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Abstract

Bayesian analysis and modeling, in which uncertainties are quantified

in terms of probability, offers an alternative approach to understanding

in meteorological applications. The underlying principle, practiced in

fields like archaeology and geology, is the accumulation of evidence. The

approach provides a mathematical rule to update existing beliefs in light

of new evidence. It requires the data be neither uniform in precision nor

the evidence complete. Expressing research results in Bayesian terms

makes them simpler to understand and makes inconclusive results less

prone to misinterpretation. This note shows that a Bayesian analysis pro-

duces an arguably more precise estimate of the long-term U.S. hurricane

rate.

Introduction

Data are now widely collected and synthesized using global positioning and geographic

information systems. Advances in satellite imagery and remote sensing technologies allow

unprecedented access to temporal and spatial data at various resolutions. This is in

contrast to data collected with older technologies, which are, in general, less precise and

more uncertain. Here an attempt is made to increase awareness of a perspective on using

disparate information—especially information that is more uncertain—that broadens the

way modeling and analysis is done. The goal is to motivate the consideration of the

Bayesian approach in meteorology and allied fields. The view is different from the classical

perspective, but it is useful when one’s knowledge of the system is incomplete. The

theoretical basis is borrowed from fields like archaeology and palaeoclimatology while the

formalism derives from Bayesian statistics.
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Background

In meteorology and related disciplines, statistical inference is traditionally taught from the

frequentist perspective. To illustrate, suppose we are interested in the risk of hurricanes

to New Orleans. More precisely, we want to know the number of hurricanes likely to

strike New Orleans over a given number of future years. This is a random quantity that

we assume has a Poisson distribution with a fixed, but unknown rate, parameter called

lambda. The frequentist approach uses statistics to estimate unknown parameters. The

parameter is assumed to be fixed and unknowable, except through the observed data. For

the Poisson distribution we estimate lambda using the mean value. In our case, we simply

divide the number of storms observed by the number of observation years. The mean value

statistic for the Poisson distribution is a good statistic because it is the minimum variance

unbiased estimate for lambda. This implies that it has the smallest confidence interval

for a given percentile on the estimate of lambda.

Suppose in a reliable sample of 100 years, 8 hurricanes affect New Orleans. The

sample annual mean number of hurricanes is 0.08. Inferential statistics is about making

inferences on parameters of a distribution. Under the assumption that the number of

hurricanes follows a Poisson distribution, an inference is made that the rate parameter is

0.08 hurricanes/yr. Confidence intervals about the parameter are based on the idea that

the sample of data at hand is just one possible sample from an infinite pool of data. By

considering the process of data collection, a 95% confidence interval is one which contains

the true value of the parameter in 95% of the confidence intervals created assuming a

large number of samples.

Bayesian statistical inference is an alternative approach in which all forms of uncer-

tainty are expressed and quantified in terms of probability. The Bayesian approach to

inference was introduced into the climate and related communities by Epstein (1985). Its

usefulness as a fundamental strategy for solving problems in weather and climate research

is advocated in Berliner et al. (1998). Here again we assume the number of hurricanes

to affect New Orleans over a given length of time follows a Poisson distribution having

an unknown rate parameter lambda. A probability distribution is used to represent our
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belief about this parameter. The probability distribution, called the prior, reflects our

knowledge about the rate of New Orleans’ hurricanes before the sample of reliable years

is examined. Then, after examining the sample of 100 years of reliable data, our opin-

ions about the rate likely will change. In a Bayesian analysis, a set of observations is

seen as something that changes your opinion, rather than as a way to determine ultimate

truth. Bayes’ rule is the recipe for computing the new probability distribution for the

rate, called the posterior, based on knowledge of the prior probability distribution and

the reliable data. Inferences about the hurricane rate are made by computing summaries

of the posterior distribution.

Example

Consider the annual U.S. hurricane rate. A U.S. hurricane is a tropical cyclone that

makes landfall in the United States at hurricane intensity (33 m/s). Before the Galveston

hurricane tragedy of 1900, the set of annual counts of U.S. hurricanes is imperfect. Some

storms are likely to have gone undetected. For others, the intensity at landfall is uncertain.

A classical analysis of the data would likely disregard the available 19th century counts. In

contrast, a Bayesian approach keeps the earlier records but uses probability to express the

uncertainty associated with them. The 19th century counts are treated as a prior and the

uncertainty about the rate during this time is given in terms of a probability distribution.

The uncertainty arises from having only a single sample and from the possibility of missing

and misspecified storms. Knowledge about the hurricane rate based on 20th century

records is also expressed in terms of a probability distribution (likelihood), with the

uncertainty arising from having only a single sample.

Bayes’ rule computes the posterior probability distribution from the prior and likeli-

hood distributions (see Figure 1). Here the prior distribution is centered to the right of

the likelihood distribution indicating the probability that the second half of the 19th cen-

tury was, on average, more active than the 20th century. This is useful information. The

relatively broad prior distribution indicates the uncertainty and shortness of the unreli-

able period. The likelihood distribution is narrower and centered to the left of the prior.
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Combining the prior and likelihood results in a posterior distribution that represents the

best information about the annual hurricane rate. The expected rate (mean rate) is 1.68

hurricanes per year with a 95% confidence interval of (1.47, 1.90). The posterior distrib-

ution has flatter tails representing the fact that there is greater precision on the posterior

hurricane rate. The imperfect 19th century records improve the precision on the rate

estimate by 16% as measured by inverse of the interquartile distances when comparing

the likelihood with the posterior distributions.

Summary

The underlying principle is the accumulation of evidence. Evidence may include historical

or paleo-data that, by their very nature, are incomplete or fragmentary. The scientific

philosophy employed in the fields of archaeology and paleontology (also, forensics, geology,

etc) stresses the advantages of cumulative evidence. The principle of the uniformity of na-

ture together with at least a partial understanding of modern processes provides a logical

basis for using fragmentary data to improve our understanding of the past. In palaeoan-

thropology, for example, our understanding about human evolution is largely based on

fragmentary evidence from fossil skulls or bones that have survived the taphonomic and

preservation processes. In essence, the Bayesian approach provides a mathematical rule

explaining how to update our existing beliefs in light of new evidence. This is particularly

germane to global change studies (Berliner et al. 2000a, Hasselmann 1998, Leroy 1998,

Varis and Kuikka 1997, Hobbs 1997).

The Bayesian framework reaches well beyond the single parameter model described

above. For instance, hierarchical (conditionally specified) Bayesian spatial models provide

a method for handling the spatial dependency inherent in geographic phenomena (Royle

and Berliner 1999, Kolaczyk and Huang 2001, Gotway and Young 2002) and Bayesian

dynamical models are capable of explicitly accounting for uncertainty in time-series data

(Berliner 1996, Lu and Berliner 1999, Berliner et al. 2000b, Elsner and Jagger 2004).

Moreover, classical space-time models require stationarity which assumes fixed model

parameters and observational variances. A model with good fit in the sample data may
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perform poorly if the parameters are evolving. Hierarchical Bayesian space-time models

provide a more flexible method for the analysis of non-stationary environmental data

(Wilke et al 1998, 2001). Thus, in an uncertain world, imperfect data need not be ignored.
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Figure 1. Probability distributions for the annual rate of U.S. hurricanes. A U.S.

hurricane is a tropical cyclone that makes at least one landfall in the United States at

hurricane intensity (33 m/s). (a) The prior and likelihood distributions. The prior dis-

tribution is determined from a bootstrap procedure on the annual counts over the period

1851–1899 [see Elsner and Bossak (2001)]. The likelihood distribution is determined from

data over the period 1900–2000. (b) The posterior distribution is determined from the

prior and likelihood distributions using Bayes’ rule.
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Figure 1: Probability distributions for the annual rate of U.S. hurricanes. A U.S. hurricane

is a tropical cyclone that makes at least one landfall in the United States at hurricane

intensity (33 m/s). (a) The prior and likelihood distributions. The prior distribution is

determined from a bootstrap procedure on the annual counts over the period 1851–1899

[see Elsner and Bossak (2001)]. The likelihood distribution is determined from data over

the period 1900–2000. (b) The posterior distribution is determined from the prior and

likelihood distributions using Bayes’ rule.
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