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Abstract The authors define a spatio-statistical response of hurricane frequency to the

solar cycle. Previous research indicates reduced (increased) hurricane intensities and fre-

quency in the western (eastern) tropical Atlantic. However, no formal quantitative rela-

tionship has been spatially established between hurricane frequency and solar activity. The

authors use a Bayesian hierarchical space–time model, an increasingly popular approach

due to its advantage in facilitating regression modeling of space–time phenomena in the

context of large data sets. Regional hurricane frequency over the period 1866–2010 is

examined in response to September sunspot number (SSN) while controlling for other

relevant climate factors. The response features a 13 % reduction in probability of annual

hurricane occurrence for southeastern Cuba, the southern Bahama islands, Haiti, and

Jamaica when the SSN is 80 sunspots. In contrast, hurricane risk in regions of the

southeastern Atlantic is predicted to increase by 73 % when the SSN is 160 sunspots. The

model can be ported to explore other relationships over contiguous space.

Keywords Sunspots � Hurricanes � North Atlantic Oscillation � El Niño

Southern Oscillation � Sea-surface temperatures � Risk � Bayesian � Space–time

model � Hexagon tessellation

1 Introduction

North Atlantic hurricanes are severe tropical cyclones characterized by heavy rain, winds,

and extremely low surface pressures. With maximum sustained winds of at least 33 ms-1,

they constitute a major problem for much of the basin’s shoreline. Observed increases in

coastal population serve only to exacerbate the hurricane risk to life and property.
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Hurricanes are driven by the flow of heat and moisture from the ocean surface to the

overlying atmosphere. The warm seas found in tropical low-latitudes provide nearly

continuous heat and moisture fluxes into near-surface air. Traditionally, the sun’s role in

hurricane climate studies is thought of as a simple variable governing ocean heat content

and the calendar date as a predictor of tropical cyclone frequency and intensity. But the sun

features low- and high-amplitude modulations in energy output that can also influence

hurricane activity.

The idea of a connection between solar activity and hurricanes extends back to the

nineteenth century Meldrum (1872), Poey (1873), through the twentieth century Visher

(1924), Willett (1951), Cohen and Sweetser (1975) and into the twenty-first century Elsner

and Jagger (2008), Elsner et al. (2010), Hodges and Elsner (2012).

Variations in solar activity are monitored by sunspots. Sunspots are visible disturbances on

the photosphere of the sun. During the sun’s 11-year (on average) geographic switching of

magnetic poles, dark central cores (umbra) appear in various shapes (penumbra) in response to

the convective inhibition of solar plasma induced by migrating magnetic fields Weiss (2007).

The cooler, darker sunspots decrease overall solar luminosity. However, cloud-like features

(faculae) above the sunspot are roughly 300 K higher than the normal surface temperature of the

sun of 5,778 K, an increase of 5.2 %. The result is higher overall solar irradiance, especially in

the ultraviolet and extreme ultraviolet wavelengths as described by Planck’s law. Earth’s

stratospheric ozone absorbs this additional UV energy, and the result is increased stratospheric

and upper-tropospheric temperatures Labitzke et al. (2002), Hood (2003).

Elsner and Jagger (2008)—hereafter, EJ08—report fewer intense hurricanes over the

Caribbean and Gulf of Mexico when sunspots are high. The finding is inline with the heat-

engine theory of hurricanes Emanuel (1987), which predicts a reduction in the maximum

potential intensity in response to warming in the atmospheric layer near the top of the

hurricane. Recent work by Emanuel et al. (2013) reports that the 1979–2010 observed

increase in potential intensity is a result of tropical tropopause cooling, outpacing the

thermodynamic contribution from warming seas by a factor of eight. This supports Elsner

et al. (2010) findings where quantile regression revealed that high solar activity over the

western Caribbean leads to a -4.3 ± 1.86 ms-1 mean reduction in daily maximum wind

speed and a 90th percentile storm wind reduction of almost 9 ms-1 per 0.01 Mg II core-to-

wing ratio units (SD), another measure of solar UV forcing.

However, EJ08 also note that high numbers of sunspots correspond with higher

intensities in the eastern tropical Atlantic. The geographic difference is speculated as the

result in limiting factors for potential intensity. The western tropical Atlantic features

higher SST than the eastern tropical Atlantic, rendering the upper-tropospheric warming

from increased solar activity the limiting factor in the west. The eastern tropical Atlantic

demonstrates warmer sea-surface temperatures when the sun is active White et al. (1997),

Elsner et al. (2008). Nevertheless, a spatially heterogenous response in hurricane intensity

and frequency is observed in response to changes in solar activity.

Hodges and Elsner (2012) — hereafter, HE12—describe the spatial response of hurricanes

to extremes in the solar cycle using descriptive statistics. Regional hurricane frequency from

1851 to 2010 indicates fewer hurricanes across the Caribbean and along the eastern seaboard of

the USAwhen sunspots are numerous. In contrast, fewer hurricanes are observed in the central

and eastern North Atlantic when sunspots are few. Remarkably, solar cycles are as important

toward describing regional hurricane frequency as the El Niño Southern Oscillation, one of the

most important sources of hurricane variability in the North Atlantic Arkin (1982), Gray (1984).

Needed is a more formal quantification of the sun-hurricane connection. The purpose of

this treatment is to assess the statistical relationship between solar activity and hurricane
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activity over the North Atlantic at a finer, regional scale. A hierarchical space–time model

is applied toward this end.

The data used in this study are introduced in Sect. 2. In Sect. 3, the construction of the

equal-area hexagon grid is described. Also in this section, the space–time model con-

struction and implementation are described. Model results are presented in Sect. 4, fol-

lowed by a discussion in Sect. 5. A summary of the work is presented in Sect. 6.

2 Data

The best-track data set contains the six-hourly center locations and intensities of all known

tropical cyclones across the North Atlantic basin, including the Gulf of Mexico and

Caribbean Sea. The data set is called HURDAT (HURricane DATa). It is maintained by

the US National Oceanic and Atmospheric Administration at the National Hurricane

Center. Tropical cyclone center locations are given in geographic coordinates (in tenths of

degrees). The intensities, representing the 1-min near-surface (&10 m) wind speeds, are

given in knots (1 kt = 0.5144 ms-1). The minimum central pressures are given in millibars

(1 mb = 1 hPa). The data are provided in six-hourly intervals starting at 00 Universal Time

Coordinate (UTC). The version of HURDAT used here contains data through 2010.

Updated information is available online (www.nhc.noaa.gov/pastall.shtml#hurdat). Infor-

mation on the history and origin of these data are found in Jarvinen et al. (1984).

For each cyclone, the HURDAT observations are 6 h apart. For spatial analysis and

modeling, this can be too coarse, as the average forward motion of hurricanes is 6 ms-1

(12 kt). Therefore, the data are imputed using interpolation to 1 h. Wind speeds are

smoothed using a third-degree polynomial, capturing most of the fluctuation in cyclone

intensity without over-fitting to the random variations and consistent with the 5-kt preci-

sion of the raw wind speed Jagger and Elsner (2006).

Solar activity will be described via monthly mean International sunspot numbers as

made available by the National Geographic Data Center. It was originally constructed by

Solar Influences Data Analysis Center, World Data Center at the Royal Observatory of

Belgium. Reliable monthly observations extend back to 1749. Swiss astronomer Johann

Rudolph Wolf introduced a daily measurement technique that observes both total spots

observed and the quantity of their clusterings. The data set addresses observed error by

incorporating a weighted average of cooperating observations.

Pertinent to this study is the sunspot numbers for September, the peak month of the North

Atlantic hurricane season. Identified by EJ08 and spatially investigated in HE12, September

sunspots (SSN) are associated with decreased (increased) US (east and central Atlantic) hur-

ricanes. For the 145-year study period used here from 1866–2010, the range of SSN is between

0.6 sunspots and 235.8 sunspots, with mean 56.5 sunspots and median 48.1 sunspots (Fig. 1a).

The North Atlantic Oscillation (NAO) index is the monthly difference in normalized

sea-level pressures between Stykkisholmur, Iceland and Ponta Delgada, Azores. It is an

important pattern of global interannual variability Hurrell and Loon (1997), Mann and Park

(1994). May–June annual averages of the NAO index are used to identify the steering

effects of the subtropical high on hurricanes. The selection is a trade-off between the

maximum signal that occurs during boreal winter and the proximity to the month of

September, the peak of the North Atlantic hurricane season Elsner and Kocher (2000). The

145-year range of the NAO index is between -2.76 and 2.90 units of SD, with mean -0.36

units and median -0.43 units (Fig. 1b).
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The El Niño Southern Oscillation (ENSO) is a coupled ocean-atmospheric phenomenon

whose impact on hurricanes has been well established. The Southern Oscillation Index (SOI)

anomalies represent the normalized air pressure difference between Darwin and Tahiti. The

change in equatorial Pacific SST leads to an atmospheric pressure imbalance whose far-

reaching effects produce wind shear in the North Atlantic Main Development Region during

El Niño phases. Monthly values of the SOI anomalies are obtained from the UK Climatic

Research Unit (http://www.cru.uea.ac.uk/cru/data/soi/). For technical descriptions of the

SOI anomalies data, see Allan et al. (1991), Können et al. (1998), Ropelewski and Jones

(1987). SOI anomalies data begin January 1866. Annual averages of August–October SOI

values are used as an indicator of shear upon North Atlantic hurricanes Elsner and Jagger

(2008), Hodges and Elsner (2012). The 145-year range of the SOI is between -6.67 and 8.07

units of SD, with mean -0.26 units and median -0.27 units (Fig. 1c).

Sea-surface temperatures (SST) are a critical component for tropical cyclogenesis and

intensification. Hurricanes, previously described as giant heat engines, make use of tropical

oceans as a continual source of moisture and heat to sustain the release of latent heat from

condensation which powers its warm core. Higher SST, all else being equal, should provide

a more conducive environment for tropical cyclone development. However, the spatial

patterns of SST are not homogeneous. Therefore, regional SST information is useful. SST

data used here come from NOAAs Extended Reconstructed Sea Surface Temperature

(version 3b) at 2� resolution, provided by the NOAA Smith et al. (2008), specifically

NOAA/OAR/ESRL PSD in Boulder, Colorado (http://www.esrl.noaa.gov/psd/).

3 Methods

3.1 Spatial grid

Using the procedure outlined in Elsner et al. (2011) and employed in HE12, we create an

equal-area (&519,950 km2) hexagon tessellation to examine North Atlantic hurricanes by

region. The number of hurricanes that passes through a given region per year is recorded

once, regardless of how many observations reside in the region. The result is an annual

count and average per year of hurricanes (Fig. 2). The range in counts for all regions from

1866 to 2010 is 1 and 176 hurricanes. The range in hurricane frequency per year for all

regions is 0.01 and 1.21.

SST data points are also captured per region, ranging from 2 to 16 SST observations

collected per region. Observations are then averaged. To facilitate modeling, the 145-year

mean regional mean is assessed and removed. The result is a regional SST anomaly.

Regional anomalies range between -2.60 and 2.43 �C, with mean and median 0 �C.

Figure 3 displays the SST time series.

3.2 Space–time model

Having constructed a spatial framework, we now proceed to developing a statistical model

capable of assessing the impacts of solar activity. However, other factors are known to

affect hurricanes in the North Atlantic, such as the ENSO, the NAO, SST, and observation

issues prior to the advent of satellite coverage. Therefore, the model should account for

these concurrently with solar activity. A multiple regression model can describe the

marginal contributions of individual predictors on an outcome variable such as regional

hurricane frequency (Fig. 4).

Nat Hazards

123

http://www.cru.uea.ac.uk/cru/data/soi/
http://www.esrl.noaa.gov/psd/


Other factors to consider include the rare count nature of regional hurricane counts per

year, which requires use of a generalized linear model. We employ a Poisson model that

uses the logarithm of the dependent variable as the canonical link function to a linear

regression of the covariates.

Another complicating factor is the presence of spatial autocorrelation in annual hurri-

cane frequency over the hexagon tessellation (Fig. 2). The dependency arises from the

movement pattern of hurricanes over the domain in a given season. A hurricane counted in

one hexagon region will likely possess at least one neighbor that also observed that

hurricane. The result is a spatial dependence in the hurricane counts. Accordingly, we use a

space–time model that accounts for the spatial autocorrelation in hurricane frequency

within the gridded domain.

A Bayesian hierarchical model is capable of handling the above-mentioned factors and

correspondingly high dimensionality of prescribed data. Using Bayesian inference, a series

(or hierarchy) of conditional models are linked together formally via basic probability

relationships Wikle and Anderson (2003). The general hierarchical model consists of three
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Fig. 1 Time series of (a) September sunspots (SSN), (b) May–June averaged North Atlantic Oscillation
(NAO) units, and (c) August–October averaged Southern Oscillation Index (SOI) units for the period
1866–2010.
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stages: (1) a data model, which describes the probability distribution of the data observations

conditional on some process of interest and parameters that describe the data model; (2) a

process model, which describes the probability distribution of some underlying process

conditional on other parameters; and (3) a parameter model, which describes the probability

distribution of the parameters themselves Berliner (1996), Wikle et al. (1998).

3.2.1 Data model

The data model of our spatiotemporal process assumes that the yearly hurricane counts in

each region are independent Poisson random variables when conditioned on the underlying

Poisson rate process. Formally,

Hs;t � dpois ðks;tÞ ð1Þ

where Hs,t represents hurricane counts and ks,t represents the underlying Poisson rate, in

hexagon regions s = 1,…, S representing hexagon regions 1 through 59 at times t = 1,…,

T representing years 1866 through 2010.

3.2.2 Process model

The process model fleshes out the spatiotemporal process impacting regional hurricane

frequency using a multivariate regression model. Climatological variables known to affect

North Atlantic hurricanes are specified here: SSN, SST, SOI, NAO, and an indicator

variable given a value of 0 for years 1866–1965 and a value of 1 for years 1966–2010 to

address likely hurricane undercounts in the eastern Atlantic prior to satellite coverage

Total hurricanes, 1866−2010 (counts per year)

1
(0.01)

30
(0.21)

60
(0.41)

90
(0.62)

120
(0.83)

150
(1.03)

180
(1.24)

Fig. 2 Total hurricanes and corresponding counts per year for the period 1866–2010. A total of 59 hexagon
regions are displayed.
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Fig. 3 Sea-surface temperature anomalies (SST) from 1866–2010. A regional maximum of ?2.43 �C is
found in the region northeast to that containing the tip of Newfoundland and a regional minimum of
-2.60 �C directly to the southeast of the regional maximum.
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Fig. 4 Space–time model output for September sunspot number (SSN). (a) Regional mean change in log
relative risk (bSSN) of hurricane frequency per region per 100 SSN. (b) Same, but for the SD. (c) Regional
change in relative risk (bSSN) of hurricane frequency per 100 SSN, conditional upon holding all other
covariates constant. Positive values (red) indicate regions where fewer storms are predicted when SSN is
low. Negative values (blue) indicate regions where fewer storms are predicted when SSN is high. Hexagon
regions where \10 % of bSSN samples are below (or above) zero are outlined in black. (d) Histogram of
bSSN for region W. (e) Same, but for region E.
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(SAT) starting in 1966 Neumann et al. (1999). We model the logarithm of the Poisson rate

as a linear combination of the predictors. Formally,

logðks;tÞ ¼ bSSTðsÞ � SST s;t þ bSSNðsÞ � SSN t þ bSOIðsÞ � SOI t

þbNAOðsÞ � NAO t þ bSATðsÞ � SAT t þ gðsÞ ;
ð2Þ

where bSST(s) are regional regression coefficients for SST that vary by region and year, the

remaining b(s) terms are regional regression coefficients for SSN, SOI, NAO and SAT that

vary by year only, and g(s) is the regional error term.

3.2.3 Parameter model

The parameter model addresses uncertainty in the data and process models by assigning

them prior distributions. Spatial autocorrelation is accounted for in this stage. We allow the

regression coefficients to vary regionally and to be informed by their immediate—and up

to a maximum of six—neighboring region values. We assume then that the prior for each

spatially varying regression coefficient is the independent sum of unstructured and spatial

random effects. Formally, the parameter model is given by

bk ¼ Uk þ Sk ð3Þ

Uk �Nðqk; I=su;kÞ ð4Þ

Sk � ICARðW; ss;kÞ : ð5Þ

In Eq. 3, bk is the regression coefficient vector, with components bk(s) where k corre-

sponds to the sequence of SST, SSN, SOI, NAO, and SAT predictors applied per hexagon

region (s) plus an intercept term (b0).

In Eq. 4, Ukis the unstructured random effects vector which has a multivariate Normal

random distribution with mean qk and covariance matrix I/su,k. That is, bk(s) is a series of

i.i.d. normal random variables with mean qk and variance I/su,k. There are six separate values

for s (i.e., the five covariates and one error term) which come from a gamma distribution with

a shape of 0.5. The rate parameter is 0.005 for the error term and 0.005 divided by the data

variance of the covariates (i.e., 0.005/0.25, 0.005/2485, 0.005/8.6, 0.005/1.1, 0.005/0.21,

respectively). These specifications are consistent with the concept of uninformative (or flat)

priors, where little information is provided a priori to the stochastic calculation.

In Eq. 5, Sk is the spatial random effects vector, which follows an ICAR distribution

with weight matrix W and precision ss,k. The six values of s used in the spatial component

also come from a gamma distribution with a shape of 0.5. The rate parameter is 0.005 for

the error term and 0.005 divided by the data variance of the covariates (i.e., 0.005/0.25,

0.005/2485, 0.005/8.6, 0.005/1.1, 0.005/0.21, respectively). The ICAR specification is

appropriate for situations of first-order (i.e., direct neighbor) dependency [Shekhar and

Xiong (2008) p. 1103] as used here. This specification was first used in Bayesian image

restoration Besag et al. (1991). Note that for the ICAR distribution the spatial random

effects prior for each component is constrained to sum to zero, so that an intercept term

must be used with a flat prior. Here, the intercept is given as qk, the vector of means for the

unstructured component.

The model selection was based on using the model output deviance information cri-

terion (DIC) provided as output by the OpenBugs software. The smallest DIC was pro-

duced by the above-listed set of predictors.
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3.3 Implementation

We simulate from the posterior distribution using Markov Chain Monte Carlo (MCMC)

methods. Specifically, the Gibbs sampler is a special case of Metropolis-Hasting algorithm

where unknown parameters are estimated one at a time and conditional upon all the other

parameters. The sampled draws are dependent on the previous iteration’s values toward

arriving at the target posterior distribution [Gelman and Hill (2007) p.397–408]. See §17.8

of Gelman and Hill (2007) for peer-reviewed literature on the Gibbs sampler.

The model is carried out using the Bayesian inference using Gibbs sampler (BUGS)

software. BUGS performs Bayesian analysis of many types of statistical models using

MCMC methods Gilks et al. (1996). The BUGS code follows the structure demonstrated in

§12.4.4 of Elsner and Jagger (2013).

Convergence and mixing diagnostics are performed on the model samples before using

them for inference. High values for the precision terms (s = 100) were assigned to ensure

realistic sample values of the uninitialized parameters. To diagnose model convergence

and mixing, qk is initialized with values 0.5 and 1.0, resulting in the construction of two

different MCMC chains.

Gelman and Rubin’s convergence diagnostic Gelman and Rubin (1992) were used to

indicate the potential scale reduction factor (PSRF) between the two chains per covariate

per hexagon region after 5,000 samples. PSRF is calculated by comparing the mean and the

variance of each chain to the mean and variance of the combined or pooled chain.

SST, SSN, NAO, and SAT covariates produced a maximum PSRF of 1.01 in hexagon

regions 18, 22, 50, and 19, respectively (hexagon regions are numbered 1 through 59 and are

mapped from left to right, bottom to top). SOI produced a maximum PSRF of 1.0. Values

above 1.1 for any parameter would indicate lack of convergence [Gelman and Hill (2007)

p. 352], though none qualify. This is evidence that the two model chains—starting from two

different points in parameter space—have converged prior to the 5,000th iteration.

The evolution of PSRF over successive model iterations is also important to examine. In

effect, it is a visual representation of model chain convergence, and an indicator of how many

samples to ignore as part of the model ‘‘burn-in.’’ Figure 9 shows the evolution of the PSRF

for all covariates for hexagon regions that required the most iterations for convergence.

bSAT’s in hexagon region 58 required 1,100 iterations to fall below the 1.1 value threshold.

Conservatively, therefore, the first 1,100 samples of the final model will be discarded.

Since the two model chains demonstrate convergence, the second chain (qk = 1.0) is

discarded in favor of the first. The first chain ( qk = 0.5) is used to diagnose mixing.

Finding the lowest effective sample size among the covariates and hexagon regions will

give let us conservatively the number of iterations to thin to repeatedly discard in the final

model run. The effective sample size of a model chain is the total number of samples after

adjusting for autocorrelation between model iterations Plummer et al. (2006).

For a sequence of 5,000 bk samples, the SE of the mean is the variance of bk samples

divided by the effective sample size n. The effective sample size is determined by esti-

mating the spectral density at frequency zero. The result is an estimate of how many

samples are independent for a given covariate in a given region and, thus, a measure of

decay. A higher effective sample size indicates good mixing; a lower effective sample size

indicates substantial autocorrelation.

The lowest effective sample size for bSST was 661 in hexagon region 19. For bSSN, 485

samples were produced in hexagon region 30. For bSOI, 976 samples were produced in hexagon

region 57. For bNAO, 454 samples were produced in hexagon region 57. For bSAT, 553 samples

were produced in hexagon region 44. Using the bNAO effective sample size, we record only the
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11th iteration in the final model. Therefore, after a burn-in of 1,100 samples, only the 11th

iteration of 11,000 samples is retained in order to produce 1,000 independent samples.

The total number of iterations in the final model is 12,101, which took approximately

1.5 h to complete on a mid-2009 Macbook Pro (2.66 GHz dual-core Intel Xeon processor,

4 Gb of 1067 MHz DDR3 RAM, 1.07 GHz front-side bus speed) running OpenBUGS via

WINE on OS X version 10.8.2.

4 Results

For each model covariate, spatial summaries of their respective 1,000 regression coefficients

(bk) samples are displayed in Figs. 5, 6, 7, 8, 9. They include descriptive statistics on the mean

and SD of these posterior samples per region. The log relative risk of annual hurricane

frequency changes by the respective regression coefficient per covariate unit, given all other

covariates are held constant. Histograms on bk are displayed for select western (W) and

eastern (E) regions. This serves as a visualization of the raw space–time model output.

Of climatologic interest are regional relative risk plots. They reflect the percent-change

in the rate of annual hurricane frequency given a one unit increase in the covariate, given

all other covariates are held constant. They are calculated as

½e�bk ðsÞ � 1� � 100% ; ð6Þ

where �bkðsÞ is the regional mean regression coefficient.

We identify grids where\10 % of the posterior samples are below (or above) zero with

a black border. These regions indicate where the relationship is likely not due to chance (at

the 90 % level).

4.1 September sunspots

Log relative risks of annual hurricane frequency (Fig. 4a) range between -0.20 and ?0.34

per 100 SSN throughout the basin. These values also correspond to Fig. 4d and e, regions

located in the southwestern Caribbean and southeast tropical Atlantic, respectively.

Relative risks range between -17.8 and ?40.9 % (Fig. 4c). The average relative risk

over the five significantly negative Caribbean regions is -16.6 % with SD 1.3 %. The

average relative risk over the sixteen significantly positive central Atlantic regions is

?26.9 % (SD 6.1 %).

4.2 SST

Log relative risks of annual hurricane frequency (Fig. 5a) range between -0.45 and ?1.05

per �C over the basin. Values for Figs. 5d and e, regions located in the southwestern

Caribbean and southeast tropical Atlantic, are -0.36 and ?1.05, respectively.

Relative risks range between -36.4 and ?187.1 % (Fig. 5c) over the basin. The average

relative risk over the five significantly negative regions is -27.1 % with SD 6.8 %. The

average relative risk over the sixteen significantly positive southeast Atlantic regions is

?109.1 % (SD 41.1 %).
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Fig. 5 Space–time model output for sea-surface temperature anomalies (SST). (a) Regional mean change in
log relative risk [bSST(s)] of hurricane frequency per �C. (b) Same, but for the SD. (c) Regional change in
relative risk (bSSN) of hurricane frequency per �C increase in SST, conditional upon holding all other
covariates constant. Positive values (red) indicate regions where more storms are predicted when SST is
positive. Negative values (blue) indicate regions where more storms are predicted when SST is negative.
Hexagon regions where \10 % of bSST samples are below (or above) zero are outlined in black.
(d) Histogram of bSST for region W. (e) The same, but for region E.
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Fig. 6 Space–time model output for the Southern Oscillation Index (SOI). (a) Regional mean change in log
relative risk (bSOI) of hurricane frequency per SD (b) Same, but for the SDs. (c) Regional change in relative
risk (bSOI) of hurricane frequency per one SD increase in SOI, conditional upon holding all other covariates
constant. Positive values (red) indicate regions where more storms are predicted when the SOI is high.
Negative values (blue) indicate regions where more storms are predicted when the SOI is low (none
qualifying). Hexagon regions where\10 % of bSOI samples are below (or above) zero are outlined in black.
(d) Histogram of bSOI for region W. (e) The same, but for region E.
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Fig. 7 Space–time model output for the North Atlantic Oscillation (NAO). (a) Regional mean change in log
relative risk (bNAO) of hurricane frequency per SD (b) Same, but for the SD. (c) Regional change in relative
risk (bNAO) of hurricane frequency per one SD increase in the NAO, conditional upon holding all other
covariates constant. Positive values (red) indicate regions where more storms are predicted when the NAO
index is high. Negative values (blue) indicate regions where more storms are predicted when the NAO index
is low. Hexagon regions where \10 % of bNAO samples are below (or above) zero are outlined in black.
(d) Histogram of bNAO for region W. (e) The same, but for region E.
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Fig. 8 Space–time model output for the indicator variable identifying seasons since 1966. (a) Regional
mean change in log relative risk (bSAT) of hurricane frequency since 1966. (b) Same, but for the SD.
(c) Regional change in relative risk (bSAT) of hurricane frequency since 1966, conditional upon holding all
other covariates constant. Positive values (red) indicate regions where more storms are predicted since 1966.
Negative values (blue) indicate regions where fewer storms are predicted since 1966. Hexagon regions
where \10 % of bSAT samples are below (or above) zero are outlined in black. (d) Histogram of bSAT for
region W. (e) The same, but for region E.
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4.3 SOI

Log relative risks of annual hurricane frequency (Fig. 6a) range between ?0.01 and ?0.11

per SD over the basin. Values for Figs. 6d and e, regions located in the southwestern

Caribbean and north-central tropical Atlantic, are ?0.11 and ?0.05, respectively.

Relative risks range between ?1.4 and ?11.5 % (Fig. 6c) over the basin. There are no

significantly negative relative risk regions. The average relative risk over the thirty-four

significantly positive regions is ?7.8 % (SD 2.8 %).

4.4 NAO

Log relative risks of annual hurricane frequency (Fig. 7a) range between -0.14 and ?0.03

per SD over the basin. Values for Figs. 7d and e, regions located in the western Gulf of

Mexico and northern Antilles, are -0.14 and -0.11, respectively.

Relative risks range between -13.1 and ?2.8 % (Fig. 7c) over the basin. The average

relative risk over the eight significantly negative regions is -11.6 % with SD 1.3 %. There

are no significantly positive regions.
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Fig. 9 Evolution of the potential scale reduction factor (PSRF) for select covariates and corresponding
hexagon regions.
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4.5 SAT

Log relative risks of annual hurricane frequency (Fig. 8a) range between -0.34 and ?0.68

since 1966 over the basin. Values for Figs. 8d and e, regions located in the southwestern

Caribbean and north-central tropical Atlantic, are -0.19 and ?0.43, respectively.

Relative risks range between -28.9 and ?97.5 % (Fig. 8c) over the basin. The average

relative risk over the four significantly negative regions is -26.5 % with SD 2.0 %. The

average relative risk over the sixteen significantly positive regions is ?56.7 % (SD

16.3 %).

5 Discussion

Here, we describe the model results by focusing on the effect of the covariates on regional

hurricane frequency. We contrast the covariate response here against the current under-

standing of the relationship. We begin with sunspot numbers.

5.1 SSN

Consistent with earlier studies (EJ08 and HE12), the effect of SSN on hurricane frequency

changes sign across the basin from west to east. The Atlantic basin is effectively split in

half, with the eastern half indicating a beneficial effect of solar activity upon regional

hurricane frequency, while the western half shows a detrimental effect.

Regions within the southwest Atlantic indicate a negative relationship. Reduced hur-

ricane intensities in response to upper-level warming Elsner et al. (2010) are likely driving

the frequency response in these regions. The statistical relationship shows that a moderate

Category 1 hurricane (37.5 ms-1) would decrease in intensity by approximately

-4.5 ms-1 per 0.01 Mg II core-to-wing ratio units (SD), or 12 %. The linear relationship

between daily sunspot number and the Mg II is quite strong Hodges and Elsner (2010),

with an increase of 0.01 Mg II units corresponding to an increase in 104 sunspots. The

16–17 % reduction in hurricane likelihood for the southwest Atlantic from this study

appears to match the 12 % reduction in intensity for this region. While there is a significant

difference in study periods—1979–2007 versus 1866–2010—the detrimental effect,

however, is consistent.

Note that none of the US Atlantic coastline is included in any significantly negative

regions. However, the sign on the coefficient in these regions is all negative. It is rea-

sonable to assume these signals correspond to fewer US seasonal hurricanes when the sun

is active Elsner and Jagger (2008). HE12 constructed hurricane count differences per

region by comparing the highest and lowest SSN hurricane seasons. The exclusion of

roughly half the data in their approach may explain why their US East Coast patterns do

not show up as statistically significant patterns shown here.

September sunspots have value as a ‘‘predictable’’ predictor. Solar cycle amplitudes and

sunspot numbers maxima have shown predictability to within 20 % accuracy 30 months

into the cycle, and within 10 % accuracy after 42 months Hathaway et al. (1994). Solar

Cycle 24 began in January 2008, which—at the time of writing—means the cycle is over

60 months old. The Solar Physics Group at NASA’s Marshall Space Flight Center (http://

solarscience.msfc.nasa.gov/predict.shtml) predict a peak of 69 sunspots for Sunspot Cycle

24 in the Fall of 2013. Assuming that value for September 2013 Bhatt et al. (2009), places
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like southeastern Cuba, the southern Bahama islands, Haiti, Jamaica, and the Yucan Straits

can expect approximately a 11.5 % lower probability of receiving a hurricane.

A new finding here is the location and magnitude of the southeast Atlantic response to

SSN. Here, regions of enhanced hurricane activity extend further north (&40 N) and east

(&20 E) than previously identified (&30 N; &20 E). However, the largest magnitudes

from SSN reside in the south and southeast Atlantic. Given a season where SSN is 160

sunspots (the 95th percentile of 1866–2010 SSN), the risk of a hurricane in one southeast

Atlantic region increases by almost 67 %.

A physical explanation for the east/west basin response is still unclear. Additional

warming of the sea surface from increased solar activity White et al. (1997) in southeastern

regions could lead to increased hurricane frequency. However, the SST response to solar

activity appears marginal, with only a 0.05 �C change in global-average sea-surface

temperature per 0.5 W m-2. Consider that sunspots are significantly related to solar irra-

diance, with the equation relating the two variables as:

S ¼ 1371:32þ ð0:00734� 0:00069ÞRz ð7Þ

, where S is solar irradiance (W m-2) and Rz is the Wolf Sunspot Number, a synonym for

the International Sunspot Number used in this study [Hoyt and Schatten (1997) p. 61]. A

value of 100 SSN, therefore, would correspond to a solar radiance increase of roughly

0.73 W m-2. An increase of ?0.73W m-2 would correspond to a ?0.073 �C increase in

SST. An increase in SST of this amount in the region of highest increase in relative risk per

�C in Fig. 4c (i.e., the eighth region from bottom left to right) would produce a relative risk

of roughly ?7 %, far less than the observed increase in relative risk per 100 SSN of

?40.9 % in the same region. In other words, the SSN influence on SST only explains about

17 % of observed increase in hurricane likelihood, clearly indicating there are other

physical factors in play here.

An alternative explanation to the thermodynamic arguments of EJ08 could involve solar

activity effects upon African Easterly Waves. Recent work by Loon and Meehl (2012)

indicates a steeper Indian land-to-sea pressure gradient when sunspots are numerous. This

leads to a more vigorous Findlater Jet, a low-level cross-equatorial flow that peaks in July

during the southwest Indian Monsoon. Likewise, a more vigorous African Easterly Jet

during periods of high solar activity could potentially lead to stronger African Easterly

Waves—which account for almost 60 % of Saffir-Simpson category 1 and 2 hurricanes

from 1967 to 1991 Landsea (1993). If so, it could explain the increase in hurricane

frequency in the eastern Atlantic during high solar activity. Further study is required.

5.2 SST

The tropical Atlantic main development region demonstrates a positive relationship (red)

to increased SST. More hurricanes are likely in genesis regions when seas are anomalously

warm. Shapiro and Goldenberg (1998) previously discovered this relationship in the same

areas, though their study used hurricane frequency from August to October and a non-

spatial linear regression model to diagnose the response.

The northern and western Gulf of Mexico regions (from New Orleans, Louisiana

through the Bay of Campeche) indicate a negative relationship. The relative risk for these

regions are ?32.0 and ?30.1 %, respectively, when local SSTs are 1�C cooler than nor-

mal. While seemingly contrary to hurricane development, these peripheral regions—along

with the two significant north Atlantic regions—may receive more hurricanes when other
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regions are also cooler than normal. In this case, tropical waves may need longer to

develop into hurricanes, leading to later-developing hurricanes into these regions.

5.3 SOI

During El Niño, stronger upper-level winds over the western Atlantic Arkin (1982) create an

environment unfavorable for tropical cyclones, resulting in a decrease in hurricane fre-

quency over the region Gray (1984). The positive (negative) relationship between La Niña

(El Niño) conditions in these regions agrees with previous findings of fewer total storms

Landsea et al. (1999) and fewer storms crossing the lower Caribbean during El Niño

conditions Gray and Sheafer (1991). The relationship is strongest in the lowest latitudes and

closest to the equatorial East Pacific, yet persists throughout most of the North Atlantic.

5.4 NAO

Much of the western tropical Atlantic—the lesser and greater Antilles and the Gulf of

Mexico—show significantly lower probabilities of receiving a hurricane when the NAO is

positive. A positive NAO pattern is defined as a stronger-than-normal pressure difference

between the Icelandic low and North Atlantic subtropical high. The effective result is a

northerly and easterly displacement of the North Atlantic subtropical high that steers fewer

hurricanes into the Caribbean and Gulf regions Liu and Fearn (1999) and correlates to

decreased US Gulf coast hurricane activity Elsner et al. (2000).

5.5 SAT

The increased risk in hurricanes since 1966 in the eastern Atlantic basin results may be

explained by the undercounting of hurricanes that recurve and go unobserved prior to the

advent of open-ocean satellite coverage Landsea et al. (2004), or a shift in hurricane

climate—such as more (less) hurricanes in the northeast (southwest) Atlantic—since 1966.

Results here affirm the spatial pattern noted by Vecchi and Knutson (2011), which indicate

a west/east split at 62.5 �W of fewer and more hurricanes, respectively.

5.6 Further discussion

All of the individual climate factors (SST, SOI, NAO, SAT) known to impact North Atlantic

hurricanes support the original findings discovered by previous investigators. This adds to the

credibility of the space–time model output with respect to the SSN regional responses.

We can quantify the spatial extent of each climate factor. We do this by comparing the

percentage of regions deemed significant according to the 90 % credible interval on

coefficients.

The SOI impact on regional hurricane frequency displays the greatest spatial extent over

the study area with 32 of 59 regions reporting a significant relationship, or roughly 54.2 %

of the Atlantic basin. This constitutes an area of over 17 million km2, or approximately the

area of South America, and includes areas comprising the entire US Atlantic coastline with

the exception of the extreme northeast.

The SAT covariate displays the second greatest spatial coverage of significant regions at

24 (40.1 %). SST and SSN covariates display the third greatest spatial coverage of
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significant regions 21 (33.9 %) of 59 regions. The NAO covariates 9 (15.3 %) significant

areas over the mapped basin, respectively.

Out space–time model tells us that SOI is spatially the most dominant climatologic factor

toward describing regional hurricane frequency. It spans 14.1 % more area of the Atlantic

basin than SAT, 20.3 % more than SST or SSN, and 38.9 % more than the NAO. Note that

SSN impact on hurricanes affects more than twice the basin area than that of the NAO.

The significant SOI and NAO areal impacts do not change sign and are predominantly

western basin phenomena. Conversely, the response in hurricane frequency from SST is

primarily a homogeneous southeast Atlantic phenomenon. SAT and SSN both feature a

split-basin heterogeneous response.

6 Summary

Here, we use a space–time model to examine the regional frequency of hurricanes in

response to September sunspots while controlling for other relevant climate factors. A

spatially coherent pattern emerges that features fewer (more) hurricanes across the

Caribbean during high (low) sunspot years, affirming the intensity and count patterns

described in EJ08 and HE12. The finding is consistent with EJ08 who identified a statis-

tically significant solar activity signal in US-affecting hurricane frequency using SSN as a

covariate. Though not statistically significant, an East Coast response similar to that found

in the Caribbean is indicated by the space–time model. Now here is an increase in

southeastern Atlantic hurricanes in response to higher SSN at almost three times the rate of

decreased counts in the southeast Atlantic.

The model can be ported to explore other spatio-statistical relationships over contiguous

space. It is worth noting the standard statistics caveats that one must be cautious when

interpreting regression coefficients from these models, even in the context of models that

incorporate spatial dependence Hughes and Haran (2012), Reich et al. (2006).

From a computational perspective, improvements include an alternative approach to the

MCMC sampling performed herein. Integrated nested Laplace approximation (INLA) can

be used to arrive at posterior marginals while alleviating the computational burdens and

convergence issues that can interfere with MCMC methods Rue and Martino (2009).
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