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Modeling tropical cyclone intensity with quantile regression
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ABSTRACT: Wind speeds from tropical cyclones (TCs) occurring near the USA are modeled with climate variables
(covariates) using quantile regression. The influences of Atlantic sea-surface temperature (SST), the Pacific El Niño, and
the North Atlantic oscillation (NAO) on near-coastal TC intensity are in the direction anticipated from previous studies using
Poisson regression on cyclone counts and are, in general, strongest for higher intensity quantiles. The influence of solar
activity, a new covariate, peaks near the median intensity level, but the relationship switches sign for the highest quantiles.
An advantage of the quantile regression approach over a traditional parametric extreme value model is that it allows easier
interpretation of model coefficients (parameters) with respect to changes to the covariates since coefficients vary as a function
of quantile. It is proven mathematically that parameters of the Generalized Pareto Distribution (GPD) for extreme events
can be used to estimate regression coefficients for the extreme quantiles. The mathematical relationship is demonstrated
empirically using the subset of TC intensities exceeding 96 kt (49 m/s). Copyright  2008 Royal Meteorological Society
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1. Introduction

Coastal tropical cyclones (TCs) pose a serious threat to
society and the economy. Strong winds, heavy rainfall,
and storm surge kill people and destroy property. The
rarity of intense TCs implies that empirical estimates of
return periods will be unreliable. Fortunately, extreme
value theory provides parametric models for rare events
and a justification for extrapolating to intensity levels that
are greater than the historically observed ones. Jagger and
Elsner (2006) have developed extreme value models for
USA hurricane intensity, based on the method of peaks
over thresholds, using data over the period 1899–2006.
They show how the models can be used to assess the
probability of extremely intense hurricanes conditional
on climate factors.

Quantile regression offers another way to model
extreme TC events that is yet to be examined. Quantile
regression, introduced by Koenker and Bassett (1978),
extends the ordinary least squares regression model to
conditional quantiles (e.g. 90th percentile) of the response
variable. It can be considered a semiparametric tech-
nique because it relies on nonparametric quantiles, but
uses parameters to assess the relationship between the
quantiles and the covariates.

Ordinarily we think of parametric models as more
informative, with nonparametric models useful for an ini-
tial look at the data. A parametric model involves more
stringent assumptions, but it is usually a good idea to start
with stronger assumptions and back off toward weaker
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assumptions when necessary. However, parametric mod-
els are generally more sensitive to outlying data values,
which can be problematic for models of extreme val-
ues. Also, with parametric models care must be taken in
specifying the distribution.

A drawback of parametric models is that the parame-
ters can be more difficult to interpret physically. It is this
difficulty in interpreting the parameters of the extreme
value models with respect to issues of climate’s influ-
ence on TC activity that prompts the present study. It is
our contention that extreme value models are valuable for
quantifying the probability of high winds from TCs con-
ditional on climate covariates, but that quantile regression
can be useful as an exploratory tool.

The present study is motivated by the importance of
providing accurate statistical estimates of the probability
of the next big hurricane conditioned on climate variabil-
ity and change, and by the possibility that a model that is
simpler to implement and interpret will likely be adopted
over one that requires greater sophistication to use. The
purpose here is not to argue in favor of one methodol-
ogy over the other. Circumstances will dictate the choice.
Instead, the goal is to introduce quantile regression as
an alternative method for analyzing how quantiles of TC
intensity distribution change as a function of climate vari-
ables and to show how it relates to an extreme value
model.

The article is organized as follows: In the next section
we briefly review the mathematics behind the quantile
regression models. Following this we provide a descrip-
tion of the data sets used in the present work. We then
perform exploratory analysis on the data and define the
quantile function. We also describe, using conditional
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quantile plots, the bivariate relationships between the TC
intensity and covariates (predictors). With the exception
of the solar cycle, the choice of covariates is based on
previous research about the USA hurricane threat. This is
followed by an examination of quantile regression mod-
els for these data. We begin with the bivariate case and
then look at results from the multivariate case. Finally,
we examine the relationship between an extreme value
model previously used on near-coastal wind speeds and
quantile regression.

2. Background

Quantile regression is an extension of median regression
based on estimating the value of the parameter vector
β from the set of allowable vectors that minimizes the
mean loss function

Lτ (β, y) = 1

n

n∑
i=1

pτ (yi − µ(xi, β)) (1)

where yi ; i = 1, . . . , n are the response values, µ is
the estimate of the τ quantile, and xi and β are the
covariate vector and parameter vector, respectively. The
loss function is pτ (·), where

pτ (z) = |z|{τ · I (z > 0) + (1 − τ) · I (z < 0)} (2)

and I (·) is the indicator function, which is one when the
argument is true and zero otherwise. The loss function is
non-negative taking a minimum value of zero only when
z = 0.

Given a series of samples with µ constant (intercept-
only model), the resulting value of β (a scalar in this
case) that minimizes the total loss function occurs only
when µ is equal to the τ quantile of the response. If
the model fits well, a plot of fitted versus actual values
will show that τ percentage of observed values should be
less than the fitted values, with 1 − τ percentage of the
observed values greater than that of the fitted values (Yu
et al., 2003). The total loss function is an unbiased sample
estimate of the expected value of pτ [Y − µ(x ·β)], and
the minimization over β is a consistent estimate of the
minimization of this expected value. For the fit, we
employ a linear model for the regression function of the
form

µ̂ = β0 +
p∑

i=1

βi · xi (3)

where xi is climate covariate i and there are p of them.
In the meteorological literature, Bremnes (2004) shows

how to produce reliable probability of precipitation
forecasts using quantile regression and Friederichs and
Hense (2007) show how to use quantile regression to
downscale forecasts of extreme precipitation from the
reanalysis data. In the present study we show the value
of going beyond models for the conditional mean in
climate studies. We are not aware of any climate study

that makes use of quantile regression although we note
that Gray et al. (1992) have used median regression to
model Atlantic hurricane count data.

3. Data

3.1. Maximum near-coastal tropical cyclone intensity

Here TC wind speed estimates are derived from the
HURricane DATa base (HURDAT or best track) main-
tained by the National Oceanic and Atmospheric Admin-
istration (NOAA) National Hurricane Center (NHC) of
USA. Of interest is the fact that HURDAT is the offi-
cial NOAA record of TC information for the Atlantic
Ocean, Gulf of Mexico, and Caribbean Sea, including
those that have made landfall in the United States. HUR-
DAT consists of the 6-hr position central pressure and
maximum sustained wind estimates for TCs dating back
to 1851 (Jarvinen et al., 1984; Neumann et al., 1999). For
TCs prior to 1931, the 6-hr positions and intensities are
interpolated from once-daily (12 UTC) estimates. Here
we use the latest version of HURDAT as of December
2006, which includes a reanalysis of all TCs prior to 1911
(Landsea et al., 2004).

A natural spline interpolation is used to obtain posi-
tions and wind speeds at 1-h intervals from the 6-h values
in HURDAT. Since a complete data set of all land falling
TCs is not available and to be consistent, we use the
near-coast region outlined in Jagger and Elsner (2006)
and keep only the TC’s single highest wind speed in
the region. We use the term “intensity” as shorthand for
“wind speed.” Thus the dataset we analyze and model in
this study contains N = 422 TCs over a 108-year period
(1899–2006). The raw wind speed values in HURDAT
are given in 5 kt (2.5 m/s) increments and knots (kt)
are the operational unit used for reporting TC intensity
to the public in the United States. Thus, all analysis
and modeling done here use wind speed values in knots
(1 kt = 0.51 m/s).

3.2. Climate covariates

On the seasonal timescale, and to a first order, it is known
that a warm ocean fuels TC genesis, a calm atmosphere
(low values of wind shear) allows a TC to intensify, and
the position and strength of the subtropical high-pressure
region functions as a steering mechanism paving a track
for a TC that does form. Thus, regional hurricane activity
responds to changes in large-scale climate conditions
[e.g., El Niño-Southern Oscillation (ENSO)]. Initially we
choose the same covariates used in Jagger and Elsner
(2006) including the Southern Oscillation Index (SOI)
as an indicator of ENSO, the North Atlantic Oscillation
(NAO) index as an indicator of storm steering, and
Atlantic sea-surface temperature (SST) as an indicator
of cyclone energy.

ENSO is characterized by basin-scale fluctuations in
sea-level pressure (SLP) across the equatorial Pacific
Ocean. The SOI is defined as the normalized SLP
difference between Tahiti and Darwin, and values are
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available back through the mid-19th century. The SOI
is strongly anti-correlated with equatorial Pacific SSTs so
that an El Niño warming event is associated with negative
SOI values. Units are standard deviations. ENSO is an
indicator of vertical wind shear and subsidence in the
environment where TCs develop and negative SOI values
imply greater shear and subsidence. As expected, the
relationship is strongest during the TC season, so we use
an August–October average of the SOI as our covariate.
The monthly SOI values (Ropelewski and Jones, 1997)
are obtained from the Climatic Research Unit (CRU).

The NAO is characterized by fluctuations in SLP
differences. Index values for the NAO are calculated as
the difference in SLP between Gibraltar and a station
over southwest Iceland, and are obtained from the CRU
(Jones et al., 1997). The values are averaged over the
preseason and early season months of May and June
(Elsner et al., 2001) and can be considered an indicator of
the strength and/or position of the subtropical Bermuda
High. We speculate that the relationship might result
from a teleconnection between the mid-latitudes and
tropics whereby a below-normal NAO during the spring
leads to dry conditions over the continents and to a
tendency for greater summer/fall middle tropospheric
ridging (enhancing the dry conditions). Ridging over the
eastern and western sides of the North Atlantic basin
tends to keep the middle tropospheric trough, responsible
for hurricane recurvature, farther to the north during the
peak of the season (Elsner and Jagger, 2006).

The Atlantic SST covariate is an area-weighted aver-
age based on monthly SST values in 5-degree lati-
tude–longitude boxes (Enfield et al., 2001) from the
equator to 70°N latitude. For this study we average the
SST monthly anomalies (monthly means subtracted) over
the peak hurricane season months of August through
October. The covariate is the standard Atlantic Multi-
decadal Oscillation (AMO) index.

We also consider the influence variations in the sun
might have on near-coastal TC intensity. This is moti-
vated by a recent study of ours (Elsner and Jagger,
2008). We speculate that an increase in solar UV radiation
during periods of strong solar activity will have a sup-
pressing effect on TC intensity as the temperature near
the tropopause will warm through absorption of radia-
tion by ozone and modulated by dynamic effects in the
stratosphere. For the solar covariate we use the August
through October averaged sunspot number (SSN). The
SSNs produced by the Solar Influences Data Analysis
Center (SIDC), World Data Center for the Sunspot Index,
and the Royal Observatory of Belgium are obtained from
USA NOAA.

In summary, the distribution of near-coastal TC inten-
sity will be modeled with quantile regression using data
from the period 1899–2006. Additionally, the August
through October averaged values of the SOI, SST, and
SSN along with the May through June averaged values
of the NAO will be used to examine changes to intensity
quantiles depending on how these climate variables fluc-
tuate over this 108-year period. All four covariates have

been statistically linked to USA coastal hurricane activity
(Elsner and Jagger, 2004, 2008).

4. Exploratory analysis

In this section we define some terms associated with
quantiles, and perform exploratory analysis on the wind
speed and covariate data that will motivate the later use
of quantile regression.

4.1. Quantiles and the quantile function

Quantiles are points taken at regular intervals from the
cumulative distribution function (CDF) of a random
variable. The quantiles mark a set of ordered data into
equal-sized data subsets. For example, of the 422 TC
intensity values in our near-coastal data set, 25% of the
values are less than 43 kt, while 50% are less than 61 kt.
Thus there is an equal number of TCs with intensities
between 10 and 43 kt (10 kt is the lowest maximum
wind speed value in the data set) as there are between 43
and 61 kt. When we state that the median near-coastal
maximum storm intensity is 61 kt, we mean that half
of all TCs have intensities less than this value and half
have intensities greater. Similarly, the quartiles (deciles)
divide the sample of TC intensities into four (ten) groups
with equal proportions of the sample in each group. The
quantiles or percentiles refer to the general case.

The cumulative distribution and quantile functions of
the 422 TC intensities are shown in Figure 1. The CDF
in Figure 1(a) gives the empirical probability of observ-
ing a value in the record less than a given intensity. The
quantile function [Figure 1(b)] is the inverse of the CDF
allowing us to determine the TC intensity for specified
quantiles. Both functions are monotonically nondecreas-
ing. Thus, given a sample of intensities w1, . . . , wn, the
τ th sample quantile is the τ th quantile of the corre-
sponding empirical CDF. Formally, let W be a random
TC intensity, then the kth “q”-quantile is defined as the
value “w” such that

P(W ≤ w) ≥ τ and P(W ≥ w) ≥ 1 − τ (4)

where τ = k/q.

4.2. Conditional quantile plots

Quantile regression is an extension of these ideas to
the estimation of conditional quantiles. A model for the
conditional quantile response is expressed as a function
of the observed covariates in a linear way (typically). For
instance, suppose we are interested in the quantiles of TC
intensity for different values of SST. We first divide the
covariate SST data into equally spaced quantiles. The
choice of the set of quantiles is a compromise between
having enough intensity values for a given range of SSTs
and having enough quantiles to assess the fit of the model.
Here we choose deciles so we divide the set of 422 SST
values into 10 levels labeled Q1, Q2, . . ., Q10. Note
that although we only have 108 years (1899–2006), each
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Figure 1. The cumulative distribution function (CDF) (a) and the corresponding quantile function (b) of the sample of the 422 near-coastal TC
wind speeds (TC intensity) from the period 1899–2006.
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Figure 2. Tropical cyclone intensity as a function of the covariates; (a) SST, (b) SOI, (c) NAO, and (d) SSN. The box plot provides a summary
of the distribution of TC intensity by deciles of the covariate. The first decile is the lowest 10% of all covariate values. The upper and lower
limits of the boxes represent the first and third quartiles of TC intensity (25th and 75th quantiles). The median is a horizontal bar in the middle
of the box. Notches on the box sides represent an estimated confidence interval for each median estimate. The extremes are horizontal bars at
the end of the dashed “whiskers.” In cases where the whiskers would extend more than one and a half times the interquartile range, they are
truncated at that level and the remaining outlying points are indicated by open circles. The solid line is the best-fit line through the upper whisker
values for each NAO covariate quantile, the dashed line is the best-fit line through the upper quartile values, and the dotted line is through the

medians.

storm in a given season gets assigned the corresponding
seasonally averaged SST value.

We then look at the distribution of TC intensity for
each SST decile with box plots (Figure 2). The plots
show a tendency for the upper quantiles of intensities
to increases with SST. They also show that the increase
in intensity with SST is more pronounced for higher TC

intensity quantiles. The relationship is stronger for the
SOI and NAO. There is also a tendency for the dispersion
in intensity values to increase with SOI as can be seen by
the widening of the interquartile range (range of values
between the 25th and 75th percentiles). The plots indicate
that the classical conditional mean model (e.g. linear
regression) may not adequately capture the full range
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of relationships between the covariates and coastal TC
intensity.

5. Quantile regression

The quantile function and the conditional box plots
shown in the previous section are useful for exploratory
analysis and are adequate for describing and comparing
single-variable (univariate) distributions. However, since
we are interested in modeling the relationship between
a response variable and the covariates, it is necessary
to introduce a regression-type model for the quantile
function. The quantile regression model is an extension
of the classical regression model. Quantile regression
allows us to examine the relationship without the need to
consider discrete levels of the covariate. Note that we are
now interested in the quantiles of W conditional on the
values of the covariates rather than those conditional on
the quantiles of the covariates. The classical regression
model specifies how the conditional mean changes with
changes in the covariates while the quantile regression
model specifies how the conditional quantile changes
with changes in the covariates. We first consider the
bivariate case where the quantiles of TC intensity are
regressed onto each of the covariates separately.

5.1. Bivariate case
Figure 3 shows quantile regression lines for bivariate
models for TC intensity using τ values of 0.5, 0.75, and

0.95. The quantile regression equation with SST as the
lone covariate is given by

µ̂(τ |SST) = β̂0(τ ) + β̂SST(τ ) · SST (5)

where µ̂(τ |SST) is the predicted conditional quantile
of TC intensity (W ). The intercept (β̂0) and slope (β̂1)
are obtained by minimizing the piecewise linear least
absolute deviance function given by

1 − τ

n

∑
wi<qi

|wi − qi | + τ

n

∑
wi>qi

|wi − qi |. (6)

where qi is the predicted τ quantile corresponding
to observation i. This function gives the same value
as the mean loss function given by Equations (1) and
(2). Here we see how quantile regression reveals the
broader nature of the relationship between TC intensity
and climate covariates and underscores the limited view
afforded by ordinary regression (black line). The quantile
regression model reveals the nature of the TC–SST
relationship on the seasonal time scale with TC intensity
dependent on SST only for intensities in the upper
quantiles for a given value of SST.

The quantile relationships between the SOI and near-
coastal TC intensity are also interesting. Here we see the
results of the well-known inhibiting effect that ENSO has
on the US hurricane activity. As SOI increases (toward
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Figure 3. Tropical cyclone intensity as a function of the same covariates as Figure 1, using quantile regression. The conditional quantiles include
the 50th percentile (dotted line), the 75th percentile (dashed line), the 95 percentile (solid). The least-squares regression line is shown as a thick

solid line.
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La Niña like conditions) the TC intensity increases in the
mean and, for quantiles, in the range between the 50th and
the75th percentiles. Interestingly we see that at the 95th
percentile, a slight negative relationship that becomes
more negative with still higher quantiles. Thus while the
influence of shear and subsidence caused by a Pacific
El Niño event limits the development of TCs, a cyclone
capable of overcoming these debilitating influences does,
on average, go on to become a strong hurricane.

There is an analogy here with tornadic thunderstorms.
Although a shallow lapse rate of temperature inhibits the
development of thunderstorms, if a storm is able to break
through this “cap”, the potential for a tornado-producing
supercell increases. While the analogy is not tight, we
feel it helps convey our thinking about the differential
role ENSO plays in modulating TC activity.

Note that this result was reported in Jagger and Elsner
(2006) using a parametric model and questions about its
robustness was one of the motivations behind the present
work. As with the classical regression model, we can go
beyond looking at bivariate relationships with quantile
regression and consider the conditional quantiles of TC
intensity as a function of more than one covariate.

5.2. Multivariate case

The quantile regression model for TC intensity with the
four covariates is given by

µ̂(τ |SOI,SST,NAO,SSN) = β̂0(τ ) + β̂SOI(τ )

· SOI + β̂SST(τ ) · SST + β̂NAO(τ ) · NAO

+ β̂SSN(τ ) · SSN (7)

Since we are interested in comparing changes to the
conditional quantile function across different variables,
we first scale each of the covariates to have a zero
mean and a standard deviation of one. Interpretation of
the coefficient values from the quantile regression is the
same as for standard regression so that, for example, the
estimated value for βSST (0.9) of 6.2 indicates that for
every one s.d. increase in SST (standardized), there is a
6.2 kt increase in TC intensity at that quantile holding
the other covariates constant. The unconditional 90th
percentile intensity is 110 kt, so with a 1 s.d. increase
in SST, TC intensity increases to 116.2 kt.

The plots in Figure 4 quantify how the quantiles of TC
intensity are conditioned on each of the four covariates
holding the other three constant. A coefficient value of
zero indicates no relationship between intensity and the
covariate after accounting for the other covariates. We see
the influence of SST on intensity is most pronounced for
quantiles above about the upper quartile (75th percentile)
although there is some dependency for the weakest
cyclones (lowest quantiles). This indicates that the SST
affects the TC intensity more when the cyclone is closer
to its maximum potential intensity (Emanuel, 1988). The
influence of ENSO on TC intensity is more dramatic,
especially for the middle and upper quantiles. However,

for the most extreme hurricanes we see only a weak
relationship.

The influence of the NAO on TC intensity is quite
similar to that of ENSO, only that the relationship is neg-
ative. The relationship with solar activity is the weakest
and generally negative indicating a tendency for stronger
near-coastal TCs with a “cooler” sun. Less ultraviolet
radiation with a cooler sun implies a cooler upper tropo-
sphere that enhances vertical instability assuming every-
thing else being equal.

We increase the resolution on the regression plots and
consider only the upper quantiles corresponding to the
strongest TCs (Figure 5). Here we see that for the SST
covariate the influence on TCs gets stronger with higher
quantile intensities, but weaker with quantile intensities
for the ENSO covariate. Interestingly, the sun’s influence
on TCs reverses for the highest quantiles [see also
Figure 4(d)]. The reversal refers to a change in the sign
of the coefficient relative to the coefficient sign from
a standard regression about the mean (straight line in
Figures 4 and 5).

The model uses all four covariates for each quantile,
but the plots of the predicted intensity are displayed as a
function of covariate pentiles with no regard to the value
of the other covariates (Figure 6). The predicted values
are summarized with box plots showing the median value,
the maximum and minimum values, and the interquartile
range (difference between the top and bottom of the box).
The predictions do not take into account the uncertainty
surrounding the estimated value of the coefficients. Here
we see the effect of SST on TC intensity is stronger at
the 95th percentile compared with the 75th percentile,
but the effect of ENSO is stronger at the 75th percentile
than at the 95th percentile. The effect of solar activity
changes the sign between the 75th and 95th percentiles.

If we restrict the model to having two covariates, we
can examine the relationships between the covariates and
TC intensity with a contour plot. Figure 7 shows contours
of TC intensity at three quantile values using separate
models. At the 75th percentile, the gradient of intensity
is directed from high values of NAO and low values of
SOI toward low values of NAO and high values of SOI.
At the 90th percentile the gradient is directed from the
low values of SST and SOI toward the high values of SST
and SOI. At the 95th percentile the gradient is directed
toward higher values of SST and toward higher values of
SSN only for SSN values less than the mean.

As shown in this section, quantile regression is useful
in modeling conditional quantiles of TC intensity. It is
a tool that goes beyond conditional mean models that
helps in the understanding of how TC activity is related
to climate variability. Since parametric extreme value
models are also used in this regard, next we demonstrate
how conditional extreme upper quantiles are related to
parameters of a generalized Pareto distribution (GPD).

6. Extreme quantiles and the GPD
It is important to show that quantile regression gives
the same predictions when the data follow a particular
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Figure 4. Coefficients of quantile regressions using quantiles of TC intensity as the response variable. The covariates include SST, SOI, NAO,
and SSN. The regression coefficients express the change in the expected quantile for a 1 s.d. change in the covariate as a function of the quantiles

[τ = (0.05, 0.1, 0.25, 0.5, 0.75, 0.90, and 0.95)]. The gray shading indicates the 90th pointwise confidence intervals about the coefficients.
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Figure 5. Same as Figure 4 except quantiles in the range of 0.75 to 0.95 in quantile increments of 0.005.

Copyright  2008 Royal Meteorological Society Int. J. Climatol. (2008)
DOI: 10.1002/joc



T. H. JAGGER AND J. B. ELSNER

MB B MA

60
80

10
0

75th Percentile

SST

In
te

ns
ity

 (
kt

)

(a)

MB B MA

80
10

0
12

0

90th Percentile

SST

In
te

ns
ity

 (
kt

)

(b)

MB B MA

11
0

12
0

13
0

95th Percentile

SST

In
te

ns
ity

 (
kt

)

(c)

MB B MA

70
80

90
11

0

SOI

In
te

ns
ity

 (
kt

)

(d)

MB B MA

80
10

0
12

0

SOI

In
te

ns
ity

 (
kt

)

(e)

MB B MA

11
0

12
0

13
0

SOI

In
te

ns
ity

 (
kt

)

(f)

MB B MA

60
80

10
0

NAO

In
te

ns
ity

 (
kt

)

(g)

MB B MA

80
10

0
12

0

NAO

In
te

ns
ity

 (
kt

)

(h)

MB MA

11
0

12
0

13
0

NAO
In

te
ns

ity
 (

kt
)

(i)

MB MA

60
80

10
0

SSN

In
te

ns
ity

 (
kt

)

(j)

MB MA

80
10

0
12

0

SSN

In
te

ns
ity

 (
kt

)

(k)

MB MA

11
0

12
0

13
0

SSN

In
te

ns
ity

 (
kt

)

(l)

AN N A N A

N A N A N A

N A N A B N A

B N A B N A B N A

Figure 6. In-sample model predictions of the conditional quantile values of TC intensity for each of the covariates.

parametric form, in this case the GPD distribution.
The mathematical derivation that follows shows us that
under certain circumstances we can derive a relationship
between the GPD parameters and the quantile regression
parameters. Using a subset of our hurricane data set and
all covariates we estimate both the GPD and quantile
regression parameters. Using this relationship, we derive
a new set of quantile regression parameters from the GPD
parameters and show that this new set of parameters
is similar to the same set estimated from the quantile
regression.

As shown in Jagger and Elsner (2006), the set of
extreme (hurricanes with wind speeds exceeding 96 kt)
near-coastal winds follow a GPD. The GPD distribution
is used to characterize the extremes or tails of a continu-
ous distribution. In order that the GPD be appropriate a
suitable threshold, c = 96 kt, is selected and a new data
set is created by keeping only those observations that
exceed this threshold. If c is large enough then resulting
distribution of this data set can usually be approximated
by a GPD.

This distribution has three parameters, c, σ , ξ the
threshold, scale, and shape parameters respectively. The
GPD distribution can be given in its exceedance form as:

p(µ) = P(W > µ|W > c) ={
exp([µ − c]/σ) when ξ = 0(

1 + ξ
σ [µ − c]

)−1/ξ

otherwise
(8)

where µ > c, σ > 0 , and when ξ < 0 , the distribution
is bounded with µ < c + σ/|ξ |.

Since the distribution of extreme hurricane winds
follows a GPD, the form of the quantile regression is
constrained. To see this, let p = 1 − τ be the conditional
probability that a random observed TC wind speed
exceeds w given x. Let µ(p|x) be the conditional
quantile given x. In other words, the probability that an
observed wind speed exceeds µ(p) given x is p. Let us
also assume that the quantile regression is linear in some
covariate x. Now we relate the conditional quantiles to
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Figure 7. Quantile surfaces of TC intensity conditional on two covariates. The values are smoothed using a bandwidth of 0.5. Only predictions
within ±1 s.d. of the covariates are displayed. (a) NAO vs SOI at τ = 0.75, (b) SST vs SOI at τ = 0.9, (c) SST vs SSN at τ = 0.95, and

(d) NAO vs SSN at τ = 0.75.

the GPD quantiles as a function of p and x:

µ(p|x) = β0(p) + x · β1(p) (9)

µ(p|x) = c(x) + σ(x)

ξ(x)
·
{

1

pξ(x)
− 1

}
(10)

The first Equation (9) is the quantile regression model
with one covariate x. The second Equation (10) is the
quantile function for the GPD distribution for fixed x

and exceedance probability p. This equation is derived
from Equation (8) by solving for µ as a function of p, and
allowing the parameters to be functions of the covariate.
Under the assumption that the observations conditional
on x follow a GPD distribution then these two equations
can be used to constrain the functional form of β0(·)
and β1(·), so that one can compare extreme quantiles
e.g. p < 0.10, where it is assumed that the conditional
distribution given the observed covariate follows a GPD.
Examining the function form for Equations (9) and (10)
one can see that the quantile regression parameters β0
and β1 are functionally independent of the covariate but
dependent on the exceedance probability, whereas the
GPD parameters c, σ and ξ are functionally dependent of
the covariate and independent of exceedance probability.

In the simplest case, suppose the shape (ξ ) and
threshold (c) parameters of the GPD are constant. If
so, the form of the quantile regression, which is linear
in x requires that the functional form for σ also be

linear in x. In other words, σ(x) = s0 + s1 · x. In this
case we can derive the quantile regression parameters

as a function of p. If we let r(p) = 1
ξ(x)

·
{

1
pξ(x) − 1

}
and σ(x) = s0 + s1 · x in Equation (10) and equate the
coefficients of x in right hand sides of Equations (9) and
(10) we can solve for the conditional regression intercept
and slope, respectively, as:

β0(p) = c + s0 · r(p)

β1(p) = s1 · r(p). (11)

These equations allow us to make a direct comparison
between quantile regression and extreme value models
for the case where the GPD shape parameter is assumed
to be constant and the GPD scale parameter is assumed
to be a linear combination of the model covariates plus
an intercept (Int); for example, σi = Int + β · xi .

As mentioned, the set of TC intensities near the USA
coast exceeding 96 kt (49 m/s) follows a GPD. Thus,
in order to make a fair comparison with the quantile
regression results, we need to first select those TCs
that exceed this threshold. This reduces the set of TCs
from 422 down to 79. The comparison between quantile
regression and a GPD model will be done using only this
subset of cyclones. The GPD parameters are specified
following a Bayesian approach as outlined in Jagger and
Elsner (2006) using the set of scaled NAO, SST, SOI, and
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Table I. Parameters from a GPD extreme value model of near-coastal TC intensity conditional on climate covariates. The full
model includes all four covariates and the final model includes only SOI and SSN. Int is the intercept term. The p-values are

one-sided.

Full model Final model

Parameter Mean S.E. p-value Mean S.E. p-value

Scale Int (kt) 33.189 5.331 <0.001 30.591 4.445 <0.001
Scale NAO (kt/sd) 0.242 2.255 0.455 – – –
Scale SOI (kt/sd) −7.746 2.858 0.002 −6.431 2.063 0.001
Scale SST (kt/sd) −1.529 2.009 0.210 – – –
Scale SSN (kt) 5.396 3.310 0.025 5.805 3.705 0.032
Shape Int (kt) −0.501 0.128 0.001 −0.459 0.106 <0.001

SSN covariates. Note that the significant covariates for
the most extreme intensities will, in general, be different
from those based on all the data as is used in the quantile
regression approach described in the previous section.

Table I shows the posterior means and p-values for the
parameters of the full model (all covariates) as well as
the posterior mean and standard error (S.E.) from the final
model. The final model includes only the covariates that
were found significant in the full model. Those covariates
are the SOI and SSN. The SOI is most significant and
the scale value increases with decreasing SOI (toward
El Niño conditions), that is; decreasing SOI (more El
Niño like conditions) leads to stronger TCs given that the
cyclone strength already exceeds 96 kt. This is consistent
with the results shown in the previous section.

To close the loop on the comparison, we use Equa-
tions (10) and (11) together with the posterior mean val-
ues of the GPD parameters to derive quantile regression
coefficients for quantiles τ = 0.1, 0.25, 0.5, 0.75 and
0.9. We then compare these GPD-derived quantile coef-
ficients with quantile coefficients estimated directly from
an application of quantile regression on the subset of the
most intense TCs and the same two covariates (SOI and
SSN). Note again that the quantile regression performed
in the previous section used all the data. The GPD-
derived and quantile-regression-estimated coefficients are
shown in Table II. The corresponding values are reason-
ably close and the GPD-derived parameter estimates are
all within the 90% confidence interval on the quantile
regression estimates.

This is the first comparison of results from these two
different approaches to modeling extremes that we are
aware of. It is our contention that each method has its
place. In the GPD model we assume the data follow a
distribution that allows us to make extrapolations to the
largest quantiles (and beyond). With the quantile regres-
sion approach there is no need to specify a distribution
for the data, but predicted quantiles have larger variance
for the same set of data. Thus, as shown with the reduced
data set, the GPD model is better suited for estimating
the most extreme quantiles, whereas quantile regression,
which uses all the data, is better suited for estimating
changes in quantiles for middle quantiles at a level where
TC intensities conditioned on the covariates do not con-
form to a GPD.

Table II. Parameter comparisons. The GPD-derived parameters
are from a GPD extreme value model of TC intensity for the
subset of cyclones exceeding 96 kt scaled using Equations (10)
and (11). The quantile regression parameters are based on a
quantile regression model using the same subset of extreme TC
intensities. The upper and lower bounds are from the quantile

regression using a 90% confidence interval.

Quantile (τ )

Coefficient 0.10 0.25 0.50 0.75 0.90
GPD Int 99.1 104.2 114.2 127.4 139.5
QR Int 101.1 104.9 112.9 125.2 134.4
Lower bound 97.8 103.1 108.5 120.0 128.6
Upper Bound 101.6 108.0 119.0 128.2 151.2
GPD SOI −0.66 −1.73 −3.82 −6.60 −9.14
QR SOI −1.83 −0.71 −3.24 −5.44 −7.06
Lower bound −2.32 −4.29 −9.02 −6.86 −19.5
Upper bound 0.36 1.67 2.16 −1.45 −1.25
GPD SSN 0.60 1.56 3.45 5.95 8.25
QR SSN 0.24 1.09 1.33 3.04 7.67
Lower bound −5.27 −1.86 −1.05 0.06 2.82
Upper bound 3.08 3.65 4.69 7.52 23.9

7. Summary and conclusions

Coastal TCs pose a serious threat to social and eco-
nomic institutions. Statistical models derived from his-
torical data provide a useful and skillful way to eval-
uate the risk of the next catastrophic cyclone. Extreme
value theory provides parametric models for rare events
and a justification for extrapolating to levels that are
greater than what has been observed. Here we show
that the quantile regression provides another way to
model TC intensity conditional on climate variables.
Quantile regression extends the ordinary least squares
regression model to conditional quantiles (e.g. 90th per-
centile) of the response variable. We also showcase
quantile regression models of near-coastal TC inten-
sity conditional on seasonal values of SST, SOI, NAO,
and SSN.

The influence of Atlantic SST, the Pacific El Niño, and
the NAO on near-coastal TC intensity is in the direc-
tion anticipated from previous studies and is generally
strongest for higher intensity quantiles. The influence of
solar activity peaks near the median intensity level, but
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the relationship switches the sign for the highest quan-
tiles. The principal findings about near-coastal hurricanes
in USA are as listed below:

• TC intensity increases with SST for intensities in the
upper quantiles. That is, the strongest TCs get stronger
with increasing SST.

• TC intensity increases with the SOI in the mean and
for quantiles in the range between the 50th and the
95th percentiles. However, at extreme quantile levels,
TC intensity has a significant decreasing relationship
with the SOI.

• TC intensity decreases with the NAO in the mean and
for quantiles in the range between the 50th and 95th
percentiles.

• TC intensity decreases with SSN for quantiles in
the range between the 10th and 80th percentiles, but
increases with SSN for the highest quantiles.

• The quantile regression approach to modeling extreme
TC wind speeds is reconcilable with the parametric
GPD approach described in Jagger and Elsner (2006).
In comparison, the quantile regression approach is one
way to model TC activity that makes it easier to
interpret the results, but it will produce estimates with
larger variability at the highest quantile levels.
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