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Abstract. A time series describing the E1-Nino - Southern 
Oscillation (ENSO) is analyzed using the latest techniques of 
chaos theory. The methods which rely on resampling 
statistics were developed to more finely distinguish between 
nonlinearity and linear correlated noise. From the results 
significant nonlinear structure arising from ENSO dynamics 
on the monthly time scale is established. 

Introduction 

Extended periods of anomalously warm sea surface 
temperatures occurring aperiodically off the coast of South 
America are called E1 Nino events. These changes are 
intimately linked to the atmospheric zonal circulation in this 
region called the Southern Oscillation [Barnett et al., 1988]. 
The zonal transport of atmospheric mass (Walker circulation) 
across the Pacific Ocean produces a dipole surface pressure 
fluctuation which is clearly identified by subtracting monthly 
averaged sea-level pressre'es at Darwin from similarly 
averaged values at Tahiti. Persistent negative values of this 
Southern Oscillation Index (SOI) correlate well with E1 Nino 
events. Normalized monthly values of SOI beginning in 
January of 1882 and continuing through April of 1992 (1324 
consecutive months) are used in this study. 

Recently, Bauer and Brown [ 1992] using the method of 
singular-spectrum analysis (SSA) have shown that the 
underlying dynamics of the ENSO system can be captured in 
a deterministic low-order model. Nonlinear deterministic 

structure in ENSO has been suggested in past studies. 
Vallis [ 1986] proposed a simplified theoretical model for 
ENSO which exhibits chaotic dynamics. Hense [1987] 
applied the Grassberger-Procaccia [Grassberger and 
Procaccia, 1983] technique to estimate the correlation 
dimension of a shorter segment of the above data and 
concluded the ENSO can be described by a system with a 
dimension between five and six. Lately, Tsonis and Elsner 
[1992] applying nonlinear prediction to distinguish between 
random fractal sequences and chaotic signals showed that, for 
the ENSO time series, the degradation of prediction error 
with time is exponential: a property which can aid in 
identifying chaotic dynamics. 

The nonlinearity observed in the above studies, however, 
has never been tested against proper random processes, i.e., 
time-series data that preserve the observed autocorrelation 
structure, mainly because such a test has only lately been 
developed in the context of nonlinear prediction [Theiler et al., 
1992, Smith, 1992, Kennel and Isabelle, 1992]. This is 
important since common randomizing procedures, like 

Copyright 1993 by the American Geophysical Union. 

Paper number 93GL00046 
0094-8534/93 / 93 GL-00046503.00 

shuffling the data, can preserve the mean and variance but 
destroy temporal correlations present in the data, making it 
impossible to distinguish dynamics from autocorrelation 
structure in the data. 

The Method of Surrogate Data 

The procedure is called the method of surrogate data and it 
calls for the generation of a large number of random 
sequences of equal length as the time series to be tested. 
The idea is that the surrogate time series should be a 
non-deterministic record but similar in appearance to the 
original data. One method of surrogate generation is to 
preserve the amplitude spectrum of the raw data. First a 
Fourier transform of the raw data is computed; then each 
complex amplitude is multiplied by el{ where • is 
independently chosen from the interval [0, 2•r]. As long as 
•(f) = •(-f) it is guaranteed that the inverse transform is 
real. Finally, the inverse Fourier transform is the surrogate 
time series. The raw data and a surrogate are shown in 
Figures 1 and 2 respectively along with their corresponding 
autocorrelation functions. Note the similarity in means and 
variances and note the autocorrelation is preserved in the 
surrogate data which is otherwise random. 

Southern Oscillation Index (SOl) 
Tahiti- Darwin (SLP) 

4 ..... 

3 

2 

1 

g o 

• -1 

-2 

-3 

-4 ........ 1'9'0'0 ....... 1'9'2'0 ....... 1'9'4'0 ....... 1'9'6'0 ....... 1'•8'0 ....... :•000 1880 

Year 

Fig. la. Time series of normalized monthly mean sea-level 
pressure differences between Tahiti and Darwin in standard 
deviations. The record reveals aperiodic fluctuations in the 
atmospheric Walker circulation over the tropical Pacific Ocean 
and is typically referred to as the Southern Oscillation Index 
(SOI). The record used for analysis and prediction in the 
present study runs from January, 1882 through April, 1992 for 
a total of 1324 consecutive months. 
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Fig. lb. Aut•o•lation fu•ctio• of the SOI with l•g in 
monks. Serial co. elation exists in the record for 

mo•s with the f•st zero-crossing •c•g between eleven 
•d twelve months. 

Once we have a way to produce such random processes 
we can define a null hypothesis against which the raw data 
can be tested using a discriminating statistic. According to 
the above algorithm for generating surrogate records, the null 
hypothesis is that the raw data come from a linear 
autocorrelated gaussian process. The discriminating statistic 
(e.g., Lyapunov spectrum, correlation dimension, etc.) is 
computed for each surrogate time series and its distribution 
approximated. If the discriminating statistic for the real data 
is significantly outside the range of the distribution based on 
the surrogates, then the null hypothesis of linearly correlated 
noise is rejected. It can therefore be concluded that 
significant nonlinear structure is present in the record. 
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Fig. 2a. Time series generated by randomizing the phases of 
the SOI Fourier spectrum and then taking the inverse 
spectrum. The record serves as a surrogate for the original 
SOI. Means, variances and autocorrelation from the original 
record are preserved in the surrogates. 
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Fig. 2b. Autocorrelation function of the surrogate SOI with 
lag in months. Note the near identical nature of the 
autocorrelation function compared to the autocorrelation 
function of the actual SOI (Figure lb). Minor differences are 
attributed to short-comings of the numerical algorithm. 

Procedures that are commonly used to identify or obtain 
evidence about the existence of nonlinear deterministic 

dynamics in time series can be divided into, a) dimension 
estimates, b) estimates of Lyapunov exponents, and c) 
nonlinear prediction. In our case we choose the prediction 
error as the discriminating statistic. We found that choosing 
the correlation dimension, or the highest Lyapunov exponent 
leads to an inadequate estimation of the statistic due to the 
small sample size. Nonlinear prediction, unlike other 
methods for identifying chaos, make use of more information 
in the available data and thus often works well with small 

data sets [Casdagli, 1989, Elsner and Tsonis, 1992]. 
Calculation of the correlation dimension, for example, is based 
on the estimation of the scaling region which is typically small 
thus exploiting only a small subset of the available points in 
the phase space. 

Results and Conclusions 

The nonlinear prediction model used here is a version of 
the Farmer and Sidorowich [ 1987] and Sugihara and May 
[1990] interpolative algorithms used in Wales [1991] and 
based on the simplex method. An embedding dimension (E) 
is chosen and the phase space is constructed using time 
delays of the time series. For each point in phase space the 
nearby points are located and a minimal neighborhood is 
defined to be such that the subsequence containing the point 
we wish to predict is located within the simplex with a 
minimum diameter formed from the E+I closest neighbors. 
The prediction is made by keeping track of where the points in 
the simplex end up after a number of time steps in to the 
future. For the SOI we used an embedding dimension of six 
and a time delay of eleven months. Embedding dimension 
was determined by the dimension which results in the highest 
correlation cofficient between one-step predicted and actual 
values [Sugihara and May, 1990]. The delay time was 
determined by the first zero-crossing of the autocorrelation 
function. The prediction algorithm is trained on the first 1200 
months and predictions are made for the remaining 134 
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Fig. 3. •e•ction e•or as a function of months into the future 
using a nonline• prediction algorithm. Solid line with squ•es 
is •e e•or function of the original SOI and the dashed line 
with •angles the mean e•or function of fifty su•ogates. •e 
one-stand•d deviation level is •e dotted line. Based on the 
signific•fiy better shon-te• forecasts of the SOI comp•ed 
to the su•ogates, •e null hypothesis of a line•ly co,elated 
process for the SOI is rejected at a 95% confidence level. 
Collation c•fficients •e based on a sample size of 134. 

month at a time using an embedding dimension of six. This is 
done for both the SOI and fifty surrogates. Results are shown 
in Figure 3. Prediction error for the SOI is near two standard 
deviations greater than the mean prediction error of the linear 
gaussian surrogates. The null hypothesis of linear gaussian 
process for the SOI is thus rejected at a confidence level of 
95%. It is therefore concluded that the actual SOI has 

nonlinear structure which can be detected and exploited by 
strictly nonlinear prediction models. Of course a comparison 
with the surrogates provides only a necessary, not sufficient, 
condition for the detection of nonlinearity, since rejection of 
the null hypothesis only determines what the system in not 
and not what it is. 

Evidence for nonlinear structure is further corroborated by 
repeating the method using a autoregressive model for 
predictions. As expected, the linear autoregressive forecast 
skill on the SOI is not significantly different from the mean 
autoregressive forecast skill on the surrogates. 

The evidence presented above for nonlinearity in the SOI 
does not imediately imply nonlinear dynamics of ENSO. 
Nonlinearity in a time series may arise due to nonlinear 
amplitude distributions rather than nonlinear dynamics 
[Theiler et al., 1992]. For example, suppose that although 
the dynamics is linear, the observation function is nonlinear. 
In this case the null hypothesis should be that the data come 
values. Correlation coefficients between the predicted and 
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Fig. 4. Comparison of nonlinear prediction error of the SOI 
and the mean of fifty amplitude adjusted surrogates. The null 
hypothesis of nonlinear transformation of a linear gaussian 
process for the SOI is rejected at about the 95% confidence 
level. 

actual values are thus based on a sample size of about 134. 
The next step is to make twelve month predictions one 

from a monotonic nonlinear transformation of a linear gaussian 
process. 

In such a case the surrogate data are generated differently. 
One algorithm requires generating a gaussian random time 
series and re-ordering this record according to the rank of the 
original series. If x t is the n-th smallest of all the x's in the 
SOI then Yt will be the n-th smallest of all the y's (i.e. Yt 
follows xt). Taking the Fourier transform of Yt, randomizing 
its phases and taking the inverse transform produces a 
record, call it Yt" Then, if the original SOI (x t) is time 
re-ordered so that it follows Yt, the time re-ordered time 
series provides a surrogate having not only the same mean, 
variance and autocorrelation, but also the same amplitude 
distribution as the SOI (previously only the mean variance 
and autocorrelation, not the amplitude distribution was 
preserved in the surrogates). In this case, if the null 
hypothesis is rejected then evidence points toward 
nonlinearity as a result of dynamics. 

Prediction errors as a function of future time are 

accumulated for fifty surrogates under this hypothesis. 
Averages and one sigmas are plotted in Figure 4. Again 
here, the null hypothesis is rejected at a confidence level of 
about 95%. Therefore, not only is there evidence of 
low-dimensional nonlinear structure in ENSO but the 

nonlinearity is more likely a result of dynamics rather than 
due to a nonlinear amplitude distribution. 
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To summarize, the SOI provides a useful time series of 
ENSO dynamics. Coupled with the fact that reliable values 
are available for better than 110 consecutive years allows for 
a strictly empirical investigation of intrinsic nonlinearity 
within this important atmosphere/ocean system. The present 
paper attacked this problem utilizing a nonlinear time-series 
prediction algorithm in tandem with the method of surrogate 
data. From the results, nonlinear dynamics in ENSO are 
established at a high confidence level. 

In terms of actually forecasting ENSO, the prediction skill 
demonstrated here, even with the nonlinear model is quite 
modest. However, by incorporating time series of wind 
stress and sea surface temperatures, for example, from 
different locations over the tropical Pacific basin or by using 
principal components of spatial empirical orthogonal functions 
considerable improvement in forecast skill can be expected. 
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