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ABSTRACT

The authors apply a procedure called Bayesian model averaging (BMA) for examining the utility of a set of

covariates for predicting the distribution of U.S. hurricane counts and demonstrating a consensus model for

seasonal prediction. Hurricane counts are derived from near-coastal tropical cyclones over the period 1866–

2008. The covariate set consists of the May–October monthly averages of the Atlantic SST, North Atlantic

Oscillation (NAO) index, Southern Oscillation index (SOI), and sunspot number (SSN). BMA produces

posterior probabilities indicating the likelihood of the model given the set of annual hurricane counts and

covariates. The September SSN covariate appears most often in the higher-probability models. The sign of the

September SSN parameter is negative indicating that the probability of a U.S. hurricane decreases with more

sunspots. A consensus hindcast for the 2007 and 2008 season is made by averaging forecasts from a large

subset of models weighted by their corresponding posterior probability. A cross-validation exercise confirms

that BMA can provide more accurate forecasts compared to methods that select a single ‘‘best’’ model. More

importantly, the BMA procedure incorporates more of the uncertainty associated with making a prediction of

this year’s hurricane activity from data.

1. Introduction

Standard practice in modeling climate data is to ig-

nore model uncertainty. Model uncertainty refers to the

ambiguity associated with choosing a single model from

a suite of similarly good models. The researcher employs

a procedure that selects a set of covariates for a given

class of models (model selection) and then uses an es-

timation method to determine parameter values for the

model. Subsequently, the model is used to make infer-

ences and predictions as if the selected model had gen-

erated the data. Unfortunately, this approach ignores

the uncertainty in the model selection procedure result-

ing in overconfident inferences and predictions, which

can lead to unwarranted decisions.

For example, given a pool of covariates for hurricane

activity a stepwise regression procedure is frequently

employed to search through the hundreds of combinations

to arrive at a final reduced set of predictors (Klotzbach

2008). This final set is usually subjected to a hold-one-

out cross-validation exercise to obtain an estimate of

how well the set of covariates will predict future data.

However, as noted in Elsner and Schmertmann (1994),

this exercise does not result in a ‘‘full’’ cross validation as

the procedure for selecting the reduced set of covariates is

not itself cross validated. Cross validation is a procedure

for assessing how well an algorithm for choosing a par-

ticular model (including the predictor selection phase)

will do in forecasting the unknown future (Michaelsen

1987; DelSole and Shukla 2009).

Bayesian model averaging (BMA) is an alternative to

selecting a single ‘‘best’’ model. It works by assigning

a probability to each model (combination of covariates),

then averaging over all models weighted by their prob-

ability. That is, the BMA procedure assumes that all

models under consideration are capable of explaining

the data to some degree or another, so it is better to use

them all. In this way, the uncertainty associated with

model selection is incorporated into the procedure. Com-

bining statistical climate models to improve various fore-

cast characteristics (Colman and Davey 2003; Zou and

Yang 2004) and to use BMA for combining predictive

densities (Raftery et al. 2005) are relatively new topics.

The purpose of this paper is to introduce the BMA

procedure for producing a consensus seasonal hurri-

cane forecast. In doing so, we show how the approach can

facilitate our physical interpretation of the modeled re-

lationships.
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The paper is outlined as follows. In section 2, the un-

derlying statistical theory of BMA is introduced in the

context of seasonal hurricane counts along with some

related ideas. In section 3, the data describing seasonal

hurricane activity along the U.S. coast and the corre-

sponding covariates are described. In section 4, the re-

sults from the BMA procedure are discussed in the

context of our physical understanding of seasonal hur-

ricane activity. In section 5, the consensus model arising

from the BMA is used to hindcast the 2007 and 2008

hurricane seasons. This section includes a comparison of

the BMA with single-model selection procedures using

a cross-validation exercise. The paper ends with conclu-

sions and a summary along with some closing remarks.

2. Bayesian model averaging

We use the BMA procedure to develop a statistical

consensus model for seasonal hurricane forecasting.

We begin with some underlying theory of BMA in the

context of seasonal hurricane counts. Let Hi, with i 5

1, . . . , N, be the observed hurricane counts, one for each

observation year. Assume that our model has k co-

variates, and let X be the covariate matrix with compo-

nents X[i, j], with i 5 1, . . . , N and j 5 1, . . . k, associated

with the ith observation of the ( j 1 1)th covariate and with

the intercept term X[i, 1] 5 1 for all i. Associated with

the intercept and k covariates are k 1 1 parameters bj,

with j 5 1, . . . , k 1 1.

Because we have count data, we assume that the ob-

servations have a Poisson distribution, and the logarithm

of the mean is regressed onto the covariates—that is,

H
i
; pois(l

i
)

log (l
i
) 5 �

k11

j51
X[i, j]b

j
.

This is a generalized linear model (GLM), and maxi-

mum likelihood estimation can be used to estimate the

parameters. From these parameter estimations and the

values of the corresponding covariates we can estimate

l from the regression equation. The future hurricane

count conditional on these covariate values has a Poisson

distribution with a mean of l. Thus, the Poisson distri-

bution provides a probabilistic forecast whose mean can

be taken as a point forecast.

A full model uses all k covariates. However, it is

usually the case that some of the covariates do not

contribute information to the model. We can choose

a smaller model by setting some of the k parameters to

zero and estimating the rest of the parameters. Thus,

with k covariates there are a total of m 5 2k models. The

principal idea in BMA is that none of the m models are

discarded, rather a probability is assigned to each and

predictions averaged based on this probability. Models

with greater probability are assigned proportionally more

weight in the averaging.

Consider a simple case in which our observations of Y

results from either 1 of 2 regression models Y1 5 a1 1 �1
(constant mean) and Y2 5 a2 1 bx 1 �2 (simple re-

gression), where x is a covariate, and �1 and �2 are in-

dependent and normally distributed with means of zero

and variances of s1
2 and s2

2, respectively. Suppose we can

assign a probability p that the constant mean model gen-

erated the observed data and a probability 1 2 p that the

simple regression model instead generated the data. Then

under BMA, the posterior predictive expectation (mean)

of Y is m 5 pm1 1 (1 2 p)m2 5 pa1 1 (1 2 p)(a2 1 bx).

This represents a consensus model that combines in-

formation from both models.

However, the posterior predictive distribution of Y

given the data is not necessarily normal, rather it is a

mixture of normal distributions with a posterior predicted

variance of ps1
2 1 (1 2 p)s2

2 1 p(1 2 p)(a2 1 bx 2 a1)
2.

This variance under BMA is larger than a simple weighted

sum of the individual model variances by an amount

p(1 2 p)(a2 1 bx 2 a1)2 that represents the uncertainty

associated with model choice. Thus, the predictive dis-

tribution under BMA is wider than the distribution un-

der any given model.

Over a set of competing models we need a method to

assign a probability to each. We start with a collection of

models Mi, with i 5 1, . . . , m, where each model is

a unique description of our data. For example, in the

example above we need to assign a probability to the

constant mean model and a probability for the simple

regression model, with the constraint that the proba-

bility over all models must sum to one. In this study,

a model represents the generalized linear regression

structure and a set of covariates with a corresponding set

of parameters including an intercept term.

Now for our dataset D and model Mi we can de-

termine P(DjMi), which is the probability of our data

given the model, and we assign to each model a prior

probability P(Mi). This is our prior belief on a given

model. Under the situation of complete ambiguity we

assigned 1/m to each model’s prior probability. For ex-

ample, in the above case if we believe both models are

equally likely then we assign P(M1) 5 P(M2) 5 0.5.

Using Bayes Law we find the probability of the model

given the data P(MijD) 5 P(DjMi) 3 P(Mi)/P(D) be-

cause P(D) is fixed for all models we can let Wi 5

P(DjMi) 3 P(Mi) be the model weights with probabilities

P(MijD) 5 Wi/�
m

i 5 1Wi.
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Let the random variable H represent a future count

prediction. The posterior distribution of H at h under

each model is given by f(hjD, Mi). The marginal poste-

rior probability over all models is given by f (hjD) 5

�m

i 5 1 f (hjD, Mi)P(MijD). We can find a single-point

estimate of the future count—that is, the posterior mean

of H over all models—by taking the expectation of H

given the data, E(HjD) 5 �‘

h 5 0hf (hjD). Then expand

f(hjD) and switch the summation order E(HjD) 5

�m

i 5 1P(M
i
jD)�‘

h 5 0hf (hjD, M
i
), which is �m

i 5 1P(M
i
jD)

E(HjD, M
i
) as in our example, where E(HjD, Mi) 5 mi.

For a given model, P(DjMi) is the marginal likelihood

over the parameter space. In other words, P(DjMi) 5Ð
P(DjMi, u) f (ujMi) du, where f(ujMi) is the prior dis-

tribution of the parameters for model Mi, and P(DjMi, u)

is the likelihood of the data given the model L(u; Mi, D).

In many cases this integral cannot be evaluated analyt-

ically or is infinite as when an improper prior is put on u.

Several approximation methods may be used to evaluate

this integral as in Hoeting et al. (1999). In our approach,

we use the Bayesian information criterion (BIC) ap-

proximation, which is based on a Laplace expansion of

the integral about the maximum likelihood estimator

(MLE) parameter estimates (Madigan and Raftery 1994).

Model selection attempts to find a single best model

for the data. Selection criteria may include minimization

of the Akaike information criterion (AIC; Akaike 1974),

the BIC, or a cross-validation score. In a sense, BMA is

the opposite of model selection; it keeps all models but

assigns a probability based on how likely it would be for

the data to have come from the model. A consensus

model, representing a weighted average of all models, is

then used to make predictions. If values for the prior

parameters come from reasonably well-behaved distri-

butions, then a consensus model from a BMA procedure

yields the lowest mean square error (MSE) of any sin-

gle best model (Raftery and Zheng 2003). BMA is de-

scribed in more detail in Hoeting et al. (1999), whose

work is based on Raftery (1996) for generalized linear

models.

BMA provides better coverage probabilities on the

predictions than any single model. Consider a dataset

split into a training set and a testing set. Using the training

set we can create 1 2 a credible intervals on the pre-

dictions. Then using the testing set we can calculate the

proportion of observations that lie within the credible

intervals (coverage probability). In standard practice

with a single best model, the credible intervals are too

small resulting in coverage probabilities less than 1 2 a.

Since BMA provides a larger variance than any model

individually, the coverage probabilities on the predic-

tions are greater or equal to 1 2 a (Raftery and Zheng

2003). For a comparison of BMA against other model

selection procedures see Castle et al. (2009). Here, we

demonstrate BMA in the context of seasonal hurricane

forecasting. We begin by describing the data.

3. Data

a. Hurricane frequency in the vicinity of the
United States

Hurricane wind speed estimates are derived from the

Hurricane Database (HURDAT or best track) main-

tained by the U.S. National Oceanic and Atmospheric

Administration (NOAA) National Hurricane Center

(NHC). Of interest is the fact that HURDAT is the

official NOAA record of hurricane information for the

Atlantic Ocean, Gulf of Mexico, and Caribbean Sea,

including those storms that have made landfall in the

United States. HURDAT consists of 6-h position, cen-

tral pressure, and maximum sustained wind estimates

for tropical cyclones back to 1851. The raw wind speed

values in HURDAT are given in 5-kt (2.5 m s21) in-

crements and knots (kt) are the operational unit used for

reporting tropical cyclone intensity to the public in the

United States. For cyclones prior to 1931, the 6-h posi-

tions and intensities are interpolated from once daily

(1200 UTC) estimates. Here, we use the latest version of

HURDAT as of November 2009.

A natural spline interpolation is used to obtain posi-

tions and wind speeds at 1-h intervals from the 6-h

values. Because a complete dataset of all land-falling

hurricanes is not available, and to be consistent, we use

the near-coast region (see Fig. 1) of Jagger and Elsner

(2006) and keep only the hurricane’s single highest wind

speed in the region. We use the term ‘‘intensity’’ as

shorthand for ‘‘wind speed.’’ Thus, the hurricane dataset

we analyze and model in this study contains N 5 286

hurricanes over the 143-yr period (1866–2008). A time

FIG. 1. Study area. The number of hurricanes affecting the U.S.

coast is based on counting hurricanes crossing into the near-coastal

polygon (soft yellow).
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series of the counts is shown in Fig. 2. The counts range

from zero in 18 of the 143 yr to eight in 1886. There is no

long-term trend in the annual counts.

b. Environmental variables related to U.S.
hurricanes

On the annual time scale, and to a first order, it is

known that a high ocean heat content and cold upper-air

temperature provide the fuel for hurricanes, a calm at-

mosphere (low values of wind shear) allows a hurricane

to intensify, and the position and strength of the sub-

tropical high pressure region steers a hurricane that does

form. Thus, U.S. hurricane activity responds to changes

in large-scale climate conditions that affect or index these

factors including SST as an indicator of oceanic heat

content, sunspot number (SSN) as an indicator of upper-

air temperature, El Niño–Southern Oscillation (ENSO)

as an indicator of vertical wind shear, and the North At-

lantic Oscillation (NAO) as an indicator of steering flow.

ENSO is characterized by basin-scale fluctuations in

sea level pressure (SLP) across the equatorial Pacific

Ocean. The Southern Oscillation index (SOI) is defined

as the normalized sea level pressure difference between

Tahiti and Darwin, and values are available back through

the middle nineteenth century. The SOI is strongly

anticorrelated with equatorial Pacific SSTs so that an

El Niño warming event is associated with negative SOI

values. The units are standard deviations. ENSO is an

indicator of vertical wind shear and subsidence in the

Atlantic region where tropical cyclones develop and

negative SOI values imply greater shear and subsidence.

The monthly SOI values (Ropelewski and Jones 1987)

are obtained from the Climatic Research Unit (CRU).

The NAO is characterized by fluctuations in SLP

differences. Index values for the NAO are calculated as

the difference in SLP between Gibraltar and a station

over southwestern Iceland and are obtained from the

CRU (Jones et al. 1997). Monthly values can be con-

sidered an indicator of the strength and/or position of

the subtropical Bermuda high (Elsner et al. 2001). We

speculate that the relationship might result from a tele-

connection between the midlatitudes and tropics, whereby

a below normal NAO during the spring leads to dry

conditions over the continents and to a tendency for

greater summer/fall middle-tropospheric ridging (en-

hancing the dry conditions). Ridging over the eastern

and western sides of the North Atlantic basin tends to

keep the middle tropospheric trough, responsible for

hurricane recurvature, farther to the north during the

peak of the season (Elsner and Jagger 2006).

The Atlantic SST covariate is an area-weighted aver-

age based on monthly SST values in 58 latitude–longitude

boxes (Enfield et al. 2001) from the equator to 708N lat-

itude. Monthly values of Atlantic SST are the standard

Atlantic multidecadal oscillation (AMO) index.

We consider also the influence variations in the sun

might have on near-coastal hurricane activity. Interest is

motivated by a recent work that speculates an increase

in solar ultraviolet (UV) radiation during periods of

strong solar activity will have a suppressing effect on

tropical cyclone intensity as the temperature near the

tropopause will warm through absorption of radiation

by ozone and be modulated by dynamic effects in the

stratosphere (Elsner and Jagger 2008). The sunspot num-

bers produced by the Solar Influences Data Analysis

Center (SIDC), World Data Center for the sunspot in-

dex at the Royal Observatory of Belgium are obtained

from NOAA.

The monthly covariate values are shown in Fig. 3 as

image plots. The monthly values for May–October on

the vertical axis are plotted as a function of year on the

horizontal axis. The values are shown using a color ramp

from blue (low) to yellow (high). The SST and SSN

covariates are characterized by high month-to-month

correlation as can be seen by the vertical striations.

Next, the annual frequency of hurricanes in the vi-

cinity of the United States is modeled using count and

monthly environmental data over the period 1866–2008.

The environmental data include Atlantic SST, the SOI,

an index for the NAO, and SSN. All four covariates have

been statistically linked to U.S. coastal hurricane activ-

ity (Elsner and Jagger 2006, 2008). The hurricane counts

represent the total number of near–U.S. hurricanes for

the given season (predictand), and the covariates are

monthly values from May through October.

4. Results

Assuming that hurricane occurrences follow a Poisson

process with an unknown rate, annual hurricane counts

follow a Poisson distribution with an unknown rate pa-

rameter. We assume that the logarithm of the rate pa-

rameter is a linear combination of some fixed but unknown

FIG. 2. Annual U.S. hurricane counts. The counts are based on

tropical cyclones at hurricane intensity within a near-coastal region

of the United States (see Fig. 1) over the period 1866–2008, in-

clusive.
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subset of our covariate set. Since the predictand is the set

of annual hurricane counts, the specification is known as

a Poisson GLM. The set of parameters (one for each

covariate and the intercept) in a GLM can be found

using the maximum likelihood method.

With 6 months and 4 environmental variables per

month we have 24 covariates, so the total number of

models is 224 or more than 16.5 million. We reduced this

number to 432 by first considering only the top 150

models of each size. From this subset of 150 3 24 5 3600

models, we reduce the set further by comparing the

difference in BIC between each model and the model

with the lowest BIC and keeping those models whose

difference is less than 20. The calculations are carried

out using the BMA package as discussed by Raftery

et al. (2009) within the R programming language (R

Development Core Team 2009). Specifically, we use the

‘‘bic.glm’’ function for the BMA procedure and ‘‘im-

ageplot.bma’’ for displaying the results.

BIC is used as an approximation to the logarithm of

P(DjM) (Raftery 1996). The models are ordered by BIC

so that the first model has the lowest BIC value, the

second model has the second lowest BIC, and so on. The

value of BIC for a given model is

�2 lnL 1 k ln(n),

where L is the likelihood evaluated at the parameter

estimates, k is the number of parameters to be esti-

mated, and n is the number of years. BIC includes a

penalty term [kln(n)], which makes it useful for comparing

models with different sizes. If the penalty term was re-

moved, 22lnL could be reduced just by increasing the

number of model covariates. The BIC as a selection

criterion results in choosing models that are parsimo-

nious and asymptotically consistent, meaning that the

model with the lowest BIC converges to the ‘‘true’’

model as the number of years of data increases.

The top five models having the lowest BIC values are

given in Table 1. The table lists the intercept and co-

variates in the first column. The second column gives the

posterior probability that the model parameter is not

equal to zero across all 432 models. For example, the

June SST covariate has a probability of 10.1% of being

included in a model. The third and fourth columns are

the posterior expected value and standard deviation

across all models. The subsequent five columns are the

five most probable models as indicated by values in rows

corresponding to a covariate. For instance, the co-

variates included in the most probable model (model 1)

are July SST, July SOI, June SSN, and September SSN.

The number of variables in the model, the model BIC,

and the posterior probability are also given in the table.

All 432 models are shown in Fig. 4 ordered left to right

by decreasing posterior probability on the model. The

first model is on the far left with the included covariates

(July SST, July SOI, and SSN for June and September)

shown with a color bar and the color corresponding to

the model parameter sign (red for positive and blue for

negative). The signs indicate that U.S. hurricane prob-

ability increases with July SST, July SOI, and June SSN

and decreases with September SSN. The width of the bar

FIG. 3. Monthly values of the covariates. The covariates include (a) SST, (b) NAO, (c) SOI, and (d) sunspot

number. The image plot shows the monthly values for May–October on the vertical axis as a function of year on the

horizontal axis. The values are shown using a color ramp from blue (low) to yellow (high).
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is proportional to the posterior probability so the bars

become narrow with increasing model number.

The most important covariates for explaining annual

variation in U.S. hurricane probability are easy to pick

out on the image plot. They are the ones with the most

consistent coloring from left to right across the image.

The fewer the gaps, the more often the covariate is

chosen in a model. These include September and June

SSN, June NAO, July SST, and any of the months of

July–September for the SOI. The results provide insight

into the environmental factors important in hurricane

activity. For instance, considering that on average August

has many more hurricanes than July, why is July SST

selected as a model covariate more often than August

SST? The answer lies in the fact that when the hurricanes

arrive in August and September, they lower the SST so

the correlation between hurricane activity and SST

weakens. That is, the thermodynamics of hurricane gen-

esis and intensification works against the correlation. July

SST better portends an active hurricane season, not be-

cause a warm ocean in July causes tropical cyclone in-

tensification in August and September, but because

hurricanes in August and September cool the ocean.

September SSN is the most consistently chosen cova-

riate followed by June SSN. The sign on the September

SSN parameter is negative indicating that the proba-

bility of a U.S. hurricane decreases with the increasing

number of sunspots. This result accords with the hy-

pothesis that increases in UV radiation from an active

sun (greater number of sunspots) warms the upper tro-

posphere resulting in greater thermodynamic stability

and a lower probability of a hurricane over the western

Caribbean and Gulf of Mexico (Elsner and Jagger 2008;

Elsner et al. 2010). The positive relationship between

hurricane probability and June SSN is explained by the

direct influence the sun has on ocean temperature. Other

alternative explanations are possible, especially in light

of role the solar cycle likely plays in modulating the

NAO (Kodera 2002; Ogi et al. 2003). Additional dis-

cussion on this topic is given in the conclusions and

summary section.

The SOI covariates get chosen with a mixture across

the months of July–October. The posterior probability is

somewhat higher for the months of June and October

and smallest for August and September. With El Niño

conditions, convection over the eastern equatorial Pacific

TABLE 1. Posterior statistics of the output from a BMA procedure. The EV and SD are the expected value and standard deviation of the

posterior parameters, respectively. The values under the model numbers are the regression coefficients with positive values indicating

a positive relationship between the covariate and the probability of a hurricane.

Term P(Term 6¼ 0) EV SD

Model

1 2 3 4 5

Intercept 100.0 0.784 0.1104 0.803 0.830 0.708 0.722 0.702

sst.Oct 4.7 0.013 0.1191 — — — — —

sst.Sep 9.5 20.067 0.2964 — — — — —

sst.Aug 10.1 0.026 0.2219 — — — — —

sst.Jul 58.2 0.476 0.5494 0.637 0.677 — — —

sst.Jun 10.1 0.030 0.2246 — — — — —

sst.May 4.4 20.017 0.1592 — — — — —

nao.Oct 0.7 0.000 0.0035 — — — — —

nao.Sep 1.8 0.001 0.0069 — — — — —

nao.Aug 1.0 0.000 0.0043 — — — — —

nao.Jul 4.5 0.002 0.0149 — — — — —

nao.Jun 39.6 20.040 0.0570 — — 20.116 20.117 20.108

nao.May 6.4 20.004 0.0191 — — — — —

soi.Oct 34.0 0.052 0.0820 — — 0.163 — —

soi.Sep 10.8 0.015 0.0496 — — — — —

soi.Aug 25.3 0.038 0.0731 — 0.164 — 0.154 —

soi.Jul 36.1 0.063 0.0967 0.168 — — — 0.156

soi.Jun 8.1 20.008 0.0317 — — — — —

soi.May 0.5 20.000 0.0054 — — — — —

ssn.Oct 8.8 20.000 0.0015 — — — — —

ssn.Sep 89.6 20.009 0.0049 20.011 20.011 20.011 20.012 20.012

ssn.Aug 1.7 20.000 0.0005 — — — — —

ssn.Jul 1.8 20.0000 0.0005 — — — — —

ssn.Jun 66.8 0.006 0.0050 0.008 0.008 0.010 0.010 0.010

ssn.May 10.0 0.001 0.0019 — — — — —

BIC 160.9 161.0 161.2 161.6 161.7

P(DjM) 0.019 0.017 0.016 0.013 0.013
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produces increased shear and subsidence across the

Atlantic (Gray 1984), but especially over the western

Caribbean, where during the months of July and October

a relatively large percentage of the North Atlantic hur-

ricane activity occurs. Moreover, the inhibiting influence

of El Niño might be less effective during the core months

of August and September when, on average, other con-

ditions tend to be favorable.

We determine the probability that a covariate by type

irrespective of month will be chosen for at least 1 month

by calculating the total posterior probability over all

models that include at least 1 month of a given covariate.

We find that SOI has the highest probability of being

chosen at 98.1%. The SSN is close with a 97.6% chance,

followed by SST at 81%, and the NAO at 48%. The

lower probability of choosing the NAO reflects the large

intraseasonal variability in this covariate as seen in Fig. 3.

For comparison we generate a random series of U.S.

hurricane counts by sampling the original series. The

random series has the same counts, but the counts are

placed on random years over the period. The random

series together with the covariates are used in the BMA

procedure as before, and the results are mapped in Fig. 5.

Here, the covariates are ordered by the model posterior

probability. Results using the actual data are shown in the

upper-left panel, and results using three randomized se-

ries are shown in the other three panels.

The comparison clearly demonstrates that, as a whole,

our set of covariates has a meaningful relationship with

U.S. hurricane activity. There are fewer models chosen

with the randomized datasets and the most probable

model in each randomized set is the model with no

covariates. In fact, the intercept-only model is between

2.2 and 5.2 times more likely than the model with at least

one covariate among these three randomizations. More-

over, most of the models selected have only a single

covariate and there is little consistency in the variable

selected from one model to the next. This result dem-

onstrates the efficacy of the procedure and the impor-

tance of these covariates in modulating the occurrence

rate of hurricanes near the United States.

5. Consensus forecasts

In contrast to selecting a single model, the previous

section demonstrates the results of assigning a posterior

probability to a subset of possible models given the

observed set of hurricanes. Each model can be used to

make a prediction for this year’s count. But which model

should we believe? Fortunately, no choice is necessary.

Instead, each model is used to make a prediction with

the predictions subsequently averaged. The averaging

procedures give greater weight to predictions from

models with the higher posterior probability. The pro-

cedure, known as BMA, effectively produces a consensus

forecast.

We assume for this discussion that full knowledge

is available for all covariates over all months May–

December. For any real preseason forecast, one must

predict all the covariates from June through December

FIG. 4. Model covariates vs model number. The BIC is used to select the model. If a covariate

is included in the model it is indicated by a red (positive parameter) or blue (negative pa-

rameter) bar. The bar height is constant, and the bar width is determined by the posterior

probability of the model. The probabilities decrease with increasing model number.
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in advance, and this prediction should be in the form of

the joint distribution of all covariates over all months.

Figure 6 shows the posterior prediction probabilities

for the 2007 and 2008 hurricane seasons using the con-

sensus model from the BMA procedure. The predictions

indicate a higher probability of at least one U.S. hurri-

cane in 2008 compared with 2007. The posterior mode

for the 2007 (2008) season is two (three) hurricanes. The

model predicts a 58% chance of three or more hurri-

canes for 2007 and a 64% chance of three or more

hurricanes for 2008. There was one hurricane in 2007

and three in 2008.

The consensus model predicts larger probabilities of

an extreme year given the rate than would be expected

from a Poisson process. That is, the consensus model is

overdispersed with respect to a Poisson distribution.

This makes sense as model uncertainty is incorporated

in the consensus prediction. In other words, the con-

sensus model achieved through BMA provides better

coverage probabilities on the predictions.

As mentioned in the introduction, cross validation is

a procedure for assessing how well an algorithm for

choosing a single best model will do in forecasting the

unknown future. While BMA does not produce a single

best model, here we test BMA against other model se-

lection procedures using 11-fold cross validation. With

FIG. 5. Model covariates vs model number as in Fig. 4. The covariates are ordered by the model posterior probability. (a) The original time

series of U.S. hurricane counts is used in the BMA procedure, and (b)–(d) three randomly sampled series of U.S. hurricanes are used.

FIG. 6. Posterior predictions from the consensus model. The

vertical axis is the probability of observing h number of hurricanes.

Predictions are shown for the 2007 and 2008 hurricane season.

There was one hurricane in 2007 and three hurricanes in 2008.
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143 yr, each subset of data from the cross validation con-

sists of 130 yr for training and 13 yr for testing. We com-

pare the skill of the BMA procedure with the skill from

two other selection procedures and with climatology.

Both selection procedures involve the single best Poisson

GLM, where best is defined in the first case as the model

with the smallest BIC and in the second case as the model

with the smallest AIC. Climatology involves a pre-

selection of a fixed landfall rate in a Poisson specification.

For the BMA and the single-model selection pro-

cedures we calculate the following scoring rules as de-

scribed in Czado et al. (2009): MSE, the ranked probability

score (RPS), the quadratic (Brier) score (QS), and the

logarithmic score (LogS). For each of these rules smaller

scores indicate more accurate forecasts. Results are lis-

ted in Table 2. We find that for all scoring rules BMA

provides a somewhat more accurate prediction than a

procedure that selects a single best model using either

BIC or AIC. Note that, since climatology as a model has

been preselected, comparing its performance against the

skill of the other procedures and BMA is not strictly

valid.

6. Conclusions and summary

A model selection procedure (covariate screening) is

typically employed to build a prediction model from

data. An alternative approach advocated here is to assign

a posterior probability to all models, where posterior

probability reflects the likelihood of the model pro-

ducing the observed data. A consensus forecast can then

be issued that represents a weighted average of forecasts

from all models. The weights are simply the posterior

probabilities assigned to each model. The procedure is

called BMA.

Here, BMA is applied to the set of hurricane counts

along the U.S. coast from the period 1866–2008. Cova-

riates include the June, July, August, September, and

October monthly averages of the four covariates of SST,

NAO, SOI, and SSN. The model posterior probabilities

provide insight into the physical processes connecting

the covariates to near-coastal hurricane activity. For in-

stance, July SST is selected more often than September

SST as a model covariate because hurricanes in August

and September cool the ocean, resulting in a lower con-

temporaneous correlation between ocean temperature

and hurricane frequency.

The covariate chosen most often is September SSN

followed by June SSN. We speculate the sun–hurricane

relationship results from changes in upper-level tem-

peratures due to changes in UV radiation. In short, in-

creased solar activity—associated with sunspots—means

more UV radiation reaching the earth’s upper atmo-

sphere. But increased solar activity also increases the

shortwave energy that helps warm the ocean that fuels

hurricanes. The sun has a low-frequency period on the

order of 11 yr (Schwabe cycle) that is positively cor-

related with Atlantic Ocean temperature and a high-

frequency period on the order of 27 days (because of

solar rotation) that is positively correlated with upper-

atmosphere temperature. Thus, we would expect the

June sunspot number to reflect the positive influence on

hurricanes through the extra shortwave energy boost to

the ocean and the September sunspot number to reflect

the negative influence on hurricanes through the extra

UV energy boost to the upper atmosphere.

Our thermodynamic hypothesis could be incomplete.

For example, under an active sun the stratosphere warms

unevenly, with the most-pronounced warming occurring

at lower latitudes. This alters stratospheric winds (Meehl

et al. 2009; van Loon et al. 2004, 2007), which could end

up changing the strength of tropical cyclones. Our hunch

is that circulation changes could influence weaker trop-

ical cyclones as suggested by this work, but that the in-

tensity of the stronger hurricanes are influenced more by

thermodynamics near the surface and aloft. More work

is needed on this topic.

A consensus forecast for the 2007 and 2008 season is

made by averaging forecasts from all models weighted

by their posterior probability. In a cross-validation ex-

ercise, the BMA procedure out performs, using various

scoring rules, other model selection procedures in pro-

ducing a more accurate forecast. This improvement in

skill with a BMA approach notwithstanding, in a more

philosophical vein we echo the sentiments of Montgomery

and Nyhan (2010) that the enterprise of searching for

the best model might be misguided for most climate

data, which are often ambiguous as to the true model.

The consensus forecast will not necessarily give the

smallest forecast error every year, but it will always

provide a better assessment of forecast uncertainty

compared to a forecast from a single model. The BMA

TABLE 2. Cross-validation skill scores. The skill scores include

MSE, RPS, QS, and LogS. Methods include BMA and the single

best Poisson GLM, where the best is defined by the smallest BIC

and smallest AIC. A separate model with a constant intercept term

(climatology) is also included. The values are based on an 11-fold

cross-validation exercise that produces 143 separate hindcasts. A

lower skill score corresponds to a procedure that results in a more

accurate prediction.

Method MSE RPS QS LogS

BMA 2.125 0.786 20.209 1.712

Smallest BIC 2.254 0.816 20.198 1.745

Smallest AIC 2.303 0.812 20.203 1.739

Climatology 2.261 0.805 20.207 1.738
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procedure provides a natural way to incorporate com-

peting models in the forecast process, and it offers a risk

management company a more rational approach to

achieving consensus than has been used to date.

Acknowledgments. We thank the anonymous reviewers

for their careful reviews of an earlier draft. The work

was supported by Climatek Inc.

REFERENCES

Akaike, H., 1974: New look at statistical-model identification.

IEEE Trans. Autom. Control, 19, 716–723.

Castle, J. L., X. Qin, and W. R. Reed, cited 2009: How to pick the

best regression equation: A review and comparison of model

selection algorithms. [Available online http://ideas.repec.org/

p/cbt/econwp/09-13.html.]

Colman, A., and M. Davey, 2003: Statistical prediction of global sea-

surface temperature anomalies. Int. J. Climatol., 23, 1677–1697.

Czado, C., T. Gneiting, and L. Held, 2009: Predictive model as-

sessment for count data. Biometrics, 65, 1254–1261.

DelSole, T., and J. Shukla, 2009: Artificial skill due to predictor

screening. J. Climate, 22, 331–345.

Elsner, J. B., and C. P. Schmertmann, 1994: Assessing forecast skill

through cross validation. Wea. Forecasting, 9, 619–624.

——, and T. H. Jagger, 2006: Prediction models for annual U.S.

hurricane counts. J. Climate, 19, 2935–2952.

——, and ——, 2008: United States and Caribbean tropical cyclone

activity related to the solar cycle. Geophys. Res. Lett., 35,
L18705, doi:10.1029/2008GL034431.

——, B. H. Bossak, and X. Niu, 2001: Secular changes to the

ENSO–U.S. hurricane relationship. Geophys. Res. Lett., 28,

4123–4126.

——, T. H. Jagger, and R. E. Hodges, 2010: Daily tropical cyclone

intensity response to solar ultraviolet radiation. Geophys. Res.

Lett., 37, L09701, doi:10.1029/2010GL043091.

Enfield, D., A. Mestas-Nunez, and P. Trimble, 2001: The Atlantic

multidecadal oscillation and its relation to rainfall and river

flows in the continental US. Geophys. Res. Lett., 28, 2077–

2080.

Gray, W., 1984: Atlantic seasonal hurricane frequency: Part I:

El Niño and 30-mb quasi-biennial oscillation influences. Mon.

Wea. Rev., 112, 1649–1668.

Hoeting, J., D. Madigan, A. Raftery, and C. Volinsky, 1999:

Bayesian model averaging: A tutorial. Stat. Sci., 15, 193–195.

Jagger, T. H., and J. B. Elsner, 2006: Climatology models for extreme

hurricane winds near the United States. J. Climate, 19, 3220–3236.

Jones, P., T. Jonsson, and D. Wheeler, 1997: Extension to the North

Atlantic Oscillation using early instrumental pressure obser-

vations from Gibraltar and southwest Iceland. Int. J. Climatol.,

17, 1433–1450.

Klotzbach, P. J., 2008: Refinements to Atlantic basin seasonal

hurricane prediction from 1 December. J. Geophys. Res., 113,

D17109, doi:10.1029/2008JD010047.

Kodera, K., 2002: Solar cycle modulation of the North Atlantic

Oscillation: Implication in the spatial structure of the NAO.

Geophys. Res. Lett., 29, 1218, doi:10.1029/2001GL014557.

Madigan, D., and A. Raftery, 1994: Model selection and account-

ing for model uncertainty in graphical models using Occams

window. J. Amer. Stat. Assoc., 89, 1535–1546.

Meehl, G. A., J. M. Arblaster, K. Matthes, F. Sassi, and H. van

Loon, 2009: Amplifying the Pacific climate system response to

a small 11-year solar cycle forcing. Science, 325, 1114–1118.

Michaelsen, J., 1987: Cross validation in statistical climate forecast

models. J. Climate Appl. Meteor., 26, 1589–1600.

Montgomery, J. M., and B. Nyhan, 2010: Bayesian model averag-

ing: Theoretical developments and practical applications.

Polit. Anal., 18, 245–270.

Ogi, M., K. Yamazaki, and Y. Tachibana, 2003: Solar cycle modulation

of the seasonal linkage of the North Atlantic Oscillation (NAO).

Geophys. Res. Lett., 30, 2170, doi:10.1029/2003GL018545.

Raftery, A., 1996: Approximate Bayes factors and accounting for

model uncertainty in generalised linear models. Biometrika,

83, 251–266.

——, and Y. Zheng, 2003: Discussion: Performance of Bayesian

model averaging. J. Amer. Stat. Assoc., 98, 931–938.

——, T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using

Bayesian model averaging to calibrate forecast ensembles.

Mon. Wea. Rev., 133, 1155–1174.

——, J. Hoeting, C. Volinsky, I. Painter, and K. Y. Yeung, cited

2009: BMA: Bayesian model averaging. [Available online at

http://cran.r-project.org/package5bma.]

R Development Core Team, cited 2009: R: A language and envi-

ronment for statistical computing. [Available online at http://

www.r-project.org.]

Ropelewski, C., and P. Jones, 1987: An extension of the Tahiti–

Darwin Southern Oscillation index. Mon. Wea. Rev., 115,

2161–2165.

van Loon, H., G. A. Meehl, and J. Arblaster, 2004: A decadal solar

effect in the tropics in July–August. J. Atmos. Sol. Terr. Phys.,

66, 1767–1778.

——, ——, and D. J. Shea, 2007: Coupled air–sea response to solar

forcing in the Pacific region during northern winter. J. Geo-

phys. Res., 112, D02108, doi:10.1029/2006JD007378.

Zou, H., and Y. Yang, 2004: Combining time series models for

forecasting. Int. J. Forecasting, 20, 69–84.

15 NOVEMBER 2010 J A G G E R A N D E L S N E R 6099


