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ABSTRACT

The rarity of severe coastal hurricanes implies that empirical estimates of extreme wind speed return
levels will be unreliable. Here climatology models derived from extreme value theory are estimated using
data from the best-track [Hurricane Database (HURDAT)] record. The occurrence of a hurricane above
a specified threshold intensity level is assumed to follow a Poisson distribution, and the distribution of the
maximum wind is assumed to follow a generalized Pareto distribution. The likelihood function is the
product of the generalized Pareto probabilities for each wind speed estimate. A geographic region encom-
passing the entire U.S. coast vulnerable to Atlantic hurricanes is of primary interest, but the Gulf Coast,
Florida, and the East Coast regions are also considered. Model parameters are first estimated using a
maximum likelihood (ML) procedure. Results estimate the 100-yr return level for the entire coast at 157 kt
(�10 kt), but at 117 kt (�4 kt) for the East Coast region (1 kt � 0.514 m s�1). Highest wind speed return
levels are noted along the Gulf Coast from Texas to Alabama. The study also examines how the extreme
wind return levels change depending on climate conditions including El Niño–Southern Oscillation, the
Atlantic Multidecadal Oscillation, the North Atlantic Oscillation, and global temperature. The mean 5-yr
return level during La Niña (El Niño) conditions is 125 (116) kt, but is 140 (164) kt for the 100-yr return
level. This indicates that La Niña years are the most active for the occurrence of strong hurricanes, but that
extreme hurricanes are more likely during El Niño years. Although El Niño inhibits hurricane formation in
part through wind shear, the accompanying cooler lower stratosphere appears to increase the potential
intensity of hurricanes that do form. To take advantage of older, less reliable data, the models are refor-
mulated using Bayesian methods. Gibbs sampling is used to integrate the prior over the likelihood to obtain
the posterior distributions for the model parameters conditional on global temperature. Higher tempera-
tures are conditionally associated with more strong hurricanes and higher return levels for the strongest
hurricane winds. Results compare favorably with an ML approach as well as with recent modeling and
observational studies. The maximum possible near-coastal wind speed is estimated to be 208 kt (183 kt)
using the Bayesian (ML) approach.

1. Introduction

Coastal hurricanes are a serious social and economic
concern for the United States. Strong winds, heavy
rainfall, and storm surge kill people and destroy prop-
erty. Hurricane destruction rivals that from earth-
quakes. In Florida alone Hurricane Andrew’s strike in
1992 caused more than $30 billion in direct economic
losses. Losses from the 2005 season are still being tal-
lied. Historically, 80% of all U.S. hurricane damage is
caused by 20% of the most intense hurricanes. The
rarity of severe hurricanes implies that empirical esti-
mates of return periods likely will be unreliable. Ex-

treme value theory provides models for rare wind
events and a justification for extrapolating to levels that
are much greater than have already been observed. De-
finitive answers to questions about whether hurricanes
will be more intense or more frequent in a future of
global warming require long records. The longest
records available are near the coast.

Probability estimates of extreme winds in tropical cy-
clones are available in the literature. Darling (1991)
uses an empirical model to estimate local probabilities
of hurricane wind speeds exceeding specified thresh-
olds. Rupp and Lander (1996) use the method of mo-
ments on annual peak winds over Guam to determine
the parameters of an extreme value model leading to
estimates of recurrence intervals for extreme typhoon
winds. Heckert et al. (1998) use the peaks-over-
threshold method and a reverse Weibull distribution to
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obtain mean recurrence intervals for extreme wind
speeds at consecutive mileposts along the U.S. coast-
line. Chu and Wang (1998) use various parametric dis-
tributions to model return periods for tropical cyclone
wind speeds in the vicinity of Hawaii. Jagger et al.
(2001) use maximum likelihood (ML) estimation to de-
termine a linear regression for the scale and shape pa-
rameters of the Weibull distribution for hurricane wind
speeds in coastal counties. A Bayesian approach to es-
timate Weibull parameters from wind speed data is
given in Pang et al. (2001).

The present study builds on these earlier works but
differs in some crucial ways. First, we interpolate
6-hourly hurricane positions and intensities to 1 h. This
allows us to determine the most extreme wind for hur-
ricanes entering each region without adding a bias due
to fixed regional boundaries. Second, we examine the
effect of climate variables on the distribution of ex-
treme winds. The model employed by Jagger et al.
(2001) captures the variation of hurricane frequency as
a function of climate variables using the Weibull distri-
bution, which is appropriate for wind speeds above
some threshold, but not necessarily appropriate for the
most extreme winds. Here we attempt to put extreme
hurricane winds in the context of climate variability and
climate change. Third, we demonstrate the feasibility of
a Bayesian approach for adding older, less reliable, data
into the analysis.

This research attempts to answer the following ques-
tions: What are the return levels of maximum hurricane
winds in near-coastal regions over 5, 10, 50, and 100 yr?
Are the return levels different from region to region?
What is the maximum possible hurricane wind speed
level? How do these levels change under different cli-
mate conditions? In particular, although fewer hurri-
canes affect the United States when El Niño conditions
are present, are they stronger? We answer these ques-
tions by statistically modeling the maximum wind
speeds near the coast. We use an ML approach and use
data only over the reliable period over records from
1899 to 2004. We then demonstrate the use of a Bayes-
ian approach that allows us to incorporate an additional
set of Atlantic hurricane data extending back to 1851.
Results compare favorably with an ML approach and
with recent modeling and observational studies.

The paper begins with a description of the data in
section 2. Data used to characterize the dominant cli-
mate modes are also described. In section 3 we discuss
the general assumptions behind our choice of models.
In section 4 we describe the models including the gen-
eralized Pareto and generalized extreme value distribu-
tions. The choice of thresholds and measurement errors
are discussed. Model results are shown in section 5. In

section 6 we demonstrate how the analysis can be im-
proved with the use of a hierarchical Bayesian specifi-
cation. Summary and conclusions are presented in sec-
tion 7. Although basic theory establishes an upper
bound on the maximum hurricane intensity, here we
estimate for the first time what that quantitative limit is.

2. Data

a. Maximum tropical cyclone intensity

Extreme value theory relies on asymptotic arguments
for the behavior of the maximum observed value in a
dataset (Palutikof et al. 1999). Here maximum wind
speed estimates near the coast are derived from the
Hurricane Database (HURDAT; or best track) main-
tained by the National Hurricane Center (NHC).
HURDAT is the official record of tropical storms and
hurricanes for the Atlantic Ocean, Gulf of Mexico, and
Caribbean Sea, including those that have made landfall
in the United States. HURDAT consists of the 6-hourly
position and intensity estimates of tropical cyclones
back to 1851 (Jarvinen et al. 1984; Neumann et al.
1999). For storms and hurricanes prior to 1931, the 6-h
positions and intensities are interpolated from once-
daily (1200 UTC) estimates. For storms in the period
1931–1956, the 6-h positions and intensities are inter-
polated from twice-daily (0000 and 1200 UTC) obser-
vations. Important revisions to the dataset (reanalysis),
correcting systematic and random errors, are complete
for the second half of the nineteenth century and early
twentieth century (Landsea et al. 2004). Here we use
the latest version of HURDAT as of December 2004,
which includes reanalysis of all storms prior to 1911.
For the initial models we use data over the reliable
period, 1899–2004. When the models are reformulated
using Bayesian methods, we include data over the less
reliable 1851–98 period.

Despite the biases, these data have recently been
used for hurricane risk analysis (Emanuel et al. 2006).
In fact, we argue that we are on firmer ground here
because we consider near-coastal hurricanes only, and
we quantitatively consider the older data as less precise.
Yet we would like to stress that the focus of our work
is in providing the climate community with a modeling
approach for quantifying return levels of the most ex-
treme events. Whether or not we succeed should be
judged independently of the perceived data quality.

As of this writing, the reanalysis of the HURDAT
dataset does not contain a complete list of hurricane
events by landfall location, time, and intensity so we
develop an objective technique for estimating near-
coastal wind speeds. First we divide the coast into three
regions including the Gulf Coast, Florida, and the East
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Coast (Fig. 1). For notational purposes, we let the com-
bined coastal regions of 1, 2, and 3 be denoted as region
4. Second, a natural spline interpolation is used to ob-
tain positions and wind speeds at 1-h intervals from the
6-h values for all tropical cyclones in HURDAT. Third,
for each of the hurricanes in the dataset, we note the
maximum wind in each of four regions affected by a
given hurricane. Fourth, for hurricanes with additional
landfall intensities that exceed those from the 1-h in-
terpolations, we manually add them to the dataset (e.g.,
Hugo in 1989 and Charley in 2004).

Considering only tropical cyclones with at least tropi-
cal storm force winds [�34 kt (17.5 m s�1), where 1 kt
� 0.514 m s�1] over the period 1899–2004, this dataset
contains N � 875 entries, for 383 tropical cyclones.
Each entry i � 1, . . . , N is a quadruplet consisting of
the region, ri with values 1, . . . , 4, a sequential tropical
cyclone identifier si, the year yi, and the maximum wind
wi. By considering each region, K � 1, . . . , 4 separately
and ignoring the identifier, we generate four subsets of
the data consisting of the pairs yi, wi, for ri � K, denoted
as D(K). Associated with each entry is a row vector of
yearly global climate factors xyi

discussed below. Here
the yi subscript denotes that the values are the same for
a given year, with X denoting the 106 (yr) � 4 factor
matrix.

Figure 2 shows the histograms of annual maximum
hurricane wind speeds for each region over the period
1899–2004. Counts are tallied in 10-kt intervals begin-
ning with 65 kt. The counts do not sum to 106, as there

are years without hurricanes near the coast. As ex-
pected there are more years when the maximum hur-
ricane wind is less than 115 kt than greater than this
value. In fact, during only 4 of the 106 yr did an East
Coast hurricane produce winds in excess of 115 kt. This
compares with 15 and 14 yr for the Gulf Coast and
Florida, respectively. The distributions show a right
(positive) skewness that is typical of rare events, but the
decrease in counts as maximum wind speeds increase is
different for each of the regions. Moreover the histo-
grams are noisy (note the lack of wind maxima in the
95–105-kt range), making it problematic to get a reli-
able estimate of the return period of extreme winds
directly from these distributions. The maximum wind
speed in the dataset occurs at 171 kt (1-h spline inter-
polated value) for Hurricane Camille as it approached
the northern Gulf Coast in 1969.

b. Climate factors

We argue that the return period of extreme near-
coastal winds from a hurricane depends on climate fac-
tors. This is reasonable given that statistical relation-
ships between U.S. hurricane counts and climate are
well established (Elsner et al. 2004; Elsner 2003; Elsner
et al. 2001, 2000a,b, 1999; Elsner and Kara 1999; Bove
et al. 1998). More importantly for the present work,
Jagger et al. (2001) model the typical wind speeds of
hurricanes at landfall and show that over certain coastal
counties the exceedance probabilities (e.g., wind speeds
in excess of 100 kt) vary appreciably with ENSO and
the North Atlantic Oscillation (NAO). Similarly, Mur-
nane et al. (2000) model the probability of coastal hur-
ricanes conditioned on ENSO. A study by Goldenberg
et al. (2001) shows that the number and strength of
Atlantic hurricanes follow a multidecadal cycle of
changes in North Atlantic Ocean currents. This cycle,
called the Atlantic Multidecadal Oscillation (AMO), is
controlled by gradual changes in ocean currents. Of
considerable interest to the scientific community and
others is the influence, if any, global warming may have
on the strongest hurricane winds (Pielke et al. 2005;
Emanuel 2005; Webster et al. 2005). Thus, we include
global temperature as a fourth climate factor.

For the present study, ENSO is characterized by ba-
sin-scale fluctuations in sea level pressure (SLP) be-
tween Tahiti and Darwin. Although noisier than equa-
torial Pacific sea surface temperature (SST), pressure
values are available back to the middle of the nine-
teenth century. The Southern Oscillation index (SOI) is
defined as the normalized sea level pressure difference
between Tahiti and Darwin. The SOI is strongly anti-
correlated with equatorial Pacific SSTs so that an El
Niño warming event is associated with negative SOI

FIG. 1. Regions used in the study. The regions are chosen large
enough to capture enough hurricanes, but small enough to show
possible differences in extreme values between locations (e.g.,
Gulf vs East Coasts). The regional boundaries corresponding to
whole number parallels and meridians. Region 1 is referred to as
the Gulf Coast, region 2 as Florida, and region 3 as the East Coast.
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values. Units are standard deviations. The relationship
between ENSO and hurricane activity is strongest dur-
ing the hurricane season, so we use an August–October
average of the SOI as our predictor. The monthly SOI
values (Ropelewski and Jones 1987) are obtained from
the Climatic Research Unit (CRU).

The NAO is characterized by fluctuations in sea level
pressure differences. Index values for the NAO are cal-
culated as the difference in SLP between Gibraltar and
a station over southwest Iceland, and are obtained from
the CRU (Jones et al. 1997). The values are averaged
over the pre- and early hurricane season months of May
and June (Elsner et al. 2001). Physically we speculate
that the relationship might result from a teleconnection
between the midlatitudes and Tropics whereby a be-
low-normal NAO during the spring leads dry condi-
tions over the continents and to a tendency for greater
summer/fall middle-tropospheric ridging (enhancing
the dry conditions). Ridging over the eastern and west-
ern sides of the North Atlantic basin during the hurri-
canes season tends to keep the middle-tropospheric

trough, responsible for hurricane recurvature, farther
to the north (Elsner and Jagger 2006a,b).

The AMO is characterized by fluctuations in SST
over the North Atlantic Ocean driven largely by the
thermohaline circulation. The Hadley Centre model
SST and National Oceanic and Atmospheric Adminis-
tration (NOAA) optimal interpolated SST datasets are
used to compute Atlantic SST anomalies in degrees
Celsius north of the equator (Enfield et al. 2001).
Anomalies are computed by month using the base pe-
riod 1951–2000. Data are obtained online from the
NOAA–Cooperative Institute for Research in Environ-
mental Studies (CIRES) Climate Diagnostics Center
back to 1871. For this study we average the SST anoma-
lies over the peak hurricane season months of August
through October. Monthly global temperature anoma-
lies (1961–90 base period) from the Intergovernmental
Panel on Climate Change (IPCC) values are obtained
from the CRU back to 1856 (Folland et al. 2001). Here
we average the global temperature anomalies in de-
grees Celsius over the months of August–October. The

FIG. 2. Histograms of the annual maximum wind speed from hurricanes by region. The data include all hurri-
canes in the best-track (HURDAT) dataset over the period 1899–2004. If two or more hurricanes are tracked
through the region, only the highest wind speed is used for these plots.
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anomalies are accurate to �0.05°C for the period since
1951, but are about 4 times as uncertain during the
1850s.

In summary, the distribution of extreme near-coastal
hurricane winds will be modeled using extreme value
theory using data initially from the period 1899–2004.
Additionally, the August through October averaged
values of the SOI, the AMO, and global temperature
along with the May through June averaged values of
the NAO will be used to examine differences in the
extreme distributions depending on whether these cli-
mate variables are above or below normal during this
106-yr period. Therefore the climate variables enter the
model as binary factors (above or below normal) rather
than continuous covariates. Using binary factors makes
it easier to interpret the results. It also provides an
initial examination of the relationship between climate
variables and extreme value distributions without hav-
ing to specify the relationship of the model coefficients
to the indices.

For reference, the upper and lower quartile values of
the SOI are 0.41 and �0.89 standard deviations (std
dev), respectively, with a median (mean) value of �0.19
(�0.16) std dev. Years of below- (above) normal SOI
correspond to El Niño (La Niña) events and thus to
lower (higher) probability of near-coastal hurricanes.
The upper and lower quartile values of the NAO are
0.42 and �1.08 std dev, respectively, with a median
(mean) value of �0.39 (�0.32) std dev. Years of below-
(above) normal values of the NAO correspond to a
weak (strong) NAO phase and thus to higher (lower)
probability of near-coastal hurricanes. The upper and
lower quartile values of the AMO are 0.13° and
�0.21°C, respectively, with a median (mean) value of
�0.02°C (�0.03°C). Years of above- (below) normal
values of the AMO correspond to higher (lower) prob-
ability of basinwide hurricane activity. The upper and
lower quartile values of the global temperature are
0.06° and �0.22°C, respectively, with a median (mean)
value of �0.06°C (�0.05°C). The correlations of the
indices used in the model are shown in Table 1. The
linear correlation between the SOI and the NAO
(AMO) is a negligible �0.02 (�0.01). The linear cor-
relation between the NAO and the AMO is �0.14. The
correlation between the SOI and global temperature
(GT) is �0.13. The only significant correlation is be-
tween the AMO and GT with a value of �0.79.

3. Hurricane data assumptions

A brief discussion of a point process is important for
understanding the statistical model and its limitations.
We model the hurricane dataset as a marked Poisson

process in which the events are hurricanes and where
each mark is the maximum wind speed of a hurricane
within a region. We make some assumptions of the
independence of the marks and the underlying process
as well as between the marks themselves (Cressie 1993).

Each dataset D(K) can be considered as a sample
from a spatial point process, D, over the two-dimen-
sional space composed of the integers and positive re-
als, that is, � � ��, restricted to the rectangular region,
[1899, 2004] � ��. Using the idea of a spatial point
process we can define useful quantities. For instance,
the activity for year y of all tropical cyclones with maxi-
mum winds exceeding u is the number of points, N(y,
u) from a realization of D inside the region (y � [u, �]).
Thus, N(y, u) represents a family of random variables
on the positive integers, and N(y, 64) is the annual
number of hurricanes for year y. We can view the prob-
lem of finding the maximum yearly wind speed by fix-
ing the threshold, u, and noting that the distribution of
the yearly maxima can be determined from the distri-
bution of N(y, u) and the distribution of the maximum
winds given that the maximum winds exceed u. If u is
large enough, then for all practical purposes, N(y, u)
takes on only values of zero and one, so based on a
conditioning argument, the probability that the maxi-
mum wind W exceeds a value � is Pr[N (y, u) � 1] �
Pr(W � � |W � u). This is called the peaks-over-
threshold method (McNeil and Saladin 2000).

Additional assumptions are necessary. First, we as-
sume that the occurrence of a hurricane within a coastal
region is independent of future hurricane occurrences
in the same region. Second, we assume that hurricane
intensity is independent so that the intensity of a pre-
vious hurricane has no bearing on the intensity of a
future hurricane. Thus, while the interpolated hurri-
cane intensities along a particular hurricane track are
not independent, the maxima from one hurricane to the
next are. Then, the two-dimensional spatial process de-
scribing set D(K) can be described as a two-dimen-
sional Poisson process over � � �� with an associated
mean measure 	K(A). For example, if A � [1901, 2000]
� [64, �], then 	K(A) is the expected number of hur-

TABLE 1. Correlations between climate indices. Values are the
linear correlation coefficient using data from 1899–2004. The
p value is based on the null hypothesis of zero correlation.

Indices Correlation p value

SOI, NAO �0.02 0.826
SOI, AMO �0.01 0.942
SOI, GT �0.13 0.190
NAO, AMO �0.14 0.144
NAO, GT �0.07 0.457
AMO, GT �0.79 0.000
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ricanes in the twentieth century occurring within region
K. Since D(K) is a Poisson process, the number of hur-
ricanes observed during this century for region K has a
Poisson distribution with a mean value of 	K(A). An-
other feature of the Poisson process is that the prob-
ability of a single event B occurring in a smaller region
contained in A is just 
K(B)/
K(A); thus if a single hur-
ricane occurs in year y, then Pr(W � � |W � u) � 	K(y,
[�, �])/	K(y, [u, �]). We also assume that the maximum
wind speed has a continuous distribution so our process
has an associated intensity 
K where 	K([a, b] � [c, d])
� �b

a�d
c 
K(y, w)dw. So our count N(y, u) is a Poisson

random variable with mean ��
u 
K(y, w)dw. Finally, we

assume that in a given year, tropical cyclone occurrence
is a function of the set of yearly climate variables and
the wind speed w, so that the intensity in each coastal
region, 
K, can be expressed as 
K(y, w) � 
K(xy, w).

The above assumptions imply that if we have knowl-
edge of the climate factors and of the spatial process of
hurricane intensity we have sufficient information for
answering the questions we stated in the introduction.
For example, what is the 100-yr return period for hur-
ricane winds in a given region, assuming that a climate
factor such as the AMO is above normal during these
100 yr? We can determine the return level by solving
	K([1, 100] � [u, �]) � 1 for u. If we assume that a
particular climate factor is the same for each of these
100 yr (e.g., above normal), then the problem is to solve
0.01 � ��

u 
K(x, w)dw. This form is natural for finding
the distribution of maximum values. We let Pr(MY � u)
denote the probability that the maximum winds ob-
served over Y years (MY) under a given climate sce-
nario (x) are less than or equal to u; that is, no hurri-
canes occur in Y years with winds exceeding u. Since
the distribution of events with wind exceeding u is Pois-
son with mean r � Y��

u 
K(x, w)dw, then Pr(MY � u) �
exp(�r). Also, by the nature of a Poisson process, if a
single hurricane occurs with winds exceeding u, then the
probability that the winds exceed � are ��

� 
K(x, w)dw/��
u


K(x, w)dw. When u � 0 the denominator is the yearly
hurricane rate and 
K(x, w)/��

0 
K(x, �)d� is the prob-
ability density of the maximum wind at w.

4. Extreme value theory

a. Introduction

Extreme value theory is a discipline within statistics.
It is unique in that it concerns techniques and models
for describing the rare event rather than the typical
(average) event. During the 1950s it was used by civil
engineers to provide a framework for estimating the
likely forces on built structures using historical data.

Extreme value theory and the central limit theory are
derived in a similar manner. Both consider the limiting
distributions of independent identically distributed (iid)
random variables under an affine transformation.1 Ac-
cording to the central limit theorem, the mean value of
a sample of iid random variables xi converges to a nor-
mal distribution with mean 0 and variance 1 under the
affine transformation (x � )/�n�2), where  and �
are the mean and standard deviation of x1, respectively.
Correspondingly, if the distribution of the maxima un-
der some affine transformation converges, then it must
converge to a member of the generalized extreme value
(GEV) family of distributions (Embrechts et al. 1997).
The maxima of most continuous random variables con-
verge to a nondegenerate random variable. Inciden-
tally, this is not the case for the maxima of commonly
used discrete random variables including the Poisson,
geometric, and negative binomial.

In the absence of empirical or physical evidence for
assigning an extreme level to a process, an asymptotic
argument is used to generate extreme value models.
But extreme values are scarce, making it necessary to
estimate levels that are much higher than what already
have been observed. In fact, the goal of an extreme
value analysis is to quantify the statistical behavior of
processes at unusually high levels. In particular, ex-
treme value analysis requires an estimation of the prob-
ability of events that are more extreme than any that
have ever been observed. This implies an extrapolation
from observed levels to unobserved levels. Extreme
value theory provides a family of models to make such
extrapolation. In fact there are no more serious com-
petitor models than those provided by extreme value
theory (Coles 2001). Hurricane climatologists, instead,
tend to rely on a set of summary statistics when ana-
lyzing extreme events (Chan and Liu 2004; Landsea et
al. 1999).

Given a set of observations from an unknown but
continuous random process, if we generate a sample
from the set, take the maximum value from the sample,
and repeat the procedure many times, we obtain a dis-
tribution that is different from that of the original (par-
ent) distribution. The distribution of the maximum will
be shifted to the right and the shape (skewness) will
change. For instance, if the original distribution is nor-
mal, the limiting shape becomes Gumbel. The new lo-
cation, shape, and scale of the maximal distribution are
determined by the tail behavior of the parent distribu-
tion [see Rupp and Lander (1996) for an example]. In
fact, we can simplify the description of the tail behavior

1 Linear transformation followed by a translation.
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by using three parameters for the family of GEV dis-
tributions. Thus there is a need to consider maximal
distributions if one is interested in describing extreme
values of the parent distribution. Fortunately, there is a
family of distributions that is the limiting distribution of
these maxima.

Of interest is the stationary set of distributions aris-
ing from the family of GEV functions that represent the
limiting behavior of the maxima of a collection of iid
random variables. The GEV distributions have con-
tinuous densities so they can be used in Bayesian analy-
sis with continuous or discrete priors since the product
of the likelihood and prior is integrable. More gener-
ally, methods exist in which samples of the posterior
distributions of the GEV parameters can be generated
(Coles 2001).

b. Generalized Pareto distribution

Whereas the GEV family of distributions expresses
the limiting behavior of the maximum value of a set of
observations, the family of generalized Pareto distribu-
tions (GPDs) describes the behavior of individual ex-
treme events. Consider observations from a collection
of iid random variables in which we keep only those
observations that exceed a fixed threshold value (not
just the maximum as we did in the discussion above).
As we increase the threshold, the two-parameter GPD
family represents the limiting behavior of this new col-
lection of random variables. This makes the family of
GPDs a suitable choice for modeling extreme events.
The GPD and GEV distributions are related. A GEV
distribution results from a GPD when we consider the
maximum over a fixed period of time from a marked
Poisson process in which the marks are iid samples
from a GPD. Conversely, consider an increasing collec-
tion of iid random variables location shifted and scaled
so that the maximum converges to a member of the
family of GEV distributions. The subset of this collec-
tion of random variables, after subtracting the thresh-
old value and discarding all resulting values less than
zero, converges to a member of the GPD family (Coles
2001).

In discussing the GPD we have introduced the idea
of a threshold. Observations below the threshold value
are removed from the analysis. The choice of threshold
is a compromise between retaining enough observa-
tions to properly estimate the distributional param-
eters, but few enough that the observations follow a
GPD family. More specifically, we are modeling the
exceedances, W � u, as samples from a family of
GPDs so that for an individual hurricane with maxi-
mum winds W,

Pr�W � � |W � u�

� �
exp���� � u���� when � � 0

�1 �
�

�u
�� � u���1��

otherwise
�1�

� GPD�� � u |�u, ��, �2�

where �u � 0 and �u � �(� � u) � 0. Since this model
is true for any u we have

�u � �0 � � � u

�u � �.

The parameters �u and � are referred to as the scale and
shape parameters, respectively. For negative shape pa-
rameters the GPD family of distributions has an upper
limit of Wmax � u � �u/|�|.

To illustrate these distributions, Fig. 3 shows plots of
exceedance distributions for three values of �. The ab-
scissa is wind speed and the ordinate is exceedance
probability. For � � �0.5 the tail is fat, meaning the
exceedance probability drops off fast for weaker wind
speeds, but more slowly for higher wind speeds. For
� � 0, the drop-off is exponential. For � � �0.5 the
curve is bounded on the right, meaning that the exceed-
ance probability is zero beyond a certain wind speed.

c. Full model

The above GPD describes the maximum wind distri-
bution for each hurricane whose winds exceed u but not
the frequency of hurricanes at that intensity. From our
assumptions, the number of hurricanes in year y whose
maximum winds in region K exceed u have a Poisson
distribution with mean (or exceedance) rate 
u � 	K(y,
[�, �]). Thus by combining the exceedance probability

FIG. 3. Examples of GPD exceedance curves. The bold curve is
for � � 0 and is exponential. The thin line is � � �0.5 and the
dashed line is � � �0.5. Of interest is the fact that the tail behavior
is different for different values of �. The threshold is 64 kt.
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and the exceedance rate with our assumption that the
exceedances are independent we get the number of
hurricanes per year with winds exceeding �, and N� has
a Poisson distribution with mean

�� � �u � Pr�W � � |W � u�. �3�

This specification is physically realistic since it allows us
to model hurricane occurrence separately from hurri-
cane intensification. Moreover from a practical per-
spective, rather than a return rate per hurricane occur-
rence, the above specification allows us to obtain an
annual return rate on the extreme winds, which is more
meaningful for the business of insurance.

Now, the probability that the yearly maximum will be
less than � is the probability that N� � 0. Since N� has
a Poisson distribution

Pr�Wmax � �� � Pr�N� � 0� �4�

� exp����� �5�

� exp���u � GPD�� � u |�u, ���. �6�

If we make the substitutions for � � 0,

�	 � �u
� � �u

	 � u �
�	 � �u

�
,

then

Pr�Wmax � �� � exp���1 � ��� � 	

�	
���1��� �7�

has a GEV distribution, which is in canonical form. If �
� 0, then we make the substitutions

�	 � �u

	 � u � �u � log��u�

then

Pr�Wmax � �� � exp��exp���� � 	

�	
���. �8�

We convert the peaks-over-threshold parameters 
u,
�u, and � to the GEV canonical parameters , �, and
�, and so compare results obtained with different
thresholds. Using the canonical parameters, for ex-
ample, we calculate the yearly (seasonal) return level,
rl(r), corresponding to a given return period, r and
GEV parameters , �, and � by solving for � in Pr(Wmax

� �) � 1/r, giving

rl�r� �

	 �
�

���log� r

r � 1���

� 1�� � 
 0

	 � � � log�log� r

r � 1�� � � 0.
�9�

Additional details are given in Coles (2001).

5. Return levels for extreme hurricane winds

a. Threshold determination

The extreme value models described in the previous
section have a fixed threshold value u that needs to be
determined. Here the mean residual life (MRL) plot is
used to determine the threshold. The MRL plot is pro-
duced by averaging the difference in the observed wind
speeds above a specified level (residual) as a function of
the level. For example, at a wind speed level of 50 kt we
subtract 50 from each observed wind speed and average
only the positive values (excesses). We repeat for all
wind speed levels. The mean excess is the expected
value of the amount that the observations exceed the
particular level. The standard errors on the mean ex-
cess allow us to compute confidence levels for the es-
timates. A nearly straight-line negative relationship be-
tween the mean residual and the wind speed level
above some threshold indicates the set of extreme wind
speeds. In other words, if extreme values follow a GPD,
then their expected value is a linear function of the
threshold; that is,

E�Y � u� �
�0 � �u

1 � �

�
�0

1 � �
�

�

1 � �
� u

according to Coles (2001). The MRL plot can be used
to get estimates for the GPD parameters, � and �.2

Figure 4 shows the relationship between the mean
excess and the threshold for the three regions and for
the entire coast using the list of observed maximum
wind speeds over the period 1889–2004. The jaggedness
of the curves result from the 5-kt precision on the wind
speed estimates in HURDAT. The thin lines represent
95% confidence limits. For the Gulf Coast and Florida
regions a straight-line fit to the curve starts at a level
between approximately 75 and 90 kt. For the East
Coast region the straight-line fit starts near 65 kt and
for the entire coast the straight line fit starts between 90
and 100 kt. Thus we choose the nearest Saffir–Simpson
category for the threshold: 83 kt (category 2) for the
Gulf Coast and Florida, 64 kt (category 1) for the East
Coast, and 96 kt (category 3) for the entire coast. An
alternate method is to calculate the parameters of the
GPD distribution using either the ML estimator or the
method of probability-weighted moments for a se-
quence of threshold values. The first location at which

2 Here, �u for any value of u can be found using �u � �0 � �(0)
� u � �, whereas � remains constant.
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the parameter values stabilize is a reasonable threshold
value (Coles 2001; Greenwood et al. 1979). Results
from this method are consistent with those from the
MRL plots.

We use the maximum likelihood method based on
Coles (2001) to estimate the model parameters but aug-
ment it to handle threshold-crossing (exceedance) rate
as needed for the return levels. The 95% confidence
bands for the return levels are calculated using a delta
method from the covariance matrix of the parameters
generated by this software. Unfortunately, the covari-
ance matrix, being the scaled inverse of the Hessian
matrix, is not always available using this method be-
cause the Hessian matrix is nonsingular. In such cases
we cannot compute confidence bands for the param-
eters or for the return levels. Thus our ML approach is
limited to using binary factors.

b. Models for climatology

Figure 5 shows return level plots of extreme hurri-
cane winds by region. The return level (ordinate) has
units of wind speed in knots and the return period (ab-

scissa) is given in years. The return level is expected to
be exceeded on average once every return period. Ex-
pressed another way, the annual probability of winds
exceeding the 10-yr return level is 0.1. The middle curve
is the mean return level for a given return period, and
the outside thin lines are the 95% confidence limits.
The curves asymptote to finite levels as a consequence
of a negative estimate for the value of �, though each
region displays a somewhat different curve shape. The
panels have identical scales for easier visual compari-
sons. Points on the graphs are the observed maximum
wind speeds and are placed along the abscissa using
empirical return period estimates. Empirical return pe-
riod estimates are made using the reciprocal of the re-
turn rate, which is the product of the yearly hurricane
rate times the exceedance probability. The yearly rate
is the number of hurricanes divided by the record
length in years. The exceedance probability for a par-
ticular hurricane wind speed is approximated by divid-
ing the rank of the hurricane wind speed (the maximum
wind speed has a rank of 1) in the record by the number
of hurricanes after subtracting 0.5 from the rank. Thus

FIG. 4. Mean residual life plots for near-coastal hurricane winds by region. The thin lines are the 95% confidence
limits. An approximate linear decrease of the mean excess occurs for a threshold of (a), (b) 83 kt (category 2) for
regions 1 and 2, (c) 64 kt (category 1) for region 3, and (d) 96 kt (category 3) for region 4 (entire coast).
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with N years, the approximate return period for a wind
speed x is {N/[rank(x) � 0.5]} � 0.5. In general the
points fall close to the curves, indicating that the models
fit the data well.

Return levels for return periods greater than 10 yr
are highest for the Gulf Coast region and smallest for
the East Coast. Florida’s return level curve is similar to
the return level curve from the Gulf Coast, but Florida
return levels are somewhat higher for short return pe-
riods and lower for the longest return periods. The
mean return levels for various return periods are tabu-
lated in Table 2. The 5-yr return levels are 105 kt for the
Gulf Coast, 108 kt for Florida, and 93 kt for the East
Coast. On average the entire U.S. coast is threatened by
a 121-kt hurricane once every 5 yr. The 50-yr return
levels are 150 kt for the Gulf Coast, 137 kt for Florida,
and 115 kt for the East Coast. The 500-yr return levels
increase to 170 kt for the Gulf Coast, 145 kt for Florida,
and 120 kt for the East Coast. The Gulf Coast model
gives a mean 1000-yr return level of 173 kt with a 95%
confidence limit of 191 kt. It should be kept in mind
that these extreme wind extrapolations are based on
hurricanes near the coast and may represent a slightly

high bias with respect to landfall winds. On the other
hand, since the HURDAT observations (or interpola-
tions) are only every 6 h, it is possible that there is low
bias for rapidly intensifying hurricanes near the coast.
Regardless, the uncertainty on the return levels indi-
cated by the 95% limits should be regarded as a lower
bound since the uncertainty could by much greater if
the uncertainty due to model choice is also included
(Coles 2001).

TABLE 2. Hurricane return levels by region. Values (kt) are
based on a GPD model for the maximum wind distribution for
each hurricane and a Poisson model for the yearly hurricane rate.
Model parameters are estimated using the ML method. Values to
the right of the � refer to half the 95% confidence interval.

Return
period (yr)

Region 1 Region 2 Region 3 Region 4

Gulf Coast Florida East Coast Entire coast

5 105 � 11 108 � 9 93 � 7 121 � 6
10 123 � 12 121 � 8 103 � 6 132 � 7
50 150 � 12 137 � 6 115 � 4 151 � 9

100 158 � 13 141 � 5 117 � 4 157 � 10
500 170 � 16 145 � 6 120 � 5 168 � 15

FIG. 5. (a)–(d) Return level plots by region. The curves are based on an extreme value model and asymptote to
finite levels as a consequence of a negative estimate for �. Parameter estimates are made using the ML approach.
The thin lines are the 95% confidence limits. The return level is the expected maximum hurricane intensity (kt)
over p years. The points are the empirical estimates.
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c. Models with climate factors

Here we reproduce the return level plots but sepa-
rate the observations into two factors based on whether
the individual climate variable is above or below aver-
age during the hurricane season. We begin by consid-
ering the entire coast (Fig. 6) with mean return levels in
Table 3. Results show that the most substantial differ-
ences in return levels occur with the SOI factor. For
short return periods (less than 5 yr), above-normal SOI
values (La Niña conditions) are associated with higher
return levels (stronger hurricanes), but for longer re-
turn periods (greater than 30 yr), below-normal SOI
values (El Niño) are associated with the higher return
levels. These results align with our expectations that El
Niño conditions are associated with less hurricane ac-
tivity. Interestingly, however, El Niño conditions are
associated with the most extreme hurricane winds. Al-
though El Niño tends to inhibit hurricane formation
(Gray 1984) through increased tropospheric wind shear
(Goldenberg and Shapiro 1996), the accompanying
lower-stratospheric cooling may increase the potential
intensity of hurricanes that do form.

Differences in return levels are also noted with the
NAO factor. Here below-normal values of the NAO
are associated with higher return levels for all return
periods, with the most significant differences occurring
for the shortest and for the longest return periods. This
is consistent with the results of Elsner and Jagger
(2006a,b). As expected, years of above-normal values
for the AMO are years with stronger hurricanes for all
return periods. Compared with the return level differ-
ences noted for the SOI, the differences for the AMO
are less between warm and cold years. Similarly global

temperatures suggest higher wind speeds for the strong-
est hurricanes (maximum winds in excess of 135 kt)
during above-normal years.

Care should be exercised in interpreting these re-
sults, especially for the AMO and global temperatures.
As mentioned above, there is a significantly high cor-
relation between the AMO and global temperature.
That is, years of above- (below) normal AMO tend to
coincide with years of above- (below) normal global
temperature. Here we make no attempt to control for
the AMO when examining the wind speed results con-
ditional on global temperature. On the other hand, the
results are consistent with theoretical arguments sug-
gesting an increase in the maximum potential intensity
of hurricanes with global warming through changes in
surface and upper-tropospheric energy fluxes (Eman-
uel 1987; Lighthill et al. 1994; Henderson-Sellers et al.
1998). In fact a statistical analysis suggests that in-
creases in the potential hurricane intensity will likely
lead to an increase in actual hurricane intensity (Eman-
uel 2000) and a recent modeling study indicates the
potential for a small increase in future hurricane wind
speeds (Knutson and Tuleya 2004) as a consequence of
global warming. Our results are also consistent with
recent observational studies showing increases in the
frequency and/or duration of the strongest hurricanes
(Emanuel 2005; Webster et al. 2005).

Figure 7 shows the return level plots for regions 1, 2,
and 3 and for the two climate factors SOI and NAO. To
make the comparisons easier, we remove the 95% con-
fidence lines. We see that for each of the regions, El
Niño (below-average SOI) conditions are associated
with lower return levels with the exception of extreme
hurricanes along the Gulf Coast, which have a lower
return period for a given extreme wind speed. In con-
trast, Florida hurricane activity appears to be most
strongly influenced by the phase of the NAO. For a
given wind speed, return periods are shorter (longer)
when the NAO is below (above) average. Similar re-
sults are noted for the Gulf Coast, but not for the East
Coast.

The above results are based on models from extreme
value theory with inferences made using the ML esti-
mates for the model parameters. We are motivated to
consider another inferential method because 1) the
standard error estimates from the ML method are bi-
ased (in fact, for some regions, the method fails to give
values for the standard errors), 2) we would like to
include the older, less precise data records from the
nineteenth century in the analysis, and 3) we would like
to treat the predictors as continuous covariates rather
than as discrete factors. Next we reformulate the ex-
treme value models using a Bayesian approach.

TABLE 3. Same as in Table 2, except that the values refer to the
conditional return levels (kt). Values are the result of indepen-
dent conditioning on the SOI, NAO, AMO, and global tempera-
ture as discrete factors (above and below normal).

Return
period (yr)

SOI NAO

Above Below Above Below

5 125 � 5 116 � 12 120 � 9 123 � 9
10 131 � 5 130 � 14 130 � 9 134 � 10
50 138 � 4 156 � 18 143 � 6 154 � 14

100 140 � 4 164 � 21 146 � 8 161 � 16
500 142 � 6 178 � 34 150 � 10 173 � 25

Return
period (yr)

AMO GT

Above Below Above Below

5 125 � 9 118 � 9 120 � 10 123 � 8
10 136 � 11 127 � 9 132 � 11 132 � 8
50 156 � 13 140 � 8 154 � 16 144 � 7

100 162 � 16 144 � 9 161 � 20 147 � 7
500 173 � 22 148 � 14 175 � 30 151 � 11
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6. A Bayesian approach

a. Background and motivation

Applications of Bayesian extremal analysis are still
relatively rare (Coles and Tawn 1996; Katz et al. 2002;
Coles et al. 2003). In the context of local hurricane
winds, Casson and Coles (1999) use a Bayesian analysis
to estimate parameters of spatial regression models.
They show that including the spatial characteristics of
extremes provides a substantial reduction in the confi-
dence intervals for high quantiles. A Bayesian ap-
proach to modeling extreme wind behavior is given in
Walshaw (2000). They use a mixture model for extreme
winds arising from pressure gradients and tropical cy-
clones at two separate locations (Key West, Florida,
and Boston, Massachusetts). The approach allows them
to incorporate prior information available from nearby
sites. Here we restrict our data to winds from tropical
cyclones eliminating the need to consider a mixture
model. Since parameter estimates in extreme value
theory are sensitive to large, rare events, the ability to
include long historical records is particularly important

in modeling extreme events. The utility of the Bayesian
approach for modeling the mean number of coastal
hurricanes is shown in Elsner and Jagger (2004).

The Bayesian approach to inference from extreme
value models has several advantages over the ML ap-
proach used in the previous section. First, the facility to
include other sources of less reliable data has obvious
appeal. Second, the posterior distribution gives a more
complete inference than the corresponding ML analysis
(Coles 2001). In particular, for an estimate of future
hurricane wind risk, expression of results using predic-
tive distributions is advantageous. Third and more tech-
nical, Bayesian specifications do not depend on the
regularity assumptions required by asymptotic theory
of maximum likelihoods. The superiority of adopting a
Bayesian inferential approach to extreme value analysis
is shown in Coles and Pericchi (2003).

b. A hierarchical specification

To utilize a Bayesian approach for peaks-over-
threshold extreme value modeling of near-coastal hur-
ricane winds, we employ a hierarchy. At the bottom,

FIG. 6. (a)–(d) Return level plots for the entire U.S. coast (region 4) by climate factors. The curves are based on
an extreme value model using an ML estimation procedure. Red (blue) lines and points indicate above- (below)
normal climate conditions.
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the maximum wind speed along a track in the coastal
region, Wi, is uniformly distributed about the “true” but
unobserved wind speed wi. This uniform distribution is
bounded by the observational error, ei, so that Wi is
uniformly distributed between wi � ei. Having no ad-
ditional information about the observational error ex-
cept for rounding, we use only the rounding error.

At the next level of the hierarchy we specify that wi

depends on the parameters of the GPD. For this initial
modeling experiment we consider the entire coast only
and restrict the analysis to global temperature as a
single covariate. Thus, we fix the threshold wind speed
(u) at 96 kt and employ a simple missing data model
using a normal reference distribution for the global

temperature. This allows us to use the full HURDAT
record to 1851 despite the fact that global temperature
values are available only as far back as 1856. Since the
GPD has a closed form, the above hierarchical specifi-
cation provides a method of generating predictive
samples as well as samples of the exceedance probabili-
ties and distributions for return levels.

To complete the hierarchy we model the exceedance
rate (threshold crossing). Since we fix u and we assume
that the priors on the two sets of parameters (hurricane
frequency parameter is independent of hurricane inten-
sity parameters) are independent, the posterior joint
distributions on the parameters are also independent.
This allows us to use separate models; one for the GPD

FIG. 7. Return level plots for (a), (b) region 1, (c), (d) region 2, and (e), (f) region 3 by climate factors. The curves
are based on an extreme value model using an ML estimation procedure. Red (blue) lines and points indicate
above- (below-) normal climate conditions. Panels (a), (c), and (e) [(b), (d), and (f)] are for the SOI (NAO) as a
factor.
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parameters and another for the exceedance rate. We
sample the posterior predictive storm rate and the GPD
parameters, which allows us to generate sample hurri-
cane seasons. This is a novel aspect of our methodol-
ogy.

c. BUGS

The hierarchical Bayesian specification combines the
prior with the GPD likelihood to generate posterior
estimates for the regression coefficients of the extreme
value parameters. This is accomplished using the
Bayesian inference using Gibbs sampler (BUGS) soft-
ware. BUGS performs Bayesian analysis of complex
statistical models using Markov chain Monte Carlo
(MCMC) methods (Gilks et al. 1996). We use Win-
BUGS (Windows version of BUGS) 1.4, which has a
graphical user interface. BUGS minimizes the startup
cost of Bayesian modeling by eliminating the need to
program in a high-level language. It also chooses an
appropriate MCMC sampling algorithm based on the
model structure. The WinBUGS code used here is
given as an appendix.

BUGS does not yet have support for the GPD, but it
can sample from any distribution with an analytical
likelihood.3 In addition to providing the sampling dis-
tribution, we must ensure that the chosen distribution
provides only probabilities between 0 and 1. We use a
step function to guarantee that the probabilities are
bounded below by 0 and a multiplier C to guarantee
that the probabilities are bounded above by 1. Since the
power function does not handle negative or zero man-
tissa, we use a very small value (10�12) to test 1 � (�/�)
� (y � u), which can be negative. Our code does not
test for � � 0 as this is not a problem in sampling.

d. Convergence

To ensure stability of the results we run BUGS for
110 000 updates and discard the first 4000 as burn-in.
Updates are successive values of the regression coeffi-
cients for the distributional parameters. In particular,
we are interested in parameters of the GPD. The series
of successive updates is called a Markov chain because
the value of the current update depends only on the
value of the previous update. The choice of how many
updates to discard depends on the initial values of the
chain and on the rate of converge. We test convergence
by using two different sets of initial values where the
intercept coefficients on the parameters are changed by
10% and calculate the modified Gelman–Rubin con-
vergence statistic (Brooks and Gelman 1998), which is
based on the ratio of the pooled 80% interval to the
mean of the individual 80% intervals using moving av-
erages from the chain. Convergence occurs when the
ratio is unity. We also estimate the correlation range in
the chain, which is the minimum lag at which two chains
started from different initial values are uncorrelated.
Values of the correlation range between 40 and 80, with
the larger values associated with models having fewer
wind speed estimates. Finally, we examine the chains
looking for patterns in the sequence of updates that
might lead one to conclude that the model had not
converged. Developing more rigorous criteria for de-
ciding chain length and burn-in goes beyond the scope
of the present study.

e. Results

Table 4 summarizes the results from the Bayesian
model using global temperature as the sole covariate.
Values are estimates and statistics of the regression co-
efficients for the extreme value distributional param-
eters. The three distributional parameters are log(
),
log(�), and �, with the regression intercept coefficient
denoted with a subscript 0 [e.g., log(
)0] and the regres-

3 The lead author is working with the BUGS community to add
this support.

TABLE 4. Estimates and statistics of the regression coefficients for the extreme value distribution parameters. Here, 
 is the threshold
exceedance rate, and � and � are the scale and shape parameters of the GPD. The subscript 0 (1) refers to the intercept (slope) term.
The mean, standard deviation, and 95% credible interval are based on a hierarchical Bayesian specification of an extreme value model
where the occurrence is governed by the threshold exceedance rate and the intensity is governed by the parameter values of the GPD.
For comparison, the ML estimate (MLE) and its standard error (SE) are also provided.

Coefficient MLE SE Mean Std dev 2.5% Median 97.5%

log(
)0 �0.409 0.1130 �0.415 0.1115 �0.6402 �0.4129 �0.2031
log(
)1 0.086 0.4500 0.060 0.4445 �0.8245 0.0634 0.9192
log(�)0 3.229 0.1475 3.161 0.1527 2.855 3.163 3.461
log(�)1 0.846 0.7023 0.864 0.7177 �0.5167 0.8520 2.299
�0 �0.290 0.0937 �0.210 0.1100 �0.3964 �0.2205 0.0346
�1 0.511 0.4616 0.539 0.5526 �0.5586 0.5413 1.626
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sion slope coefficient denoted with a subscript 1 (e.g.,
�1). Results are compared to an ML specification. The
ML model uses data for the years 1856–2004 as global
temperature data are not available before 1856. The
results match quite well despite the fact that the Bayes-
ian model includes measurement error on the hurricane
wind speeds and a missing data model for the covari-
ates.

When the global temperature anomaly is 0°C, the
posterior mean logarithm of threshold exceedance rate
is �0.415 using the Bayesian approach, which compares
with �0.409 using the ML approach. Both methods
produce a rate of 0.66 near-coastal major hurricanes
per year. The positive value estimated for log(
)1 indi-
cates that warmer global temperature is conditionally
associated with a greater number of major hurricanes
(category 3 or higher). However, both the standard er-
ror on the ML estimate and the standard deviation
from the Bayesian samples indicate that this result is
not highly significant. The annual rate increases to 0.04
(0.06) major hurricanes per year for every 1° increase in
global temperature according to the Bayesian (ML)
model.

The positive value estimated for log(�)1 indicates
that warmer global temperature is associated with
stronger major hurricanes, and this result is suggestive,
but inconclusive as the 95% credible interval includes
the value zero. Similarly, the positive value estimated
for �1 indicates that warmer temperature is associated
with more extreme hurricane wind speeds, but the re-
sult is not statistically significant. The �0 coefficient es-
timate is negative, indicating that the maximum near-
coastal hurricane wind speed is bounded consistent
with the basic heat engine theory of hurricanes that
establishes an upper limit to hurricane intensity (Bister
and Emanuel 1998). However, with the Bayesian model
that puts a distribution on the maximum wind speed we
note the �0 coefficient is shifted in a positive direction
with an increase in the variance on all model coeffi-
cients. The maximum possible hurricane wind speed is
estimated to be 208 kt (183 kt) using the Bayesian (ML)
model.

7. Summary and conclusions

Hurricanes cause significant social and economic dis-
ruption in the United States. Knowing the return peri-
ods of the most extreme winds associated with coastal
hurricanes provides information for emergency plan-
ners and the insurance industry. Here we use maximum
wind speed values from the HURDAT reanalysis
dataset to model the return levels of extreme hurricane
wind speeds near the U.S. coastline. Models from ex-

treme value theory are used to obtain estimates of re-
turn level hurricane-force winds for return periods up
to 1000 yr. Mean residual life plots are used to set the
threshold wind speeds.

On average we can expect 132-kt (157 kt) hurricane
winds near the U.S. coast once every 10 (100) years.
Along the Florida coastline we can expect 108-kt (137
kt) winds once every 5 (50) years on average, and along
the East Coast we can expect 103-kt (120 kt) hurricane
winds once every 10 (500) years. The difference in
model results is largest for the SOI. La Niña (El Niño)
conditions are associated with a 2-yr return level of 112
(92) kt and a 500-yr return level of 141 (178) kt. The
differences associated with the SOI are noted along the
Gulf Coast, Florida, and the East Coast, however for
the East Coast, El Niño conditions are associated with
lower return levels for the longest return periods. Re-
turn level differences associated with the NAO are larg-
est for Florida. A below- (above) average NAO 10-yr
return level for Florida is 127 (112) kt.

The extreme value models derived in this paper are
based on the best available hurricane data, but results
need to be interpreted with caution as there are likely
biases in the wind speeds, especially for hurricanes dur-
ing the first half of the twentieth century. Potentially
the most significant bias could be the linear interpola-
tion used to fill in 6-h wind speeds from the once- or
twice-a-day reports. For some hurricanes this will lead
to an underestimation of the true wind speed near the
coast and for others it will lead to an overestimation. To
address this limitation, a hierarchical Bayesian ap-
proach is employed that provides a better framework
for including uncertainty in the modeling process and
allows the use of continuous covariates. In this limited
experiment we consider the entire coast only and global
temperature as the lone predictor variable. Encourag-
ingly, the results are comparable to those from an ML
approach in showing more intense hurricanes in a
warmer climate.

Besides the ability to include measurement error into
the analysis, the Bayesian approach is attractive for a
number of reasons. The Bayesian approach provides a
context in which to incorporate prior information or
beliefs such as historical or proxy data into the model.
This is important in light of the ongoing efforts to de-
tect hurricane events from geological records (Liu and
Fearn 1993; Donnelly et al. 2001; Scott et al. 2003) and
collate historical information (Bossak and Elsner 2004).

A limitation of the methodologies discussed here is
that the threshold parameter u is not estimated directly.
Instead we rely on other methods to determine it. An
improvement can be made by having the model esti-
mate this parameter directly. Additional improvements
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can be made by considering the regions as coastal seg-
ments (e.g., mile posts). This would require a spatial
model in which the GPD parameters are allowed to
vary continuously along the coast and with climate. The
methodology could then be used to assign wind speed
estimates to geological records. The Bayesian approach
can be improved by considering an alternative prior
specification that relates return levels for three differ-
ent return periods (e.g., Coles and Tawn 1996).
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APPENDIX

WinBUGS Model for Extreme Hurricane Winds

model
{
for(j in 1:M)
{
lsigma2[j] ← inprod(ls.x [], X[j, ])
xi2[j] ← inprod(xi.x[], X[j, ])
H[j] � dpois (lambda [j])
log (lambda [j]) ← inprod(tc[], X[j, ])
}
for(k in 1:Np) {
ls.x[k] � dnorm(0, tau.ls[k])
xi.x[k] � dnorm(0, tau.xi[k])
tc[k] � dnorm(0, tau.tc[k])
for(j in 1:M)
{
X [j, k] � dnorm(xmu[k], xtau [k])
}
xmu[k]�dnorm(0, 0.001)
xtau[k]�dgamma(0.01, 0.01)
}
for(i in 1:N)
{
y1[i] ← yy[i] � e[i]
ys[i] ← yy[i] � e[i]
W[i] � dunif(yl[i], ys[i])
yy[i] � dflat()
ones [i] ← 1
ones [i] � dbern(p[i])
offset [i] ← Yr[i] - Yr0
lsigma[i] ← lsigma2[offset [i]]
xi[i] ← xi2[offset[i]]
sigma[i] ← exp(lsigma[i])

z[i] ← (1 � xi[i]/sigma[i]*(yy[i]-u)*step(yy[i]-u))
w[i] ← max(z[i], epsilon)
p[i] ← C/(sigma[i]*pow(w[i], (1/xi[i] �1)))*step(z[i]-

epsilon)
llik[i] ← log(p[i]/C)
}
d ← �2*sum(llik[])
maxp ← ranked (p [], N)
minp ← ranked (p [], 1)
}
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