some of these difficulties and produces a smoothed regional-scale

climatology of tornado occurrences. The model is applied to data aggregated at the level of

counties. These data include annual population, annual tornado counts and an index of ter-

rain roughness. The model has a term to capture the smoothed frequency relative to the

state average. Themodel is used to examine whether terrain roughness is related to tornado

frequency and whether there are differences in tornado activity by County Warning Area

(CWA). A key finding is that tornado reports increase by 13% for a two-fold increase in popu-

lation across Kansas after accounting for improvements in rating procedures. Independent of

this relationship, tornadoes have been increasing at an annual rate of 1.9%. Another finding

is the pattern of correlated residuals showingmore Kansas tornadoes in a corridor of counties

running roughly north to south across the west central part of the state consistent with the dry-

line climatology. Themodel is significantly improved by adding terrain roughness. The effect

amounts to an 18% reduction in the number of tornadoes for every ten meter increase in ele-

vation standard deviation. Themodel indicates that tornadoes are 51%more likely to occur in

counties served by the CWAs of DDC and GID than elsewhere in the state. Flexibility of the

model is illustrated by fitting it to data from Illinois, Mississippi, South Dakota, and Ohio.

Introduction
Broad-scale tornado climatology in the United States is well described and physically under-
stood. The seasonal spread of the tornado threat from the deep South northward into the
northern Plains and Midwest during summer is tied to the poleward migration of the jetstream
[1]. A concentration of tornado activity across Oklahoma and Kansas during spring is linked
to the vertical intersection of mid-level dry air from the Rockies and abundant low-level moist
air from the Gulf of Mexico [2].

Regional-scale tornado climatology is less well described and poorly understood. One rea-
son for this is because tornadoes are discrete events, spatially clustered, and locally quite rare.
Another reason for this is because of the uneven quality of the tornado record [3, 4]. While the
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U.S. tornado database is the largest in the world, it contains issues that limit its utility for cli-
mate studies [5]. For instance, improved observation practices have led to an increase in the
reporting of weak tornadoes [6, 7]. Even today many weak, short duration tornadoes likely go
undocumented in places with few people or poor communication infrastructure. This observa-
tional effect is well known [5, 8] although it appears to have diminished during the most recent
decade [9].

Various methods for quantifying and modeling the observational effects have been proposed
[10–12]. Most studies assume a uniform region of activity and estimate tornado frequency
within a subset of the region likely to be most accurate. The uniform regions are defined by the
available data. Tornado reports are often aggregated using kernel smoothing [13–15]. Spatial
density maps that show regions of higher and lower tornado frequency are useful for explor-
atory analysis and hypothesis generation but because there is no simple way to control for envi-
ronmental or other factors, interpretation of the patterns can be misleading. Another drawback
is the implicit assumption that tornado occurrences are independent. This is generally not the
case as a single supercell thunderstorm can generate a family of tornadoes [16].

This research asks the question; how can regional tornado climatology be recovered from a
heterogeneous database of rare, clustered events? The question is answered with a statistical
model that produces a map of smoothed tornado occurrence that reflects regional patterns of
physical forcing. The available data are first aggregated to the county level. Aggregation makes
it easy to include human and environmental data (population, terrain, percent agriculture, etc.)
to control for known effects in the data. The model is fit using the method of integrated nested
Laplacian approximation (INLA) to solve the Bayesian integrals arising from the application of
Bayes theorem. This setup accommodates non-normally distributed counts and correlated
residuals. The correlated residuals (random-effects term) shows where tornado activity is high
relative to the state average. The method described in this paper is valuable because it has the
potential to uncover the remaining spatial patterns of tornado activity after controlling for
selected covariates.

Data preparation and modeling procedures are described first for Kansas. The procedures
are then demonstrated for Illinois, Mississippi, South Dakota, and Ohio representing different
tornado-prone areas in the United States. For each state, an index of terrain roughness is tested
to see whether it improves the model fit. It is reasonable to assume that terrain roughness
might be influential in some areas but not others. For instance, terrain roughness might be less
important in areas with large variations in land use and land cover than in areas of the Great
Plains. In addition, the National Weather Service (NWS) County Warning Areas (CWA) are
used to identify areas with significantly higher and lower tornado rates.

The balance of the paper is outlined as follows. The tornado database and identified report-
ing issues are described in section 2. The tornado report frequency by Kansas county is evalu-
ated in section 3. The statistical model used to estimate tornado occurrence by county while
controlling for non-physical factors is described in section 4 and the results from fitting the
model to tornado reports first from Kansas then from Illinois, Mississippi, South Dakota, and
Ohio are shown in section 5. The influence of terrain roughness on tornado frequency condi-
tional on the model is examined in section 6. In section 7, key findings are summarized and
suggestions made for future work.

Materials and Methods

Data
Boundaries, elevation, and population. The model is written with the open-source R

language using freely-available government data including tornadoes from the U.S. Storm

A Statistical Model for Regional Tornado Climate Studies

PLOS ONE | DOI:10.1371/journal.pone.0131876 August 5, 2015 2 / 21



Prediction Center (SPC), population and administrative boundaries from the U.S. Census
Bureau, and elevations from NASA’s Shuttle Radar Topography Mission (SRTM). The data are
prepared as follows. First county administrative boundaries for the United States are down-
loaded and read into R as vector polygons from https://www.census.gov/geo/maps-data/data/
cbf/cbf_counties.html at a resolution of 1:5 million and subset by the state of interest using the
Federal Information Processing Standard (FIPS) code. Then digital elevation model (DEM)
data are downloaded from http://www.viewfinderpanoramas.org at a resolution of three arc
seconds (approximately 80 m) and read into R as a raster. The elevation raster is cropped to
the state boundary. Next CWA labels from http://www.nws.noaa.gov/geodata/catalog/wsom/
data/bp03de14.dbx are attached to each county. The results for Kansas are displayed on a map
in Fig 1.

Elevation (above mean sea level) ranges from less than 220 m in the east to higher than 1220
m in the west. The Kansas River in the northeast and its tributaries extending westward are vis-
ible at this spatial resolution. These elevations are used to compute an index of terrain rough-
ness. The three-letter abbreviation of the corresponding CWA is given in each county. The
CWAs include Dodge City (DDC), Goodland (GLD), Topeka (TOP), Wichita (ICT), North
Platte (LBF), Omaha/Valley (OAX), Hastings (GID), and Kansas City/Pleasant Hill (EAX).
The DDC NWS is responsible for 27 Kansas counties followed by 26 for ICT and 23 for TOP.

Data preparation continues by adding annual population estimates over the period 1970–
2013 from http://www.nber.org/data/census-intercensal-county-population.html to each
county. The percentage change over this period using 2012 as the baseline is displayed on a
Lambert conformal conic map in Fig 2. Counties in blue indicate more people in 2012 com-
pared to 1970. Counties to the south and west of Kansas City show the largest increases. Butler
and Sedgwick counties (Wichita area) and Ford, Gray, and Finney (Dodge City area) also show
large percentage increases although the latter area has fewer people (Fig 3). Population densi-
ties exceeding 190 people per square kilometer are found inWyandotte (Kansas City), Johnson,
and Sedgwick counties. Population densities for 2013 are estimated using the 2012 county
values.

Tornado Tracks. Next the SPC database containing all reported tornadoes in the United
States over the period 1950–2013 is obtained from www.spc.noaa.gov/gis/svrgis/zipped/
tornado.zip. Individual reports in the database are compiled by the NWS offices and reviewed
by the National Climate Data Center [6]. The database comes in a shapefile format with each
tornado provided as a straight line track. Tornado information in the database is considered
reliable for climate studies [17]. The tornado track is the great circle line (no width) between
the estimated start (touchdown) and end locations. Locations are recorded with two digit deci-
mal precision prior to 2009 and four digit afterwards. Locations are more accurate later in the
record when estimates are made with GPS. Not all tornadoes tracks are in a straight line nor do
they all remain in contact with the ground along the entire path. No attempt is made to adjust
for possible variations from a continuous straight line track.

Tornado reports tend to be more numerous near cities compared to rural areas but this spa-
tial variation is decreasing with time [9]. Moreover, improvements in observational practices
tend to result in a larger number of tornado reports, especially reports of weak tornadoes [6,
18]. Tornadoes are rated on a damage scale from 0 (least) to 5 [19, 20], with the earliest torna-
does in the database rated retroactively [12, 21, 22]. To improve the precision on the ratings
the Enhanced Fujita Scale, which includes more damage indicators, was adopted in 2007 [23].
Changes to population and to the rating procedures result in a heterogeneous database. Consis-
tent with advice given by the SPC [6] our analysis is limited to tornadoes that occurred from
1970 through 2013 rated EF1 and higher on the damage scale. In this paper, the word ‘tornado’
refers to tornadoes that received a damage rating of at least EF1. County tornado counts are
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accumulated for each tornado track that falls within or that crosses into the county during each
year.

The result is a space-time data set with constant-time attributes that include county area
and terrain roughness, and variable-time attributes that include the annual number of torna-
does and population density. Area is converted to units of square kilometers and the tornado
rate per county is computed as the number of tornadoes per 10,000 square kilometers per year.
Tornadoes are most numerous across central Kansas (Fig 4). The larger counties tend to have
more tornado reports although the relationship is not large [r = .34 (.19, .48) 90% CI] since the
counties tend to have similar sizes. Regional hot spots include Sedgwick County (city of Wich-
ita) and parts of the northeast in the counties around Kansas City. The correlation between the
2012 county population and the number of tornadoes is not significant [r = .04 (−.12, .20) 90%
CI]. The annual number of tornado reports for the state as a whole has increased since 1970 at
a rate of less than one per year, but the trend is not significant (Fig 5). Summary statistics are
listed in Table 1.

Method
The main idea of this paper is to demonstrate a model for tornado occurrence at the county
level. The model is useful for climate studies because it includes a term that captures the
smoothed frequency relative to the state average after accounting for known non-climate fac-
tors. To account for changes in tornado reporting due to population shifts over time the log2
annual county population density is included as a fixed-effect term. Further, to account for

Fig 1. Kansas counties and elevation. Counties are labeled by the corresponding CWA. Elevation is given at a resolution of 80 m.

doi:10.1371/journal.pone.0131876.g001
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improvements in rating procedures over time, the calendar year and an interaction term of
year with log2 population density are also included as fixed-effect terms. Finally, to account
year to year changes, a random effect term is added.

Inferences on the number of tornadoes in each county, s for each year t, Ts,t is assumed to be
adequately described by a negative binomial distribution with parameters probability p and
size r. Elsner and Widen (2014) [24] show that the negative binomial distribution better
describes tornado count data than does a Poisson distribution. If X is a random sample from

this distribution, then the probability that X = k is Pðkjr; pÞ ¼ ð kþ r � 1

k
Þð1� pÞrpk, for k 2

0, . . .,1, p 2 (0,1) and r> 0. This relates the probability of observing k successes before the r
failure of a series of independent events with probability of success equal to p.

The distribution is generalized by allowing r to be any positive real number and it arises
from a Poisson distribution whose rate parameter has a gamma distribution. Whereas the Pois-
son distribution has a variance equal to its mean, the negative binomial distribution is over dis-
persed. This means that the ratio of the variance to the average exceeds one which implies that
the underlying process generating the counts is clustered. To simplify the process of making
inferences, the distribution is re-formulated using the mean m ¼ r p

1�p
and the size r to allow a

separation of the mean effect from the dispersion parameter.
The mean of the negative binomial distribution, μs,t is linked to a linear combination of the

predictors and random effects, νs,t through the exponential function and the area of the county,
As. The dispersion is modeled with a scaled size parameter n where n = rs,t/As giving a

Fig 2. Population changes between 1970 and 2012. The change is expressed as a percentage difference with 2012 as the base year.

doi:10.1371/journal.pone.0131876.g002
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dispersion of 1/ps,t = 1 + μs,t/n = 1 + exp(νs,t)/n that depends only on the tornado density and n.
To keep n small, the area of each county in square km is divided by 2000.

More concisely the model is:

Ts;tjms;t; rs;t � NegBinðms;t; rs;tÞ
ms;t ¼ As exp ðns;tÞ
ns;t ¼ b0 þ b1 lpds;t þ b2 ðt � t0Þ þ b3 lpds;tðt � t0Þ þ us þ vt

rs;t ¼ As n

where NegBin(μs,t, rs,t) indicates that the conditional tornado counts (Ts,tjμs,t,rs,t) are described
by a negative binomial distribution with mean μs,t and size rs,t, lpds,t represents the base 2 loga-
rithm of the annual population density for each region, and t0 is the base year set to 1991 (mid-
dle year of the record).

The correlated spatial random effects term us follows an intrinsic Besag formulation with
the sum-to-zero constraint [25]:

uijfuj;j 6¼i; tg � N
1

mi

X
i�j

uj;
1

mi

t

 !
X
8i

ui ¼ 0

where N is the normal distribution with mean 1/mi � ∑i * j uj and variance 1/mi � 1/τ wheremi

Fig 3. Population estimates for 2012 by county. Values are expressed as persons per square km.

doi:10.1371/journal.pone.0131876.g003
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is the number of neighbors of county i and τ is the precision; i* j indicates the two counties i
and j are neighbors. Neighboring counties are determined by contiguity (queen’s rule) using
functions from the spdep package [26]. The annual uncorrelated random effect, vt, is modeled

as a sequence of normally distributed random variables, with mean 0 and variance 1/τ0
The prior on the vector of spatial random effects is statistically independent from the vector

of annual random effects. For each posterior sample, the vector of spatial random effects has
the same values for all years and the vector of annual random effects has the same values for all
regions as implied by the subscripts in the model notation. Gaussian priors with low precision
are assigned to the β’s. To complete the model the scaled size (n) is assigned a log-gamma prior
and the precision parameters (τ and τ0 are assigned a log-Gaussian prior. Although yet to be
used on county-level tornado data, a similar model was recently constructed for modeling hur-
ricane data [27] and these types models are frequently used for mapping disease rates [28, 29].

The priors and the likelihood are combined using Bayes rule to obtain the posterior distri-
butions for the model parameters. Since the integrals cannot be solved analytically, a common
technique is to use a Markov chain Monte Carlo (MCMC) algorithm to obtain samples from
the posterior distributions. Here the method of integrated nested Laplace approximation
(INLA) is used instead. INLA provides a fast alternative for models with a latent Gaussian
structure [30] and is accomplished with functions from the INLA package [31].

The model fits the data well. The probability integral transform (PIT) values modified for
small counts are adequately described by a uniform distribution [32]. The adequacy is checked

Fig 4. Tornado report frequency by county for Kansas.Only tornadoes rated EF1 and higher are used. Lines show the tornado track. The shortest tracks
are not visible at this scale. Total tornado counts over the period 1970–2013 are listed inside the county and the color scale is from few (blue) to many (red).

doi:10.1371/journal.pone.0131876.g004
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by noting that the p-value on an Anderson-Darling (AD) goodness-of-fit test under the null
hypothesis of a uniform distribution exceeds .15. The predictive quality of the model is assessed
by the cross-validated log score. A smaller value of the score indicates better predictive quality
[33]. The log score is .635 for Kansas, which is better than the log scores for seasonal tornado
models [24]. The Brier score is .570 as the mean squared difference between the predicted
probability and the actual count in each county for each year (105 × 45 = 4725 predictions).
The Brier score for the null model is .603.

The coefficient on the logarithm (base 2) of population density has a posterior mean of .1187
[(.0655, .1723) 90% credible interval (CI)] (Table 1). This translates to a 13% [(exp(.1187) − 1)
× 100%] increase for a doubling of the population. The coefficient on the year (trend) term has
a posterior mean of.0189 [(.0054, .0323) 90% CI]; statistically significant and upward at a rate
of 1.9% per year. The interaction term is also statistically significant with a posterior mean of
−.0045, indicating a decrease in the influence of population density. In fact, the model indicates
that the influence of population density on the tornado reports will approach zero by the year
2017 [β1 + β3 (2017 − 1991)� 0], although practically there will likely continue to be at least
some influence of population on the reports for some time to come.

Correlated random effects
The random-effects term is the spatially correlated set of residuals that provides a description
of tornado occurrence statewide that accounts for population changes, differences in exposure,
and trend within each county. A map of this term reveals where tornadoes are more likely rela-
tive to the state average (Fig 6) after controlling for population density, county area and annual
variation. Values are the posterior means and are expressed as a percent difference from the
state average. Counties with significantly (at the 90% level) higher and lower rates are outlined

Fig 5. Statewide tornado counts for Kansas from 1970–2013. The trend line uses a second-order random walk model where the counts are described by
a negative binomial distribution. The 90% uncertainty band is shown in gray.

doi:10.1371/journal.pone.0131876.g005

A Statistical Model for Regional Tornado Climate Studies

PLOS ONE | DOI:10.1371/journal.pone.0131876 August 5, 2015 8 / 21



in bold. Uncertainty on the magnitude of these values is measured by the posterior standard
deviation (Fig 7). Standard deviations tend to be lower (precision higher) in counties with
more neighbors (away from the state borders).

The map features a north-south axis of above-average activity across the west central part of
the state with lower activity to the west (as found in [13]) and generally lower activity to the
east. The axis of above-average activity in the north is shifted somewhat farther to the east. The
four counties of Hodgeman, Edwards, Pawnee, and Stafford in south central Kansas have tor-
nado activity that exceeds the average by at least 40% as do Jewell and Republic counties in the
north.

Nearly three quarters of Kansas tornadoes occur from April through June. Surface low pres-
sure in eastern Colorado to the lee of the Rockies in response to westerly winds aloft produce
veering southeasterly surface winds across the state. These winds transport moisture up slope
(Fig 1) with deep convection initiating in western Kansas along the dryline. The dryline forms
in the High Plains during spring and separates moist air originating over the Gulf of Mexico
from dry air originating over the southwestern United States and high plateau of Mexico [34].
Initial thunderstorm organization results in discrete supercells east of the dryline along a
roughly north-south axis. The discrete cells tend to merge into a mesoscale convective system
across eastern Kansas after sunset reducing the threat for tornadoes. Strong winds, heavy rains,
and frequent lightning become the main concern to life and property.

Table 1. Summary of the data analysis andmodeling results. DIC is the deviance information criterion, AD is the Anderson-Darling test, and r is the Pear-
son correlation coefficient.

Kansas Illinois Mississippi South Dakota Ohio

FIPS 20 17 28 46 39

No. counties 105 102 82 66 88

Area (km2) 210,845 144,451 123,701 199,367 105,954

Avg Elevation [m] 580.9 (580.5,581.2) 189.1 (189.0,189.2) 85.70 (85.62,85.78) 665.0 (664.6,665.4) 279.6 (279.5,279.7)

No. tornadoes (nT) [EF1+] 1010 879 1112 423 501

r(Area, nT) .34 (.19,.48) .64 (.53,.72) .55 (.41,.67) −.11 (−.30,.10) .34 (.17,.49)

Single tornado most
counties

7 8 12 3 6

Population [2012] 2,893,957 12,882,135 2,991,207 833,354 11,544,225

r(Population [2012], nT) .04 (−.12,.20) .14 (−.02,.30) .49 (.34,.62) .39 (.20,.55) .20 (.03,.37)

Tornado trend [%/yr] .87 (−.27,2.0) .48 (−.77,1.75) .44 (−.78,1.67) −1.60 (−3.04,−.14) −1.45 (−2.85,−.03)

DIC (w/out spatial term) 6027 5268 5729 2544 3364

DIC (w/ spatial term) 5990 5211 5680 2500 3302

AD p value >.15 >.15 >.15 >.15 >.15

Log score .635 .568 .770 .448 .436

Brier score .570 .415 .564 .269 .212

Pop density term .1187 (.0655,.1723) .1083 (.0525,.1643) .1304 (.0734,.1868) .1693 (.0791,.2569) .0714 (−.0051,.1466)

Trend term .0189 (.0054,.0323) n.s. .0230 (.0039,.0422) −.0173 (−.0318,
−.0029)

n.s.

Interaction term −.0045 (−.0073,
−.0017)

−.0016
(−.0036,.0004)

−.0050 (−.0083,
−.0018)

n.s. −.0031 (−.0053,
−.0010)

r(Roughness, nT) −.067 (−.256,.126) −.173 (−.355,.022) −.023 (−.239,.195) −.115 (−.347,.131) −.066 (−.271,.146)

DIC (w/ Roughness term) 5980 5212 5678 2502 3303

Roughness term −.0186 (−.0268,
−.0106)

−.0051
(−.0173,.0073)

−.0098 (−.0194,
−.0003)

−.0020 (−.0039,.0000) .0003 (−.0126,.0133)

DIC (w/ CWA term) 5981 5213 5669 2881 3352

doi:10.1371/journal.pone.0131876.t001
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Index of terrain roughness as a fixed effect
Next the model is used to test whether terrain roughness can help explain the pattern of torna-
does across Kansas. The test is motivated by the physical hypothesis that a tornado is somewhat
more likely to occur, all else being equal, where the low-level inflow is unimpeded. Studies
have shown that surface roughness affects this inflow; in particular it affects the velocity distri-
bution, pressure distribution, and the core radius of the flow [35–38]. An increase in terrain
roughness causes the maximum tangential velocity to decrease [38]. But experimental studies
have argued that the roughness used in these studies are outside the range of values encoun-
tered in nature [39].

Here the standard deviation in the 80-m resolution elevation data is computed within each
county and used as a proxy for terrain roughness. Counties with smaller elevation standard
deviations are smoother. Values range from a low of 11.3 m to 73.4 m with the smoother coun-
ties in the southeast part of the state. The model is refit using terrain roughness as an additional
fixed effect. The DIC decreases to 5980 indicating a better model with this term included
(Table 1). Elevation itself is not a significant term when included in the model.

The magnitude of the effect is indicated by the size of the coefficient. The posterior mean of
the coefficient is −.0186 [(−.0268, −.0106) 90% CI] indicating an 18% reduction in the tornado
occurrence for every ten meter increase in elevation standard deviation. The significance of the
effect is indicated with a plot of the posterior density (Fig 8). The density is offset to the left of
zero, where zero indicates the proxy for terrain roughness has no relationship to tornadoes at
the county level.

Fig 6. Correlated random effects from the Kansas tornadomodel. Values are the posterior mean and are expressed as the percent difference from the
state average. The model includes annual population density and calendar year as fixed effects.

doi:10.1371/journal.pone.0131876.g006
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This finding is consistent with [40] who show a negative relationship between the occur-
rence location of tornadoes and elevation variance. However, [40] consider only touchdown
locations of intense (EF3+) tornadoes and a domain that covers the eastern two-thirds of the
United States. They also use a coarser (approximately 1 km) elevation database. Instead of the
standard deviation in elevation, we use the difference between the lowest and highest elevation
as a proxy for terrain roughness and find a similar effect (not shown).

Since the roughness term is significant, it is added to the model and the correlated random-
effects term re-evaluated (Fig 9). The overall pattern remains unchanged with a corridor of
enhanced activity across the west-central part of the state. This example shows how to test
hypotheses concerning factors that could be related to tornado activity by representing the val-
ues at the county-level and included the term in the model.

County Warning Area as a fixed effect
Next the model is used to check whether there are significant variations in tornado activity by
CWA. Variations do not necessarily imply different warning and verification practices. Never-
theless to improve consistency across offices it is instructive to know whether more attention
to variations is warranted. The CWA term is treated as a factor variable where each county is
given the name of the corresponding CWA (see Fig 1). The term is included as a fixed effect.
The DIC with this term increases to 5981 showing that the model with the CWA is less likely
to replicate the observed distribution of tornado activity than the same model without the
CWA. However, when the DDC CWA (Dodge City, KS) and the GID CWA (Grand Island,

Fig 7. Standard deviation of the correlated random effects from the Kansas tornadomodel. Values have units of percent difference from the state
average.

doi:10.1371/journal.pone.0131876.g007
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Fig 8. Posterior density of the elevation standard deviation term. The 90%CI is shown with the vertical gray lines. The red line indicates no effect.

doi:10.1371/journal.pone.0131876.g008

Fig 9. Same as Fig 6 except the model has elevation standard deviation as an additional fixed effect.

doi:10.1371/journal.pone.0131876.g009
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NE) are included as a single combined binary variable (DDC and GID or neither) the DIC
drops to 5977. The coefficient on the binary term is .4112 [(.2185, .6011) 90% CI] indicating
that tornadoes are 51% more likely to have occurred in counties served by these two CWAs
than elsewhere in the state. The DDC and GID offices are responsible for warnings across cen-
tral Kansas where tornadoes tend to be most numerous and the spatial random effect is mostly
positive.

Illinois, Mississippi, South Dakota, and Ohio
Flexibility of the model is demonstrated by fitting it to tornado and environmental data from
four additional states including Illinois, Mississippi, South Dakota, and Ohio. The choice of
states is based on a representative sample of other tornado-prone areas in the United States.
The summary and model statistics discussed below are listed by state in Table 1. Maps of raw
tornado counts by county for the four states are shown in Fig 10. The procedures for preparing
the data at the county level are the same as before. An exception occurs for South Dakota
where an additional raster of elevations is needed for counties north of 45° N latitude. Like
across Kansas, tornado counts are significantly correlated with county size in Illinois, Missis-
sippi, and Ohio. South Dakota is the exception where the larger counties in the western half
of the state tend to have fewer tornadoes compared to the smaller counties in the southeast
corner.

Counties with more people also tend to have more tornado reports. This is particularly true
for Mississippi which has a correlation between tornado frequency and population of .49 [(.34,
.62) 90% CI] and for South Dakota which has a correlation of .39 [(.20, .55) 90% CI]. The pat-
tern of tornadoes across Illinois features a diagonal axis of high frequency from southwest to
northeast similar to the pattern noted in [41]. However, this axis coincides with larger and
more densely populated counties compared to the state average. The pattern of tornadoes in
Mississippi features a hot spot in the vicinity of the city of Jackson. Across Ohio, tornadoes are
notably fewer in the mountainous regions of the southeast. Marginally significant downward
trends in statewide tornado frequency are noted for South Dakota and Ohio (Fig 11). Since
2000, a slight increase in the number of tornadoes is noted in Illinois and Mississippi.

Population density is a significant term in each of the models with South Dakota having the
largest effect showing a 28% increase in tornado reports for a doubling of the population. Mis-
sissippi is next with a 20% increase in tornado reports for a doubling of the population. Popula-
tion is only marginal significant for Ohio, likely related to the relatively high population
density of the state compared to the other states examined here. A significant downward trend
at a rate of 1.7% per year is noted in the model for South Dakota tornadoes and a significant
upward trend at a rate of 2.4% per year is noted in the model of Mississippi tornadoes. No sig-
nificant upward trends are noted for tornadoes in Illinois and Ohio. The interaction term is sig-
nificant for Mississippi and Ohio, marginally so for Illinois, and not significant for South
Dakota.

Maps showing the correlated random effects from the state models are shown in Fig 12. Illi-
nois features a band of significantly below average frequency across the northern quarter of the
state with much of the rest of the state above average. Some significant hot spots of above nor-
mal activity are noted across the midsection and over the extreme south. Mississippi shows a
similar pattern with below normal frequency in the north and higher than average frequency
across central and southern parts of the state. These north-south gradients are partially hidden
in the map of raw counts but become conspicuous when controlling for county size and popu-
lation density. The gradients are consistent with what would be expected over the long-term as
the tornado season is longer in the south. South Dakota shows a well-defined mainly east-west
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Fig 10. Tornado report frequency by county for Illinois, Mississippi, South Dakota, and Ohio.

doi:10.1371/journal.pone.0131876.g010
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gradient with significantly more tornadoes across the southeast and significantly fewer torna-
does in the west. Ohio features significantly fewer tornadoes across the southeast and a band of
significantly more tornadoes running from near the city of Canton westward to the state line.
The model with a correlated random-effects term is a type of smooth algorithm that accounts
for population changes, differences in exposure, and trends.

Terrain roughness is a significant factor in the model for Mississippi tornadoes and margin-
ally so for South Dakota but not elsewhere (Fig 13). The terrain roughness coefficient for all the
states is negative indicating more tornadoes with smoother terrain. The magnitude of the effect
is a 10% reduction in Mississippi tornadoes for every ten meter increase in elevation standard

Fig 11. Statewide tornado counts.

doi:10.1371/journal.pone.0131876.g011
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Fig 12. Correlated random effects from the state tornadomodels.

doi:10.1371/journal.pone.0131876.g012
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deviation and a 2% reduction in South Dakota tornadoes for the same amount of increase in
roughness. County-level elevation standard deviations range from 2 to 35 m in Mississippi and
from 6 to 420 m in South Dakota. The CWAs are not a significant factor in explaining the pat-
tern of tornadoes in Illinois and Ohio. However, in Mississippi, the JAN CWA (Jackson, MS)
has significantly more tornadoes (41%) than elsewhere in the state and the MOB CWA
(Mobile, AL) has significantly fewer tornadoes (53%). In South Dakota, the FSD CWA (Sioux
Fall, SD) has significantly more tornadoes (66%) than elsewhere in the state and the UNR
CWA (Rapid City, SD) has significantly fewer tornadoes (34%). These difference, especially for
South Dakota, likely reflect real differences in climatology rather than differences in warning

Fig 13. Posterior density of the elevation standard deviation term from the state tornadomodels.

doi:10.1371/journal.pone.0131876.g013
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and verification procedures. Our results are not directly comparable to studies of tornado risk
that use multiple state areas and that use raw tornado reports without a correction for the bias
associated with population [13].

Summary and Future Directions
Tornadoes are discrete events, clustered in space and time, and locally quite rare. This makes it
difficult to construct a regional climatology. Here a statistical model is demonstrated that over-
comes some of these difficulties and that produces a smoothed regional-scale climatology of
tornado occurrences. The model is applied to data aggregated to the county level. Data consist
of annual population and tornado counts as well as an index of terrain roughness derived from
a digital elevation model. The statistical model includes a term that represents the smoothed
frequency relative to the state average after accounting for changes in reporting from popula-
tion shifts and from improvements in rating procedures. The model is Bayesian and is fit using
the method of integrated nested Laplacian approximation (INLA). A map of the correlated
random-effects term shows where tornado activity is high relative to the state average. The
model is used to assess whether high-resolution variation in terrain elevation is related to tor-
nado frequency and whether there are differences in tornado activity by CWA.

The data preparation and model-fitting procedures are described using data from Kansas
over the period 1970–2013. A key finding is that Kansas tornado reports increase by 13% with
a two-fold increase in population but the influence of population density is decreasing. Inde-
pendent of this relationship, it is found that tornadoes have been increasing at an annual rate
of 1.9% perhaps related to an increasing number of storm chasers. Another key finding is the
significant pattern of correlated residuals showing more Kansas tornadoes in a corridor of
counties running roughly north to south across the west central part of the state. The model is
improved by adding a term indexing terrain roughness. The magnitude of this effect, estimated
by the posterior mean of the coefficient, amounts to an 18% reduction in the number of torna-
does for every ten meter increase in elevation standard deviation. The model shows tornadoes
are 51% more likely to occur in counties served by the CWAs of DDC and GID compared with
elsewhere in the state.

Flexibility of the model was illustrated by fitting it to data from other tornado-prone states
including Illinois, Mississippi, South Dakota, and Ohio. Population changes are an important
term especially in South Dakota and Mississippi. In Mississippi, the model indicates a 20%
increase in tornado reports for a doubling of the population. A significant downward trend at a
rate of 1.7% per year is noted in the South Dakota tornado model and a significant upward
trend at a rate of 2.4% per year is noted in the Mississippi tornado model. The Brier score is
lowest for the Ohio model.

Terrain roughness is a significant explanatory factor for Mississippi tornadoes and a mar-
ginally significant factor for South Dakota tornadoes, but the term is negative in the models for
the other states considered. Across Mississippi, the magnitude of the roughness effect amounts
to a 10% reduction in tornadoes for every ten meter increase in elevation standard deviation.
The CWAs are not a significant factor in explaining the pattern of tornadoes in Illinois and
Ohio. However, in Mississippi, the Jackson CWA sees 41% more tornadoes on average than
elsewhere in the state. In South Dakota, the Sioux Falls CWA sees 66% more tornadoes than
elsewhere in the state. These spatial variations likely reflect real differences in tornado climatol-
ogy rather than differences in warning and verification procedures.

Future studies will test additional hypotheses. For example, is the influence of roughness
strongest for the weakest tornadoes? The model could be extended to include other local and
regional variables such as land use and land cover. For example, since forests may reduce
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inflow into developing storms, are tornadoes less likely over forested regions? Of particular
interest is a test of the physical hypothesis that gradients in soil moisture contribute to tornado
genesis [42]. Interest also centers on using the model-adjusted tornado counts as the actual risk
of tornadoes together with demographic and social data to examine regions most vulnerable to
tornadoes. The model can be extended to include multiple states and it can be adapted for use
with a regular grid. The model can also be adjusted for other tornado data. For example, it
might be interesting to use tornado path length as the response variable rather than tornado
count. Path length provides a better metric for the influence a tornado has on a region [43].

Acknowledgments
The code to produce the table and all the figures is available at https://github.com/tjagger/
CountyTornado. We thank the reviewers for constructive comments.

Author Contributions
Conceived and designed the experiments: THJ JBE. Performed the experiments: THJ HMW.
Analyzed the data: THJ JBE. Wrote the paper: JBE THJ. Edited the manuscript: HMW.

References
1. Brooks H, Doswell C. Normalized damage frommajor tornadoes in the United States: 1890–1999. Wea

Forecasting. 2001; 16:168–176. doi: 10.1175/1520-0434(2001)016%3C0168:NDFMTI%3E2.0.CO;2

2. Schultz DM, Richardson YP, Markowski PM, Doswell CA. Tornadoes in the central United States and
the “Clash of Air Masses”. Bull Amer Meteor Soc. 2014; 95:1704–1712. doi: 10.1175/BAMS-D-13-
00252.1

3. Diffenbaugh NS, Trapp RJ, Brooks H. Does global warming influence tornado activity. EOS, Transac-
tions. 2008; 89 (53):553–560. doi: 10.1029/2008EO530001

4. Brooks HE. Severe thunderstorms and climate change. Atmos Res. 2013; 123:129–138. doi: 10.1016/
j.atmosres.2012.04.002

5. Doswell CA, Moller AR, Brooks HE. Storm spotting and public awareness since the first tornado fore-
casts of 1948. Wea Forecasting. 1999; 14:544–557. doi: 10.1175/1520-0434(1999)014%3C0544:
SSAPAS%3E2.0.CO;2

6. Verbout SM, Brooks HE, Leslie LM, Schultz DM. Evolution of the U.S. tornado database: 1954–2003.
Wea Forecasting. 2006; 21:86–93. doi: 10.1175/WAF910.1

7. Doswell C. Small sample size and data quality issues illustrated using tornado occurrence data. Elec-
tronic Journal of Severe Storms Meteorology. 2007; 116(2):1–10.

8. Snider CR. A look at Michigan tornado statistics. MonWea Rev. 1977; 105:1341–1342. doi: 10.1175/
1520-0493(1977)105%3C1341:ALAMTS%3E2.0.CO;2

9. Elsner JB, Michaels LE, Scheitlin KN, Elsner IJ. The decreasing population bias in tornado reports.
Weather, Climate, and Society. 2013; 5:221–232. doi: 10.1175/WCAS-D-12-00040.1

10. King P. On the absence of population bias in the tornado climatology of southwestern Ontario. Wea
Forecasting. 1997; 12:939–946. doi: 10.1175/1520-0434(1997)012%3C0939:OTAOPB%3E2.0.CO;2

11. Ray PS, Bieringer P, Niu X, Whissel B. An improved estimate of tornado occurrence in the central
Plains of the United States. MonWea Rev. 2003; 131:1026–1031. doi: 10.1175/1520-0493(2003)
131%3C1026:AIEOTO%3E2.0.CO;2

12. Anderson CJ, Wikle CK, Zhou Q. Population influences on tornado reports in the United States. Wea
Forecasting. 2007; 22:571–579. doi: 10.1175/WAF997.1

13. Brooks HE, Doswell CA, Kay MP. Climatological estimates of local daily tornado probability for the
United States. Wea Forecasting. 2003; 18:626–640. doi: 10.1175/1520-0434(2003)018%3C0626:
CEOLDT%3E2.0.CO;2

14. Dixon PG, Mercer AE, Choi J, Allen JS. Tornado risk analysis: Is Dixie alley an extension of tornado
alley? Bull Amer Meteor Soc. 2011; 92:433–441. doi: 10.1175/2010BAMS3102.1

15. Shafer CM, Doswell CA. Using kernel density estimation to identify, rank, and classify severe weather
outbreak events. Electronic Journal of Severe Storms Meteorology. 2011; 6:1–28.

A Statistical Model for Regional Tornado Climate Studies

PLOS ONE | DOI:10.1371/journal.pone.0131876 August 5, 2015 19 / 21

https://github.com/tjagger/CountyTornado
https://github.com/tjagger/CountyTornado
http://dx.doi.org/10.1175/1520-0434(2001)016%3C0168:NDFMTI%3E2.0.CO;2
http://dx.doi.org/10.1175/BAMS-D-13-00252.1
http://dx.doi.org/10.1175/BAMS-D-13-00252.1
http://dx.doi.org/10.1029/2008EO530001
http://dx.doi.org/10.1016/j.atmosres.2012.04.002
http://dx.doi.org/10.1016/j.atmosres.2012.04.002
http://dx.doi.org/10.1175/1520-0434(1999)014%3C0544:SSAPAS%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(1999)014%3C0544:SSAPAS%3E2.0.CO;2
http://dx.doi.org/10.1175/WAF910.1
http://dx.doi.org/10.1175/1520-0493(1977)105%3C1341:ALAMTS%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1977)105%3C1341:ALAMTS%3E2.0.CO;2
http://dx.doi.org/10.1175/WCAS-D-12-00040.1
http://dx.doi.org/10.1175/1520-0434(1997)012%3C0939:OTAOPB%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2003)131%3C1026:AIEOTO%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2003)131%3C1026:AIEOTO%3E2.0.CO;2
http://dx.doi.org/10.1175/WAF997.1
http://dx.doi.org/10.1175/1520-0434(2003)018%3C0626:CEOLDT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(2003)018%3C0626:CEOLDT%3E2.0.CO;2
http://dx.doi.org/10.1175/2010BAMS3102.1


16. Doswell CA, Burgess DW. On some issues of United States tornado climatology. MonWea Rev. 1988;
116:495–501. doi: 10.1175/1520-0493(1988)116%3C0495:OSIOUS%3E2.0.CO;2

17. Ramsdell JV Jr, Rishel JP. Tornado Climatology of the Contiguous United States. P.O. Box 999, Rich-
land, WA 99352: Pacific Northwest National Laboratory; 2007. NUREG/CR-4461, PNNL-15112.

18. Doswell CA, Brooks HE, Kay MP. Climatological estimates of daily local nontornadic severe thunder-
storm probability for the United States. Wea Forecasting. 2005; 20:577–595. doi: 10.1175/WAF866.1

19. Fujita T, Pearson AD. Results of FPP classification of 1971 and 1972 tornadoes. In: Eight Conference
on Severe Local Storms; 1973. p. 142–145.

20. Edwards R, LaDue JG, Ferree JT, Scharfenberg K, Maier C, CoulbourneWL. Tornado intensity estima-
tion: Past, present, and future. Bull Amer Meteor Soc. 2013; 94:641–653. doi: 10.1175/BAMS-D-11-
00006.1

21. Schaefer JT, Edwards R. The SPC tornado/severe thunderstorm database. In: 11th Conference on
Applied Climatology; 1999.

22. Coleman TA, Dixon PG. An objective analysis of tornado risk in the United States. Wea Forecasting.
2014;p. 366–376.

23. Potter S. Fine-tuning Fujita. Weatherwise. 2007; 60:64–71. doi: 10.3200/WEWI.60.2.64-71

24. Elsner JB, Widen HM. Predicting spring tornado activity in the central Great Plains by March 1st. Mon
Wea Rev. 2014; 142:259–267. doi: 10.1175/MWR-D-13-00014.1

25. Besag J. Statistical analysis of non-lattice data. Journal of the Royal Statistical Society: Series D (The
Statistician). 1975; 24:179–195.

26. Bivand R. spdep: Spatial dependence: weighting schemes, statistics and models; 2014. R package
version 0.5–74. Available from: http://CRAN.R-project.org/package = spdep.

27. Elsner JB, Jagger TH. Hurricane Climatology: A Modern Statistical Guide Using R. Oxford University
Press, USA; 2013.

28. Schrödle B, Held L. Spatio-temporal disease mapping using INLA. Environmetrics. 2011; 22(6):725–
734. Available from: http://dx.doi.org/10.1002/env.1065. doi: 10.1002/env.1065

29. Blangiardo M, Cameletti M, Baio G, Rue H. Spatial and spatio-temporal models with R-INLA. Spatial
and Spatio-temporal Epidemiology. 2013; 4(0):33–49. Available www.sciencedirect.com/science/
article/pii/S1877584512000846. doi: 10.1016/j.sste.2012.12.001 PMID: 23481252

30. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using inte-
grated nested Laplace approximations. Journal of the Royal Statistical Society: Series B (Statistical
Methodology). 2009; 71:319–392. doi: 10.1111/j.1467-9868.2008.00700.x

31. Rue H, Martino S, Lindgren F, Simpson D, Riebler A, Krainski ET. INLA: Functions which allow to per-
form full Bayesian analysis of latent Gaussian models using Integrated Nested Laplace Approximaxion;
2014. R package version 0.0-1401811493.

32. Czado C, Gneiting T, Held L. Predictive model assessment for count data. Biometrics. 2009; 65:1254–
1261. doi: 10.1111/j.1541-0420.2009.01191.x PMID: 19432783

33. Gneiting T, Raftery AE. Strictly proper scoring rules, prediction and estimation. Journal of the American
Statistical Association, Series B. 2007; 102:359–378. doi: 10.1198/016214506000001437

34. Schultz DM, Weiss CC, Hoffman PM. The synoptic regulation of dryline intensity. Monthly Weather
Review. 2007; 135:1699–1709. doi: 10.1175/MWR3376.1

35. LewellenWS. A solution for 3 dimensional vortex flows with strong circulation. Journal of Fluid Mechan-
ics. 1962; 14:420–432. doi: 10.1017/S0022112062001330

36. Davies-Jones RP. The dependence of core radius on swirl ratio in tornado simulator. J Atmos Sci.
1973; 30:1427–1430. doi: 10.1175/1520-0469(1973)030%3C1427:TDOCRO%3E2.0.CO;2

37. Dessens J. Influence of ground roughness on tornadoes: A laboratory simulation. J Appl Meteor. 1972;
11:72–75. doi: 10.1175/1520-0450(1972)011%3C0072:IOGROT%3E2.0.CO;2

38. Leslie FW. Surface roughness effects on suction vortex formation: A laboratory simulation. J Atmos
Sci. 1977; 34:1022–1027. doi: 10.1175/1520-0469(1977)034%3C1022:SREOSV%3E2.0.CO;2

39. Church CR, Snow JT, Baker GL, Agee EM. Characteristics of tornado like vortices as a function of swirl
ratio: A laboratory investigation. J Atmos Sci. 1979; 36:1755–1776. doi: 10.1175/1520-0469(1979)
036%3C1755:COTLVA%3E2.0.CO;2

40. Karpman D, Ferreira MAR, Wikle CK. A point process model for tornado report climatology. Stat. 2013;
2:1–8. doi: 10.1002/sta4.14

41. Wilson JW, Changnon SA. Illinois tornadoes. Illinois Department of Registration and Education, Illinois
State Water Survey; 1971.

A Statistical Model for Regional Tornado Climate Studies

PLOS ONE | DOI:10.1371/journal.pone.0131876 August 5, 2015 20 / 21

http://dx.doi.org/10.1175/1520-0493(1988)116%3C0495:OSIOUS%3E2.0.CO;2
http://dx.doi.org/10.1175/WAF866.1
http://dx.doi.org/10.1175/BAMS-D-11-00006.1
http://dx.doi.org/10.1175/BAMS-D-11-00006.1
http://dx.doi.org/10.3200/WEWI.60.2.64-71
http://dx.doi.org/10.1175/MWR-D-13-00014.1
http://CRAN.R-project.org/package = spdep
http://dx.doi.org/10.1002/env.1065
http://dx.doi.org/10.1002/env.1065
http://www.sciencedirect.com/science/article/pii/S1877584512000846
http://www.sciencedirect.com/science/article/pii/S1877584512000846
http://dx.doi.org/10.1016/j.sste.2012.12.001
http://www.ncbi.nlm.nih.gov/pubmed/23481252
http://dx.doi.org/10.1111/j.1467-9868.2008.00700.x
http://dx.doi.org/10.1111/j.1541-0420.2009.01191.x
http://www.ncbi.nlm.nih.gov/pubmed/19432783
http://dx.doi.org/10.1198/016214506000001437
http://dx.doi.org/10.1175/MWR3376.1
http://dx.doi.org/10.1017/S0022112062001330
http://dx.doi.org/10.1175/1520-0469(1973)030%3C1427:TDOCRO%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1972)011%3C0072:IOGROT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1977)034%3C1022:SREOSV%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1979)036%3C1755:COTLVA%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1979)036%3C1755:COTLVA%3E2.0.CO;2
http://dx.doi.org/10.1002/sta4.14


42. Lanicci JM, Carlson T, Warner T. Sensitivity of the Great Plains severe-storm environment to ski-mois-
ture distribution. MonWea Rev. 1987; 115:2660–2673. doi: 10.1175/1520-0493(1987)115%3C2660:
SOTGPS%3E2.0.CO;2

43. Dixon PG, Mercer AE, Grala K, CookeWH. Objective identification of tornado seasons and ideal spatial
smoothing radii. Earth Interactions. 2014; 18:1–15. doi: 10.1175/2013EI000559.1

A Statistical Model for Regional Tornado Climate Studies

PLOS ONE | DOI:10.1371/journal.pone.0131876 August 5, 2015 21 / 21

http://dx.doi.org/10.1175/1520-0493(1987)115%3C2660:SOTGPS%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1987)115%3C2660:SOTGPS%3E2.0.CO;2
http://dx.doi.org/10.1175/2013EI000559.1

