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Abstract Identification and inventory of wetlands are essen-
tial components of natural resource management. To be
effective in these endeavors, it is critical that the process
used to detect and document wetlands be time efficient,
accurate, and repeatable as new environmental information
becomes available. Approaches dependent on aerial photo-
graphic interpretation of land cover by individual human
analysts necessitate hours of assessment, introduce human
error, and fail to include the best available soils and hydro-
logic data. The goal of the current study is to apply hier-
archical modeling and Bayesian inference to predict the
probability of wetland presence as a continuous gradient
with the explicit consideration of spatial structure. The pre-
sented spatial statistical model can evaluate 100 km2 at a
50 x 50 meter resolution in approximately 50 minutes while
simultaneously incorporating ancillary data and accounting
for latent spatial processes. Model results demonstrate an
ability to consistently capture wetlands identified through
aerial interpretation with greater than 90 % accuracy (scaled
Brier Score) and to identify wetland extents, ecotones, and
hydrologic connections not identified through use of other
modeling and mapping techniques. The provided model is
reasonably robust to changes in resolution, areal extents
between 100 km2 and 300 km2, and region-specific physical
conditions.
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Introduction

Wetlands provide a vast array of ecological services, func-
tions, and values. From flood protection and the mainte-
nance of water quality, to carbon sequestration, the medi-
ation of biogeochemical cycles, and numerous economic,
aesthetic, and cultural benefits, wetlands are paramount to
human health and well-being (Mitsch and Gossilink 2000,
Barbier 2011). Notwithstanding the widely-recognized need
to identify and manage wetland resources in a sustainable
way (Christensen 1996, Turner 1989), techniques to effi-
ciently inventory and realistically model wetland presence
at the landscape-level remain elusive (Finlayson et al. 1999,
Rebelo et al. 2009, Meixler and Bain 2010).

The National Wetland Inventory (NWI) produced by the
United States Department of Interior Fish and Wildlife Ser-
vice is the most widely used source of spatial wetland data
in the United States and has been utilized to predict impacts
from sea-level rise, to undertake wetland restoration plan-
ning, and to perform ecological modeling for a variety of
wildlife species and habitats (Fish and Wildlife Service
2009). Although the NWI has been applied to a diverse
range of studies, its creation and continued development are
dependent on the time-consuming aerial interpretation of
vegetative cover by individual human analysts (Dahl 2011).

Vegetative land cover can play an important role in wet-
land identification (Adam et al. 2010); however, vegetative
evidence in the absence of other corroborative data may
underestimate wetland presence or extent. For example,
indicators of hydrology as derived from elevation models
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may be valuable in determining wetland presence (Lang
et al. 2012, Lang et al. 2013) and the ability of soil chem-
istry and morphology to reflect hydrologic gradients is a
key tenant of hydropedology (Pennock et al. 2014). Indeed,
the robustness of the hydrology, soils, and vegetation triad
of wetland indicators is well-established and even has been
legally formalized into the regulatory definition of wetlands
as implemented in Section 404 of the Clean Water Act (33
U.S.C. §1251 et seq. 1972). In Florida for example, Chap-
ter 62-340 of the Florida Administrative Code details that
delineation of the landward extent of wetlands or other sur-
face waters for regulatory purposes requires consideration
of a site’s hydrology, soils, and vegetation. The essence of
the rule is that if evidence for “two out of three” of these
indicators is present at a location, then that area may be
designated as a wetland or surface water. Even though ele-
vation and soils data are increasingly available at no cost,
reliance on qualitative methods bars the inclusion of such
ancillary information from the wetland identification pro-
cess. Photographic interpretive techniques, like those used
in development of the NWI, may not fully exploit the poten-
tial time-savings, scientific rigor, and ecological realism
available through quantitative landscape ecology and spatial
statistics.

Landscapes are spatially heterogeneous. The charge of
the landscape ecologist is to explain this heterogeneity in
terms of pattern and process with explicit examination of
spatial structure, variability, and scale (Wiens 1989). In spite
of the need for consideration of spatial structure in ecologi-
cal modeling (Hoeting 2009), efforts to improve on the NWI
have focused largely on aggregation approaches in which
NWI data are merged with selected attributes from National
Resources Conservation Service (NRCS) soil maps, the
National Hydrography Dataset (NHD), or similar sources
using attribute look-up tables or “spatial join” procedures in
a Geographic Information Systems (GIS) environment (see
e.g. Galbraith et al, 2003; Reif et al, 2009; Dvorett et al,
2012). Spatial processes are often excluded in these efforts
and the selection criteria used by researchers in choos-
ing what attributes to amalgamate are rarely provided or
detailed. In a few instances, investigations have included
spatial statistics in a post hoc fashion to help describe aggre-
gated results (see e.g. Mccauley and Jenkins, 2005; Martin
et al, 2012); however, the unambiguous consideration of
spatial dependence, spatial autocorrelation, or other latent
structural processes as potential explanatory variables in
predicting wetland presence is uncommon. Beyond neglect-
ing to leverage the explanatory power of spatial processes,
the majority of wetland modeling studies generate results
under the patch matrix perspective (however, see Murphy et
al, 2007). That is, most wetland models reduce real-world
environmental gradients to dichotomous units of wetland
presence or absence.

Since the publication of Patches and Structural Com-
ponents for A Landscape Ecology, (Forman and Godron,
1981), patch matrix has been the prevailing method used to
represent landscape pattern. Despite wide-ranging endorse-
ment and implementation, the patch matrix model’s basis
in delineation of discrete ecological units or “patches” is
problematic under many modeling scenarios. For instance,
patch matrix boundaries are often subjectively determined,
they may not be relevant to focal ecological processes, and
they often fail to represent landscapes in an ecologically
realistic context (McGarigal 2005, McGarigal et al. 2009,
Evans and Cushman 2009, Lausch et al. 2015). Further-
more, the homogenization or simplification of landscape
structure diminishes measurable spatial heterogeneity and
thereby decreases the total amount of information available
to unravel the pattern and process relationship (McGarigal
2005). In contrast to the patch matrix model’s categoriza-
tion of landscapes as patchworks of discrete ecological
units, the gradient-based approach aims to quantify land-
scape heterogeneity through analysis of continuous value
ranges.

Continuous values better represent environmental vari-
ability precisely because they capture the trends, grada-
tions, and transitions found within and among landscape
components (McGarigal 2005). In the case of wetlands,
the gradient-based perspective allows for wetlands to be
modeled and represented as integrated components of the
larger hydrologic system, complete with ecotones, riparian
zones, transitional areas, and hydrologic connections (Mur-
phy et al. 2007). As part of a larger theoretical framework,
movement from the patch matrix model to a gradient-based
methodology tracks the historical trajectory of landscape
ecology. That is, landscape ecology has matured from a once
descriptive science, concerned predominantly with the tax-
onomy of homogeneous types or units, to one focused on
the reciprocity of pattern and process as observed in mul-
tiple dimensions and restrained by scale (Wiens 1989, Wu
and Loucks 1995, Wu and Hobbs 2002, 2007).

Capable of accommodating both fixed and random
effects, Bayesian probability models may offer resolution to
many of the difficulties encountered when predicting wet-
land presence. The tiered configuration (hierarchy) of the
probability models allow for incorporation of “known” envi-
ronmental variables as well as the “unknown” effects associ-
ated with latent processes like spatial correlation. Within the
hierarchical model framework, latent structural processes
can be assimilated into models via a random-effect term that
serves to quantify the uncertainty remaining after account-
ing for the effects of fixed environmental covariates (Elsner
et al. 2016). Until recently, fitting of Bayesian hierarchical
models has been restricted to computationally demanding
Markov chain Monte Carlo (MCMC) simulation; however,
integrated nested Laplace approximation (INLA) uses an
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approximation for inference and therefore provides a newly
accessible and fast alternative to MCMC (Rue et al. 2009).

The goal of the current study is to employ techniques
from spatial statistics to predict the probability of wetland
presence as a continuous gradient and with explicit consid-
eration of spatial structure. As a first step to accomplishing
this task, explanatory variables linked to soils, hydrology,
and vegetation are extracted from freely available govern-
ment datasets. Following verification of each individual
variable’s significance in explaining the presence of wet-
lands, the variables are fitted to a hierarchical model. In
addition to the soil, hydrologic, and vegetative fixed effects,
a Gaussian random-effect is stacked into the model to
incorporate latent spatial structure as a stochastic process.
Finally, model robustness is evaluated through examination
of its sensitivity to changes in scale, extent, and geographic
location.

Methods

Domain and Data

Model fitting is conducted for a primary domain in north-
west Florida. Model robustness is then assessed by apply-
ing the best performing model from the primary domain
to several other resolutions, areal extents, and geographic
locations.

The primary domain has an extent of 100 km2 and is cen-
tered on Wakulla Springs State Park, approximately 23 km
south of Tallahassee, Florida [Fig. 1]. The area is bounded
by a 10 km by 10 km square with a northwest corner
located at 30.23◦ N Latitude and −84.25◦ W Longitude.
The domain occurs in the Southeast Coastal Plain and is
within the Gulf Coastal Lowlands physiographic province.
Elevation over the area is mostly uniform between three and
nine meters above sea level with infrequent increases to a
maximum of approximately fourteen meters. The Wakulla
River and its associated floodplain transect the study area
from the northwest to the southeast corners. Dominant land
cover over the domain includes natural upland communities,
natural wetland communities, silvaculture, agricultural, and
developed areas (commercial and residential).

The second and third domains overlap that of the pri-
mary study area, but encompass larger areal extents. These
domains double and then triple the area of the primary
domain to 200 km2 and 300 km2 respectively and are used
to evaluate model sensitivity to changes in areal extent.
The fourth domain [Fig. 2] is also located within the
Gulf Coastal Lowlands physiographic province in northwest
Florida, but does not overlap the primary study area. The
fifth and final domain [Fig. 3] straddles the Peace River
in peninsular Florida about 80 km due east of the City of

Bradenton. Both the fourth and fifth domains exhibit an
areal extent of approximately 100 km2.

Analysis and modeling are performed using the open-
source R language for statistical computing (R Core
Team 2016) with freely-available government data. Incor-
porated data includes the 1/3 arc sec digital elevation
model from the United States Geological Service (USGS)
[http://ned.usgs.gov/], surface reflectance from the National
Aeronautics and Space Administration and USGS Land-
sat 8 collaboration [http://landsat.usgs.gov/landsat8.php],
land use data from the Florida Department of Environmental
Protection [http://www.dep.state.fl.us/gis/datadir.htm], and
Soil Survey Geographic Database soils data (SSURGO)
from the NRCS [http://websoilsurvey.sc.egov.usda.gov/
App/HomePage.htm]. Copies of the R code and all data
used in the study are available at github.com/JMHumphreys/
WetlandPatchwork.

Preliminary Analysis

To begin, soils data representing the primary domain are
spatially subset based on their coincidence with natural
upland and wetland land uses as identified by overlaying
land use data. In conjunction with the sub-setting of soils
data, a binary value (1, 0) designating each soil mapping
unit’s (SMU) geographic association with a wetland (1) or
upland (0) is added to the soils spatial object. In addition to
the newly added vector specifying each SMU’s affiliation
to a wetland or upland land use, the full complement of the
dataset’s native attributes are maintained. To reveal underly-
ing data structure, native soil attributes are then transformed
using principal component and correspondence analyses.

Continuous numeric attributes from the soils spatial
object, such as those estimating depth to water table and
water storage, are explored using a Principal Components
Analysis (PCA). In a similar fashion, categorical and nom-
inal soil attributes (e.g. soil taxa, drainage classification,
etc) are evaluated through Multiple Correspondence Anal-
ysis (MCA). Both the PCA and MCA are performed using
the FactoMineR package (Lê et al. 2008). Next, the decom-
posed variables from the PCA and MCA are assessed for
statistical significance by regressing each onto the binomial
land use vector that was generated during the initial sub-
setting of soils data. The regression is carried-out using a
non-spatial model as implemented using the r-INLA pack-
age (Rue et al. 2009). Those decomposed soil variables with
significant non-zero model coefficients as determined by
the credible interval are retained for further investigation.

To supplement the decomposed soil variables, estimates
for Available Water Capacity (AWC) and Organic Mass
(OM) are calculated using the soilDB package (Beaudette
et al. 2016). This is done by aggregating attributes by the
horizon-level and then by the soil profile before performing
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Fig. 1 Primary Domain
(Domain 1). The 100 km2

domain is located in Wakulla
County, Florida. The
background map is produced
using functions in the ggmap
package (Kahle and Wickham
2013)

0km 5km 10km

N

30.15

30.20

30.25

−84.35 −84.30 −84.25 −84.20

Longitude (°W)

L
a
ti
tu

d
e
 (
°N

)

a weighted average across each SMU based on the per-
cent composition attribute. AWC is expressed as a vol-
ume fraction and, after adjusting for salinity and inclusive
fragments, represents the difference in tension between
water contents at field capacity (typically, one-tenth to one-
third bar) and fifteen bars (Veihmeyer and Hendrickson
1927). OM describes the amount of decomposed organic
matter present as a weighted percentage of soil material.
As with the decomposed soils data, the significance of
AWC and OM in predicting wetland presence within the
domain is verified using non-spatial regression. There is
concern in regard to the stability of the model coeffi-
cients due to correlation between attributes used in esti-
mating AWC and those decomposed from the original
soils dataset; however, these potentially confounding effects
are addressed during final model fitting and are discussed
below.

Having identified potential variables linked to soils, a
Soil Adjusted Vegetation Index (SAVI) is constructed as
a proxy for the wetland vegetation found in the domain
using surface reflectance from the National Aeronautics
and Space Administration and USGS Landsat 8 collab-
oration (30m2 resolution). The fluctuation of chlorophyll

concentration within wetland vegetation is correlated to site-
specific hydrology, and because chlorophyll reflects the
red and near-infrared spectra disproportionately, remotely
sensed reflectance data can be applied to identify possible
wetlands (Adam et al. 2010). The SAVI quantifies the ratio
of the red and near-infrared bands of surface reflectance
by dividing the difference of the two by their sum plus a
standard correction factor (Masek et al. 2006). Following
calculation of the SAVI, its ability to predict wetland pres-
ence is confirmed using non-spatial regression as previously
described.

Recognizing that digital elevation data can be used to
identify surface flow and wetland hydrology (Moore et al.
1993), two topographic indexes are derived. First, a sim-
ple Topographic Position Index (TPI) is calculated as the
difference between the value of a target cell and the mean
value of its eight neighboring cells. Secondly, a Compound
Topographic Index (CTI) is given as the natural log of the
upstream contributing area divided by the tangent of the
slope for each cell. The explanatory power of both the TPI
and CTI are checked through non-spatial regression.

As a final step before model fitting, a spatial adja-
cency graph is constructed for the study domain using the
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Fig. 2 Domain 4 located in
northwest Florida. The 100 km2

domain is found in Leon
County, Florida
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spdep package (Bivand and Piras 2015). Determination of
neighbor contiguity during graph construction is restricted
to a minimum of two neighboring cells and a maximum of
eight (i.e. a “queen” configuration).

Model Fitting and Selection

The probability of wetland presence (ps) at cell s is given as

π(ps) ∼ Binomial(μp, η), (1)

where the presence or absence of a wetland at a location
(either 0 or 1) is described by a binomial distribution with
mean

μp = exp(η)

1 + exp(η)
, (2)

and a mean probability (μp) that is linearly related to the
fixed and random effects as

η = γ0 + γV 1V1s + γV 2V2s

+γMCAV 3MCAV3s + γMCAV 5MCAV5s

+γOMOMs + γT PITPIs + γCT ICTIs + us, (3)

using the logit link. Throughout fitting of candidate sub-
models, Eq. 3 (specifying sub-model “model2”) is modified
iteratively to examine various covariates.

The fixed effects include the first and second decom-
posed soil variables from the PCA (V1s) and (V2s), the
third and fifth decomposed soil variables from the MCA
(MCAV3s) and (MCAV5s), Organic Mass (OMs), the Topo-
graphic Position Index (TPIs), and the Compound Topo-
graphic Index (CTIs). The random effect (us) follows a
Besag formulation (Besag 1975):

ui |uj , i �= j, τ ∼ N

⎛
⎝ 1

mi

∑
i∼j

uj ,
1

miτ

⎞
⎠ (4)

where N is the normal distribution with mean 1/mi ·∑
i∼j uj and variance 1/(mi · τ) where mi is the number

of neighboring cells of cell i and τ is the precision; i ∼ j

indicates cells i and j are neighbors.
Vague Gaussian priors with known precision are assigned

to the γ ’s. The priors and the likelihood are combined with
Bayes rule to obtain the posterior distributions for the model
parameters. The integrals cannot be solved analytically;
therefore, the method of INLA is used as a fast alternative
to MCMC simulation for models that have a latent Gaussian
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Fig. 3 Domain 5 located in
southwest Florida. The 100 km2

domain is found in Hardee
County, Florida
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structure (Rue et al. 2009). This is done with functions from
the r-INLA package (Rue et al. 2014).

The variables developed during the preceding prelimi-
nary analysis are evaluated for possible collinearity prior
to initiating construction of the spatial model. Collinear-
ity diagnostics for independent variables as described by
Belsley et al. (1980) are implemented using the perturb
package (Hendricks and Pelzer 1991). Initial condition-
ing of the variable matrix produces an overall condition
index score of 28.45 and individual decomposition propor-
tions less than 0.500. These values fall below the maximum
thresholds proposed by Belsley et al. (1980), suggesting that
collinearity will not bias the model.

To quantify latent structural processes, the model is first
fitted (sub-model “model0”) with the random-effect term.
The random-effect term quantifies spatial dependencies
through incorporation of the adjacency graph. The adja-
cency graph provides a spatial index and neighbors list for
all regions within the study domain. Having defined neigh-
bor contiguity during preliminary analysis as being limited

to a minimum of two points, the primary domain includes
40,000 regions, with an average of 7.94 links per region.
The four corners of the square domain are found to be the
least connected regions with three links each.

Next, the fixed covariates identified during prelimi-
nary analysis as being significant are added (Sub-model
“model1”). Sub-model “model2” is then constructed by
retaining the non-zero covariates resulting from model1.
To investigate the influence of the random-effect term,
sub-model model2 is re-fit without the random-effect term
(sub-model “model3”).

Posterior distributions for the candidate models are re-
approximated to ascertain the Watanabe-Akaike informa-
tion criteria (WAIC) and log-conditional predictive ordi-
nance (LCPO), which are methods of cross-validated skill.
These statistics measure the relative quality of the model
given the available data and both are scaled such that the
lower the value, the better the model. After fitting all mod-
els, comparison of the WAIC and LCPO and consideration
of non-significant covariates reveal that sub-model model2
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Table 1 Comparison of model results for the primary domain

SUB-MODEL WAIC LCPO COVARIATES

model0 6936.79 0.097 u (Spatial structure only)

model1 5664.46 0.077 V1 + V2 + MCAV3 + MCAV5 + AWC + OM + SAVI + CTI + TPI + u

model2 5667.77 0.077 V1 + V2 + MCAV3 + MCAV5 + OM + CTI + TPI + u

model3 15329.81 0.192 model2 covariates excluding spatial structure

Watanabe-Akaike information criteria (WAIC) and log of the conditional predictive ordinance (LCPO)

is the best performing model. Although model1 produces a
slightly less WAIC than does model2 (5664.46 and 5667.77
respectively), two of model1’s covariates (AWC and SAVI)
are found to be non-significant as determined by the cred-
ible interval and the LCPO is found to be identical. Four
candidate models are fitted in total for the primary domain,
these are summarized with WAIC and LCPO in Table 1.

To undertake formal prediction of wetland presence for
the primary domain, several steps are required. Firstly, all
data used in fitting the best performing sub-model (model2)
is duplicated. Next, the response variable of the duplicate
dataset is set to “NA” and then re-combined with the origi-
nal data as required by the r-INLA package. The combined
dataset, now twice the length used for initial fitting, is
re-fit using the model specification from model2. This pro-
cess leverages model fixed−effects to perform prediction of
wetland presence while controlling for spatial processes.

As a means of gauging predictive accuracy, results for
spatial and non−spatial models are compared using a Brier
Score. The Brier score is a proper score function that mea-
sures the accuracy of probabilistic predictions for binary
outcomes and is comparable to the mean squared error. The
Brier Score is calculated as the sum of the differences of
predicted probabilities of wetland presence and the value
one (p) for all cells identified as having wetlands by the
land cover training data used during pre-processing. Overall
model accuracy can in-turn be estimated by a scaled Brier
Score given as Brierscaled = (1 − Brier/Briermax) ×
100 % , where Briermax = p̄ × (1 − p̄). The scaled
Brier Score measures model accuracy over the more intu-
itive range from 0 % to 100 % such that the lower the score,
the more accurate the prediction. Applied in this manner,
the Brier Score is comparable to Pearson’s R2 statistic (Hu
et al. 2006).

Table 2 Dimension
descriptions for the V1 and V2
decomposed soil variables
retained for model fitting

Soil Attribute r (V1) r (V2) Attribute Description

aws0100wta −0.7943 0.4989 Available water storage to 100 cm

aws0150wta −0.6023 0.6184 Available water storage to 150 cm

aws025wta −0.2834 0.7984 Available water storage to 25 cm

aws050wta −0.5728 0.7017 Available water storage to 50 cm

elev h 0.6157 0.3738 Elevation (highest point)

elev l 0.4961 0.5754 Elevation (lowest point)

elev r 0.6341 0.4167 Elevation (center point)

niccdcdpct 0.6306 −0.2375 Non-irrigated capability class (%)

slope h 0.9264 0.2967 Slope (highest point)

slope r 0.6306 −0.2375 Slope (center point)

slopegradd 0.8584 0.3853 Gradient of dominant component

slopegradw 0.8584 0.3853 Weighted average slope all components

wtdepannmi 0.7112 0.1018 Shallowest depth wet soil (Anytime)

wtdepaprju 0.6035 −0.1523 Shallowest depth wet soil (April - June)

The Soil Attribute column provides the soil attribute designation as assigned by the NRCS, the center
columns provide the Pearson correlation coefficient (r) for V1 and V2, and the final column provides a
description of the soil variable. All listed soil attributes were found to be significant (p-value < 0.001) in
describing the dimension
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Table 3 Dimension
descriptions for the MCAV3
and MCAV5 decomposed soil
variables retained for model
fitting

Soil Attribute R2 (MCAV3) R2 (MCAV5) Attribute Description

muname 1.0000 1.0000 Mapping Unit Name

foragesuit 0.9897 0.9300 Forage Suitability Group

compname 0.9336 − Component name

wlwetland 0.9003 0.6711 Wetland wildlife suitability

drclasswet 0.8946 0.7141 Drainage (wettest)

drclassdcd 0.8921 0.7462 Drainage (dominant)

wlwetplant 0.8653 0.7310 Suitability for wetland plants

wlshalloww 0.8553 − Wetland wildlife suitability (shallow)

engdwbll 0.8314 − Basement rating (all components)

englrsdcd 0.8230 − Rating for roads or streets

hydgrpdcd 0.7779 − Hydrologic group runoff potential

engdwobdcd 0.7672 − Basement rating (dominant component)

brockdepmi 0.7425 0.7230 Depth to paralithic or lithic layer

nirrcapscl 0.6839 − Non-irrigated soils class

niccdcd 0.6615 − Non-irrigated soils (average)

nirrcapcl 0.6615 − Non-irrigated soils (broadest class)

localphase 0.6564 0.7840 Component phase criterion

pondfreqpr 0.6156 − Subject to inundation at surface (%)

hydclprs 0.5992 − Hydric soil classification

erocl 0.5759 − Class of accelerated erosion

hydricon 0.5632 − Natural condition of the soil

runoff − 0.5804 Runoff potential class

corsteel 0.5263 − Susceptibility of steel to corrosion

The Soil Attribute column provides the soil variable designation as assigned by the NRCS, the center
columns provide the coefficient of determination (R2) for MCAV3 and MCAV5, and the final column
provides a description of the soil variable. All listed soil attributes were found to be significant (p-value <

0.001) in describing the dimension
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Fig. 4 Spatially structured random effects for Domain 1. a Structured random effects present prior to adding fixed effects (model0). b Structured
random effects after accounting for fixed effects (model3). Percentages indicate change above (warm colors) and below (cool colors) the domain
mean density
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Results

Results from the preliminary analysis indicate that four
decomposed soil variables are significant predictors of wet-
land presence as determined by the credible interval. These
variables are retained for model fitting and include the
V1 and V2 variables resulting from the PCA and the
MCAV3 and MCAV5 variables from the MCA. The con-
tinuous soil attributes listed in Table 2 were found to be
significantly correlated (p-value < 0.001) to both V1 and
V2 and are displayed with Pearson correlation coefficient
(r). Table 3 provides the categorical soil attributes that best
describe MCAV3 and MCAV5 with corresponding coeffi-
cient of determination (R2). For the categorical attributes, an
ANOVAwith one factor is conducted for each dimension by
regressing the categorical attributes onto the coordinates of
the individuals and a F-test is performed to evaluate variable
influence on the attribute (Lê et al. 2008).

Initial fitting of the model with the spatial random-effect
term in the absence of fixed effects results in a map of
smoothed densities relative to the domain mean [Fig. 4a].
Warm colors indicate cells with a density that exceeds the
mean density for the domain and cool colors highlight cells
where densities fall below the mean. On the whole, the
map denotes several areas of elevated density. A linear pat-
tern extends from near the northwest corner and traces a
path diagonally across the domain to the southeast cor-
ner concomitant with the Wakulla River floodplain. The
most concentrated area of density is located in the southeast
corner of the domain. Geographically, the southeast cor-
ner approaches the confluence of the Wakulla River with
the Gulf of Mexico. The southwest and northeast corners
demarcate comparatively less-dense areas.

Adding the fixed effects identified with the selected
model (model2) allow for remapping of the random-effect
while controlling for the soil and hydrologic fixed effects
[Fig. 4b]. Regions of elevated density still evident in Fig. 4b

Table 4 Summary of posterior mean and 95 % Credible Interval for
sub-model model2 fixed effects

Mean Quant0.025 Quant0.975

(Intercept) 12.5214 −13.9087 −11.4532

V1 0.4453 0.0533 0.8399

V2 −1.9288 −2.2383 −1.6435

MCAV3 4.4632 4.0206 4.9758

MCAV5 0.2411 0.0313 0.4519

OM −0.2197 −0.3630 −0.0765

CTI 1.8334 1.6285 2.0645

TPI −0.4455 −0.5909 −0.3013

provide an estimate for the structural processes that remain
after accounting for the indicators of wetland presence spec-
ified by the selected model. In comparison to the raw
random-effects shown in Fig. 4a, the corrected map for
sub-model model2 depicted in Fig. 4b displays a distinct
decrease in density across the domain as a whole and partic-
ularly along the linear pattern associated with the Wakulla
River.

Posterior densities and the corresponding credible inter-
vals for model fixed effects are summarized in Table 4.
The first decomposed soil variable (V1) has a posterior
mean of 0.4453[(0.0533, 0.8399) 95 % credible interval].
This translates to a 60.95 % [(1/(1 + exp(−0.4453))) ×
100 %] increase in the probability of wetland presence for
each whole number increase in the V1 value while holding
all other fixed effects constant. Comparatively, the pos-
terior mean of the second soil variable (V2) indicates a
12.69 % increase in the probability of wetland presence for
each whole number decrease in V2. The decomposed soil
variables resulting from the MCA analysis of categorical
data (MCAV3 and MCAV5) indicate that the probability of
wetland presence increases 98.86 % and 56.00 % respec-
tively for each unit increase while holding other effects
constant. The posterior mean of OM indicates that for
each unit decrease in organic mass, the probability of wet-
land presence increases 44.53 % holding others constant.
For each whole unit decrease in the Topographic Position
Index (TPI), the probability of wetland presence increases
39.04 % with other effects constant. The posterior mean
of the Compound Topographic Index (CTI) translates to
a 86.22 % increase in wetland presence for each increase
in the CTI index value while holding other fixed effects
constant.

To gauge predictive accuracy, results for spatial and
non−spatial models are compared using a scaled Brier
Score. The lower the Brier score, the better calibrated the
model. Resulting scaled Brier Scores indicate that the spa-
tially explicit model produces substantially increased pre-
dictive accuracy over its non−spatial equivalent across all
domains. In the case of the primary domain (Domain 1), the
spatial model achieves a scaled Brier Score of 90.7 % com-
pared to a 75.8 % for the non−spatial model. Results for the
three predicted domains are summarized in Table 5.

Table 5 Summary of scaled Brier Scores

Domain Spatial Non-Spatial

Domain 1 90.7 % 75.8 %

Domain 4 86.6 % 82.1 %

Domain 5 86.3 % 76.9 %
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After constructing a model for the primary domain,
model robustness is evaluated by changing the spatial res-
olution, areal extent, and geographic location of the study
area. To examine the influence of resolution, the primary
domain is reevaluated using cells with a 30 m edge length,
and then with cells having a 70 m edge length. The 30 m
resolution is selected as it is the resolution of the SAVI
covariate. Figure 5a depicts the posterior distributions of
model fixed effects at 30 m and 70 m resolutions relative
to the 50 m resolution used when fitting the original model.
Generally, refining spatial resolution results in an increase
to the absolute value of the TPI, MCAV3, and OM fixed
effects while a decrease in absolute value is noted for CTI.
Although the responses of individual covariates differ, all of
model2’s fixed effects remain significant at both the 30 m
and 70 m resolutions.

Doubling the domain areal extent from 100 km2 to
200 km2 does not result in the loss of any significant fixed
effects [Fig. 5b]. That is, all covariates remain significant
at both the 200 km2 and 300 km2 areal extents. No gen-
eral pattern is noted in regard to the influence of extent on
the absolute value of fixed effects as each of the covariates
uniquely respond to the change; however, a sign change is
apparent for several covariates (V1, MCAV3, and MCAV5).

To evaluate model performance in other physical land-
scapes, the selected model from the primary domain
(Domain 1) is applied for two other locations in Florida.
Firstly, model fitting and prediction of wetland presence
is carried out for a different 100 km2 area (Domain 4) in
the same physiographic province as the primary domain
and secondly for a 100 km2 area (Domain 5) in peninsular
Florida. Echoing the prediction procedure for the primary

V1

V2

TPI

CTI

MCAV3

MCAV5

OM

0.0

0.2

0.4

0.6

0.8

0.0

0.3

0.6

0.9

0

1

2

0.0

0.5

1.0

1.5

2.0

0.0

0.2

0.4

0.6

0.0

0.5

1.0

1.5

0

2

4

6

−2 −1 0 1 2 3

−3 −2 −1 0

−3 −2 −1 0

0 1 2 3

0.0 2.5 5.0 7.5

−1 0 1

−0.6 −0.4 −0.2 0.0

P
o
s
te

r
io

r
 D

e
n
s
it
y

Resolution 50 m 30 m 70 m

a
V1

V2

TPI

CTI

MCAV3

MCAV5

OM

0.00

0.25

0.50

0.75

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

2.0

0

1

2

3

4

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0

5

10

15

−5.0 −2.5 0.0 2.5

−3 −2 −1 0

−1.5 −1.0 −0.5 0.0

0 1 2 3

−2.5 0.0 2.5 5.0

−3 −2 −1 0 1 2 3

−0.5 −0.4 −0.3 −0.2 −0.1 0.0

Areal Extent 100 km
2

200 km
2

300 km
2

b
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Fig. 6 Spatially structured random effects for Domain 4. a Structured random effects present prior to adding fixed effects (model0). b Structured
random effects after accounting for fixed effects (model2). Percentages indicate change above (warm colors) and below (cool colors) the domain
mean density

domain, both spatial and non−spatial models are imple-
mented to better understand the contribution of the spatial
random-effect term.

As with the primary study area, fitting of the fourth and
fifth domains with the spatial random-effect term in the
absence of fixed effects reveals regions of elevated density.
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Fig. 7 Spatially structured random effects for Domain 5. a Structured random effects present prior to adding fixed effects (model0). b Structured
random effects after accounting for fixed effects (model3). Percentages indicate change above (warm colors) and below (cool colors) the domain
mean density
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In both cases, subsequent control of fixed effects reduces
total domain density. Comparison maps of random-effects
for the fourth domain are provided in Fig. 6 and maps for
the fifth domain are shown in Fig. 7.

The wetland maps produced for each of the five study
domains identify probable wetlands at locations not identi-
fied as wetlands by the National Wetlands Inventory (NWI).
Review of aerial imagery for locations with a relatively high
predicted probability of presence (e.g. probability greater
than 0.75) verify evidence of wetlands in the majority of
these cases. Figure 8 compares model predicted wetlands
for the primary domain (Domain 1) to those identified by the
NWI for the same area. The map located at the bottom (C)
of Fig. 8 displays the difference between model predicted
wetlands and those identified by the NWI. This illustration
was created by reclassifying locations identified as wetlands
by the NWI to 0 %. Comparison maps for Domain 4 and
Domain 5 are provided in Figs. 9 and 10 respectively. To
aid in interpretation of Fig. 10, a Flood Insurance Rate Map
(FIRM) produced by the Federal Emergency Management
Agency (FEMA) is also provided [Fig. 10c] to illustrate
the base floodplain (i.e., 100 year floodplain, Flood Haz-
ard Zones “A” and “AE”). FIRM data is freely available
from the Federal Emergency Management Agency [https://
msc.fema.gov/portal]. Assuming locations with a model
predicted probability of wetland presence greater than the
arbitrary threshold of 0.50 to represent realized wetlands,
models for all domains identify a greater area of wetland
(number of cells) than does the NWI. Beyond comparison
of total area, model predicted wetlands across all domains
include numerous flow ways, transitional areas, and eco-
tone gradients outside of areas identified by the NWI as
wetlands. Typically, predicted probabilities for transitional
areas were between 0.30 and 0.49. Because the probabil-
ity of wetlands at these locations fall below the arbitrary
threshold of 0.50, these extents are not included in the areal
comparison provided above for illustrative purposes.

Discussion

The identification and inventory of wetlands is essential
to natural resource management. To be effective in these
endeavors, it is critical that the procedures used to detect
and document wetlands be time efficient, accurate, and eco-
nomical. Aerial photographic interpretation of land cover by
individual human analysts necessitates hours of assessment,
introduces human error, and fails to include the best avail-
able soils and hydrologic data. Furthermore, photographic
interpretation results in products that assume the patch
matrix perspective. Under the patch matrix view, real-world
landscape gradients are reduced to dichotomous patches of
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Fig. 8 Comparison of model predicted wetlands for Domain 1 (north-
west Florida) with wetlands identified by the NWI. Top map (a)
depicts the extent of wetlands as predicted by the model. The map at
center (b) displays wetland extents as identified by the NWI. The map
at bottom (c) displays wetland extents identified by the model but not
identified by the NWI (e.g. NWI wetlands reclassified as 0 %). All
maps represent approximately 100 km2 and are composed of square
cells with an edge length of 50 m

wetland presence or absence. The current study leverages
probabilistic models to predict wetland presence as a con-
tinuous gradient (from not likely to certain) with explicit
consideration of spatial processes.

https://msc.fema.gov/portal
https://msc.fema.gov/portal
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Fig. 9 Comparison of model predicted wetlands for Domain 4 (north-
west Florida) with wetlands identified by the NWI. Map (a) depicts
the extent of wetlands as predicted by the model. Map (b) displays

wetland extents as identified by the NWI. All maps represent approxi-
mately 100 km2 and are composed of square cells with an edge length
of 50 m

The presented model incorporates freely available eleva-
tion, land use, and soils data and is executed as a single R-
code script. In the experience of the authors, identification
of wetlands over a 100 km2 area via photographic interpre-
tation necessitates approximately 40 work hours by an expe-
rienced human analyst. By comparison, the presented model
can evaluate 100 km2 at 50 meter resolution in approxi-
mately 50 minutes (Intel Core i7 4712HQ x4 2.3GHz 16GB)
while incorporating ancillary data and accounting for latent
spatial processes. Model results demonstrate an ability to
consistently capture training data derived from heads-up
assessment with greater than 90% accuracy as judged by the
scaled Brier Score, to out perform non-spatial linear models,
and to identify wetland extents, ecotones, and hydrologic
connections not included in either the training data or the
NWI.

Although, the provided model is reasonably robust to
changes in resolution, areal extents between 100 km2 and
300 km2, and region-specific physical conditions, it is
advisable that model fitting procedures be repeated for each
unique study domain as a means of calibrating the model to
local biophysical conditions. It may also be the case that the
environmental covariates explored in the current study are
not available for some locations outside of the United States,
or that other topographic or vegetative indices are found

to offer greater explanatory power due to region-specific
characteristics. That is, caution should be used when export-
ing the best performing model from one region to another.
The application of the best performing model from the pri-
mary domain to other locations in this study was for the sole
purpose of evaluating model sensitivity. Others are encour-
aged to utilize the presented modeling approach, to apply
a gradient-based perspective, to leverage spatial structure
towards prediction, and to widely explore other potential
environmental covariates.

Finally, several aspects of this study warrant further
investigation and it is the authors’ hope that the presented
work inspires exploration by other researchers. For exam-
ple, although decomposition of soils data facilitated the
development of several strong predictors of wetland pres-
ence, results from the sensitivity analysis bring to light
issues in regard to consistent use of such an approach.
Among these are issues relating to the shift of a given
dimension between positive and negative signs at differing
spatial extents, changes in the magnitude of effect sizes over
different study domains, and the overall repeatably of what
is essentially a data mining technique. Many of these poten-
tially confounding factors were not fully explored in this
study, as the presented model framework is motivated by
prediction rather than explanation or causality.
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Fig. 10 Comparison of model predicted wetlands for Domain 5
(southwest Florida) with wetlands identified by the NWI and FEMA
FIRM High Risk flood hazard areas (A and AE). Top map (a) depicts
the extent of wetlands as predicted by the model. Map at center (b)
displays wetland extents as identified by the NWI. Map at bottom
(C) displays FEMA FIRM “High Risk” flood Zones A and AE (i.e.,
base floodplain). All maps represent approximately 100 km2 and are
composed of square cells with an edge length of 50 m
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